
Postprint of article in Information Processing Letters 25 (3): 189−193 (1987)

On the Detection of Unstructuredness in Flowgraphs *

T.H. Tse

Department of Computer Science

The University of Hong Kong

Pokfulam

Hong Kong

Keywords: Structured programming, flowgraphs.

CR Categories: D.2.2, G.2.2

1. Background

Although structured programming has been introduced for about two decades, there are still a lot of

unstructured programs which need to be maintained [6]. Over 75 per cent of the costs in a system life

cycle are spent on maintenance [4]. Because of this, quite a number of papers have discussed the

problems of detecting program unstructuredness and proposed numerous ways of restructuring them.

These papers can be divided into three categories:

(a) Most of the papers are based on heuristic or intuitive arguments [2, 5, 6, 10, 11, 12, 17, 20, 21,

22]. Each of the papers tries to propose a new method which is supposedly better than the

previous ones [13]. According to the authors, unstructuredness is caused by four elements −−
branching into a selection, branching out of a selection, branching into a loop and branching out

of a loop. The detection of these unstructured elements is a difficult task. Since none of these

unstructured elements can exist in isolation, the authors recommend that we should test

unstructured compounds, which are combination of unstructured elements. Unfortunately, the

number of combinations is endless [19], so that this approach cannot be exhaustive.

(b) The second approach uses the concept of reducibility of program schemes [7, 8, 9, 13, 18]. In

essence, a program scheme M
1

is reducible to another scheme M
2

if M
1

can be transformed to M
2

according to some defined rules. A program is structured if it can be reduced to a structured

scheme, consisting only of sequences, selections and while-loops. It is not structured if

irreducible forms result. But in practice, the number of irreducible forms increases exponentially

with the number of decisions in a program [7], and hence it is very difficult to decide on the

reducibility of large and complex programs.

(c) A third approach uses the concept of succession paths in flowgraphs to define the minimum

module related with a given node. It seems to be the most promising because it produces simple

but working algorithms. Urschler [16], for example, proposed an efficient algorithm for

structuring programs automatically. Howev er, since no attempt was made to isolate

unstructuredness, a lot of time would be wasted in restructuring programs which were already

structured. Becerril et al. [3] attempted both to supplement the approach with a theoretical basis

and to discuss the conditions for unstructuredness. Unfortunately, no less than nine non-trivial

errors were introduced before the conditions for unstructuredness were proposed. The results

claimed in the paper were therefore unreliable.

* Part of this research was done at the London School of Economics, University of London under a Commonwealth

Academic Staff Scholarship. It was also supported in part by a University of Hong Kong Research Grant.

1



Because of the problems of the first two methods and the promise of the third, we shall study the

conditions for unstructuredness in terms of succession paths. We shall formally define multiple

entries and exits, and show that two simple conditions are sufficient for the detection of

unstructuredness. Only an outline of the theory will be given in this paper. Interested readers may

refer to [15] for further details.

2. Skeletons

In this section, we shall define some of the properties of flowgraphs through the concept of succession

paths.

We define a flowgraph as a finite set of nodes, together with two successor functions s
true

and s
false

defined on the nodes, satisfying four conditions:

(a) There is a unique node, denoted by begin, such that s
α
(n) ≠ begin for any node n and any

Boolean* value α.

(b) For any node n other than begin, there exists a finite sequence of nodes <begin m
0

... m
r
>,

together with a finite sequence of Boolean values <β
0

... β
r−1

>, such that

m
0

= s
true

(begin);

m
i
= s

β
i−1

(m
i−1

) for i = 1 ... r (if r > 0);

m
r

= n.

This sequence is known as an ancestry path.

(c) There is a unique node, denoted by end, such that

s
true

(end) = s
false

(end) = end.

(d) For any node n other than end, there exists a finite sequence of nodes <m
0

... m
r

end>, together

with a finite sequence of Boolean values <β
0

... β
r
>, such that

m
0

= n;

m
i
= s

β
i−1

(m
i−1

) for i = 1 ... r (if r > 0);

end = s
β
r
(m

r
).

This sequence is known as a succession path.

Our concept of succession is equivalent to the concepts of dominance of [13], back dominance of [8],

reverse dominance of [18], postdominance of [3, 16] and descendants of [14]. The term ‘‘succession’’

is chosen to avoid the controversy towards the meaning of the word ‘‘dominance’’.

We divide the nodes in a flowgraph into two classes: action nodes and decision nodes. For any action

node n, s
true

(n) = s
false

(n). That is to say, an action node has a unique successor. On the other hand,

for any decision node n, s
true

(n) ≠ s
false

(n). For completeness, we shall treat the node begin as a

decision node by defining s
false

(begin) = end.

A succession path is said to be elementary if it does not contain more than one occurrences of the

same node. A node m is known as a common successor of another node n if all the elementary

succession paths <s
true

(n) ... end> and <s
false

(n) ... end> contain m. In this case, we write n < m.

* We shall use the Greek letters α and β to denote Boolean values, and −α and −β to denote their negations.

2



We define the least common successor of n, denoted by s
v
(n), as a node such that

(a) n < s
v
(n);

(b) For any node m, n < m implies s
v
(n) < m or s

v
(n) = m.

Clearly, the least common successor of an action node is its successor and the least common successor

of begin is end. The least common successor of any node in general can be found using the algorithm

of [1] or [14].

Given a node n in any flowgraph, we define a skeleton q
α
(n) as the sequence of nodes <p

0
... p

r
> such

that

p
0

= s
α
(n);

p
i
= s

v
(p

i−1
) for i = 1 ... r (if r > 0);

s
v
(p

r
) = s

v
(n).

A skeleton is equivalent to a g-chain in [3].

Clearly the skeletons of action nodes are empty. What about decision nodes? Given a decision node

n, if one of its skeletons q
α
(n) is non-empty, we can show that an elementary succession path

<n s
−α

(n) ... end> always exists. Furthermore, the elementary succession path <s
−α

(n) ... end> must

contain all the elements of q
−α

(n). Based on these two premises, we can arrive at the following

proposition:

Proposition 1

If a decision node n is in one of its own skeletons q
β
(n), then the opposite skeleton q

−β
(n)

must be empty.

3. Modules

For any node n, we define the minimal module containing n (or simply the module M
n
) as the

minimum set of nodes satisfying the following conditions:

(a) n is in M
n
;

(b) If m is a decision node in M
n
, then all the nodes in both the skeletons q

true
(m) and q

false
(m) are in

M
n
.

It can be shown that this definition is equivalent to the more complicated definition of modules in [3].

We want to find a condition for deciding whether a node lies inside a given module. Let p be a node

in M
n
. Then there is a decision node m

0
in M

n
such that p lies in one of the skeletons q

β
0
(m

0
). If m

0
≠

n, there is another decision node m
1

in M
n

such that m
0

lies in q
β
1
(m

1
). Since there are only a finite

number of decision nodes, we can reach n by applying the above procedure a finite number of times.

Thus, there is a finite sequence of distinct skeletons <q
β
r
(m

r
) ... q

β
0
(m

0
)> such that

p ∈ q
β
0
(m

0
);

m
i−1

∈ q
β
i
(m

i
) for i = 1 ... r (if r > 0);

m
r

= n.

Conversely, suppose there is a finite sequence of distinct skeletons <q
β
r
(m

r
) ... q

β
0
(m

0
)> satisfying

the above three conditions. Since m
r−1

∈ q
β
r
(m) and m

r
∈ M

n
, m

r−1
∈ M

n
. Proceeding in this way,

after a finite number of steps, we can conclude that p also lies in M
n
. Hence we obtain the following

proposition:

3



Proposition 2

Given a decision node n, a node p is in the module M
n

if and only if there is a finite sequence

of distinct skeletons <q
β
0
(m

0
) ... q

β
r
(m

r
)> such that

p ∈ q
β
0
(m

0
);

m
i−1

∈ q
β
i
(m

i
) for i = 1 ... r (if r > 0);

m
r

= n.

Similarly, giv en a decision node n and a Boolean value α, we define a branch B
α
(n) as the

minimum set of nodes satisfying the following conditions:

(a) All the nodes in the

(b) If m is a decision node in B
α
(n), then all the nodes in both the skeletons q

true
(m) and

q
false

(m) are in B
α
(n).

This definition of branches avoids the erroneous concept of ‘‘heads’’ in [3].

The next proposition is useful for deciding whether or not a node appears in a given branch.

Proposition 3

Given a decision node n, a node p is in the branch B
α
(n) if and only if there is a finite

sequence of distinct skeletons <q
β
0
(m

0
) ... q

β
r
(m

r
)> such that

p ∈ q
β
0
(m

0
);

m
i−1

∈ q
β
i
(m

i
) for i = 1 ... r (if r > 0);

m
r

= n;

β
r

= α.

Given a node m inside the module M
n
, the module M

m
is obviously a subset of M

n
. But we

are also interested in finding a condition for which M
m

= M
n
. We note that, if a node p is in

the branch B
α
(m), then the module M

p
must be a subset of B

α
(m). The following proposition

and corollary will therefore follow:

Proposition 4

Given a node m in the module M
n
, if n is in one of the branches B

α
(m), then M

m
= M

n
.

Corollary

Given a node m in the module M
n
, if n is in one of the skeletons q

α
(m), then M

m
= M

n
.

4. Unstructuredness

Intuitively, unstructuredness in flowgraphs is due to exits in the middle of selections, multiple exits in

iterations and/or multiple entries to iterations or selections. But it can be shown that exits in the

middle of selections will only take place in the presence of multiple exits in iterations or multiple

entries. In this section, we shall formally define unstructuredness in flowgraphs through the last two

concepts only.

A decision node m is defined as an iteration exit of the module M
n

if:

(a) M
m

= M
n
;

(b) m is in one of the branches B
α
(m) but not in the opposite branch B

−α
(m).

A module is said to have multiple iteration exits if it has more than one iteration exits.

4



A node m in the module M
n

is defined as an entry node of M
n

if there is some node p outside M
0u such

that m = s
β
(p). A module is said to have multiple entries if it has more than one entry nodes.

A module is said to be unstructured if it contains multiple iteration exits or multiple entries.

5. DETECTION OF MULTIPLE ITERATION EXITS

In this section we shall find the criterion for detecting multiple iteration exits.

Suppose a node n has two non-empty skeletons q
α
(n) and q

−α
(n), and suppose n ∈ B

α
(n). An

elementary succession path <n s
α
(n) ... end> will always exist, and we can show that there is a

second decision node m ∈ B
α
(n) such that m is an iteration exit of M

n
.

Consider also the opposite branch B
−α

(n). If n ∈ B
−α

(n), then there is another iteration exit

p ∈ B
−α

(n). If, on the other hand, n ∉ B
−α

(n), then n itself is an iteration exit. In either case, the

module M
n

will have multiple iteration exits. Hence we have the following lemma:

Lemma 5

If a node n is the only iteration exit in its module M
n
, then one of the skeletons q

β
(n) must be

empty.

Suppose n is the only iteration exit in M
n
. Then n ∈ B

α
(n) but ∉ B

−α
(n). Furthermore, by Lemma 5,

B
−α

(n) is empty. Hence n ∈ q
β
(m) for some m ∈ B

α
(n). By the Corollary of Proposition 4, M

m
= M

n
.

Assume that m ≠ n. Since n is the only iteration exit, m must be in both B
β
(m) and B

−β
(m). Therefore

B
β
(m) is non-empty, and we can show that an elementary path <m s

−β
(m) ... end> always exists. We

can further show that there is a decision node p ∈ B
−β

(m) such that p is an iteration exit. But since n is

the only iteration exit, p and n must be the same node. In other words, all elementary paths <m,

s
−β

(m) ... end> pass through n. This contradicts the fact that n ∈ q
β
(m). Hence m = n, and we can

arrive at the following theorem:

Theorem 6

If a node n is the only iteration exit in the module M
n
, then one of its skeletons q

α
(n) must

contain n.

Is the converse of the theorem also true? Suppose q
α
(n) contains n. By Proposition 1, q

−α
(n) is

empty. n is therefore an iteration exit. Assume that there is another iteration exit m. It must be in

B
α
(n) or B

−α
(n). We shall show that we have a contradiction in either case. If m ∈ B

α
(n), then there is

a node p (≠ n) ∈ q
α
(n) such that m ∈ M

p
. Since both p and n are in q

α
(n), we must have s

v
(p) < s

v
(n).

Hence s
v
(m) < s

v
(n), contradicting the fact that M

m
= M

n
. On the other hand, if m ∈ B

−α
(n), then,

since n ∈ M
m

, n ∈ B
−α

(n). This contradicts the fact that n is an iteration exit. In short, there cannot be

any iteration exit other than n. Thus, we have the following theorem:

Theorem 7

A node n is the only iteration exit of the module M
n

if and only if one of its skeletons q
α
(n)

contains n.

Its corollary provides a sufficient and necessary condition for the detection of multiple iteration exits,

thus:

5



Corollary

A module M
n

have multiple iteration exits if and only if the node n is in one of the branches

B
α
(n) but not the corresponding skeleton q

α
(n).

6. Detection of Multiple Entries

The detection of multiple entries is more straightforward. The following theorem is obvious.

Theorem 8

A module M
n

has multiple entries if and only if there are two nodes m
1

and m
2

in M
n

such that

m
1

∈ q
β
1
(p

1
), m

2
∈ q

β
2
(p

2
) and m

2
∉ q

β
1
(p

1
) for some nodes p

1
and p

2
outside M

n
.

7. Conclusion

We hav e defined the concepts of skeleton, module, branch, entry and iteration exit in a flowgraph. We

have shown that two simple conditions are sufficient for the detection of unstructuredness. Namely, a

module M
n

will be unstructured if:

(a) the node n is in one of its branches B
α
(n) but not in the corresponding skeleton q

α
(n), or

(b) there are two nodes m
1

and m
2

in M
n

such that m
1

∈ q
β
1
(p

1
), m

2
∈ q

β
2
(p

2
) and m

2
∉ q

β
1
(p

1
) for

some nodes p
1

and p
2

outside M
n
.

Acknowledgement

The author is grateful to Ronald Stamper of the London School of Economics, University of London

for his invaluable suggestions on the project.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA, 1974.

[2] E. Ashcroft and Z. Manna, The translation of ‘goto’ programs to ‘while’ programs, in: Classics

in Software Engineering, E. Yourdon (ed.), Yourdon Press Computing Series, Prentice Hall,

Englewood Cliffs, NJ, 1979, pp. 51−61.

[3] J.L. Becerril, J. Bondia, R. Casajuana, and F. Valer, Grammar characterization of flowgraphs,

IBM Journal of Research and Development 24 (6) (1980) 756−763.

[4] B.W. Boehm, Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ, 1981.

[5] C. Boehm and G. Jacopini, Flow diagrams, Turing machines, and languages with only 2

formation rules, Communications of the ACM 9 (1966) 366−371.

[6] M.A. Colter, Techniques for understanding unstructured code, in: Proceedings of the 6th

International Conference on Information Systems, L. Gallegos, R. Welke, and J. Wetherbe (eds.),

Indianapolis, IN, 1985, pp. 70−88.

[7] D.F. Cowell, D.F. Gilles, and A.A. Kaposi, Synthesis and structural analysis of abstract

programs, The Computer Journal 23 (3) (1980) 243−247.

[8] S.A. Greibach, Theory of Program Structures: Schemes, Semantics, Verification, Lecture Notes

in Computer Science 36, Springer, Berlin, Germany, 1975.

6



[9] S.R. Kosaraju, Analysis of structured programs, Journal of Computer and System Sciences 9

(1974) 232−255.

[10] T.J. McCabe, A complexity measure, IEEE Transactions on Software Engineering 2 (4) (1976)

308−320.

[11] H.D. Mills, Mathematical foundations for structured programming, in: Writings of the

Revolution: Selected Readings on Software Engineering, E. Yourdon (ed.), Yourdon Press

Computing Series, Prentice Hall, Englewood Cliffs, NJ, 1982, pp. 220−262.

[12] G. Oulsman, Unraveling unstructured programs, The Computer Journal 25 (3) (1982) 379−387.

[13] R.E. Prather and S.G. Giulieri, Decomposition of flowchart schemata, The Computer Journal 24

(3) (1981) 258−262.

[14] R. Tarjan, Depth first search and linear graph algorithms, SIAM Journal on Computing 1 (2)

(1972) 146−160.

[15] T.H. Tse, The identification of program unstructuredness: A formal approach, The Computer

Journal 30 (6) (1987) 507−511.

[16] G. Urschler, Automatic structuring of programs, IBM Journal of Research and Development 19

(1975) 181−194.

[17] M.H. Williams, Generating structured flow diagrams: The nature of unstructuredness, The

Computer Journal 20 (1) (1977) 45−50.

[18] M.H. Williams, A comment on the decomposition of flowchart schemata, The Computer Journal

25 (3) (1982) 393−396.

[19] M.H. Williams, Flowchart schemata and the problem of nomenclature, The Computer Journal 26

(3) (1983) 270−276.

[20] M.H. Williams and G. Chen, Restructuring Pascal programs containing goto statements, The

Computer Journal 28 (2) (1985) 134−137.

[21] M.H. Williams and H.L. Ossher, Conversion of unstructured flow diagrams to structured form,

The Computer Journal 21 (2) (1978) 161−167.

[22] E. Yourdon, Techniques of Program Structure and Design, Yourdon Press Computing Series,

Prentice Hall, Englewood Cliffs, NJ, 1975.

7


