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Abstract

Levin's method produces a parameterization of the intersection curve of two quadrics in the form

p(u) =au) £ d@w)/su),

wherea(u) andd(u) are vector valued polynomials, an¢k) is a quartic polynomial. This method, however, is
incapable of classifying the morphology of the intersection curve, in terms of reducibility, singularity, and the
number of connected components, which is critical structural information required by solid modeling applications.
We study the theoretical foundation of Levin's method, as well as the parameteripatipiit produces. The
following contributions are presented in this paper: (1) It is shown how the root@pitan be used to classify

the morphology of an irreducible intersection curve of two quadric surfaces. (2) An enhanced version of Levin's
method is proposed that, besides classifying the morphology of the intersection curve of two quadrics, produces
a rational parameterization of the curve if the curve is singular. (3) A simple geometric proof is given for the
existence of a real ruled quadric in any quadric pencil, which is the key result on which Levin’s method is based.
These results enhance the capability of Levin's method in processing the intersection curve of two general quadrics
within its own self-contained framework.
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1. Introduction

Quadric surfaces are the simplest curved surfaces and are widely used in computer graphics and solid
modeling. Computing quadric surface intersection curves (QSIC) is an important operation in computing
the boundary representation of a solid. The goal of this paper is to enhance Levin’s method for computing
a QSIC so as to make it capable of computing the structural information of the QSIC. Specifically, we
show how the roots of a discriminant polynomial:) computed by Levin’s method can be used to
classify the morphology of an irreducible intersection curve of two quadric surfaces, in terms of its
reducibility, singularity, and the number of connected components. Based on this result, we present
an enhanced version of Levin’s method that is capable of classifying the morphology of a QSIC and
producing a rational parameterization if the QSIC is singular. Furthermore, we give a concise geometric
proof for the existence of a real ruled quadric in any real quadric pencil, which is the key result on which
Levin’s method is based.

The remainder of the paper is organized as follows. In the rest of this section we discuss the basic
properties of the QSIC and review Levin's method as well as other related work. In Section 2, procedures
are described for detecting and processing a reducible QSIC, focusing on a remedy to make Levin's
method capable of detecting and parameterizing properly a reducible but nonplanar QSIC, comprising
a line and a space cubic curve. In Section 3, with the aid of a stereographic projection, we obtain
characterizations of different morphologies of irreducible QSIC'’s in terms of the roots of a discriminant
polynomial computed by Levin’s method. In Section 4, based on the preceding analysis, we present
an enhanced version of Levin’s method for classifying and parameterizing a general QSIC. The paper
concludes in Section 5 with a summary of our work. In Appendix A we give a concise geometric proof
for the existence of a real ruled quadric in any real quadric pencil.

1.1. Morphologies of QIC's

Let CP?, RP®, andRAS denote, respectively, 3D complex projective space, 3D real projective space,
and 3D real affine space. Every quadric discussed in this paper is assumed to be defined by the zero
set of a quadratic fornrxTAX in CP%, whereX is a 4D column vector consisting of the homogeneous
coordinates of a point and is a 4x 4 real symmetric matrix. The intersection curve of two quadrics
XTAX =0andXTBX =0 comprises all the points iBP° that satisfy both of these equations.

The full classification of the morphology of a QSIC@#®* can be found in classical texts on algebraic
geometry and solid geometry (Baker, 1923; Sommerville, 1947; Semple and Kneebone, 1952). The
intersection curve of two quadrics (QSIC) is a space quartic curve of the first species. A @&iiitle
if it contains some linear, quadratic (conic), or cubic components, whose degrees sum to 4; otherwise it
is calledirreducible. The linear or conic components of a reducible QSIC can be real or imaginary, but
in the case where the QSIC consists of a line and a space cubic, the line and the space cubic are real.
A QSIC is planar if its components lie on one or two planes. All planar QSIC's are reducible. Nonplanar
QSIC'sinclude all irreducible QSIC'’s and those reducible QSIC'’s that comprise a line and a space cubic.

A QSICiis calledsingular if it has a singular point, i.e., a point at which the tangent line is not uniquely
defined; otherwise it isonsingular. A reducible QSIC is always singular, but an irreducible QSIC can be
singular or nonsingular. A singular but irreducible QSIC has exactly one double singular point of three
possible types, i.e., acnode, crunode, or cusp, and is a rational curve of degree 4. Such a QSIC may have
only one real acnode without any other real regular point. A nonsingular QSIC can have zero, one, or two
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connected components RP3. A nonsingular QSIC does not permit a rational parameterization, but can
be parameterized with a square root or an elliptic function (Farouki et al., 1989). The following diagram
shows a hierarchy of all QSIC’s with respect to their reducibility, planarity, and singularity:

planar QSIC comprising lines or coni¢s

reducible but nonplanar QSi@ real line and a real space cubic
singular QSIC with a real acnoderunode or cusp
nonsingular QSIC with zeroone or two components iRP°.

reducible QSI(‘{

QsIC
irreducible QSIC{

1.2. Related work

The Segre characteristic provides a useful characterization of different morphologies of a @BfC in
(Bromwich, 1906; Farouki et al., 1989). However, such classical results are often not sufficient because
CAD and graphics applications often require the classification and representation of the QSIC to take
place in real (projective, affine, or Euclidean) space. For instance, the single Segre characteristic [(11)11]
is assigned to a QSIC comprising two conics touching at two distinct points, but there are four different
morphologies irRP? in this case, depending on whether the two conics are real or imaginary and whether
the two common points are real or imaginary. Similarly, nonsingular QSIC’s with different numbers of
connected componentsRP® all correspond to the same Segre characteristic [1111]. Some recent results
are reported in (Tu et al., 2002) that use the roots of the characteristic equatiorB| = 0 to distinguish
different types of nonsingular QSIC's.

Computational requirements for QSIC’s vary from tracing the curve for graphics display to deriving
geometric and topological information for geometric processing. A variety of methods can be found in the
literature for computing QSIC’s. These methods provide different levels of information or have different
assumptions on the kinds of quadrics or QSIC’s that can be handled. There are notably two different
approaches to computing the QSIC: the geometric approach and the algebraic approach. Methods using
the geometric approach normally exploit special geometric properties of a special class of quadrics to
yield robust procedures for computing the QSIC (Miller, 1987; Piegl, 1989; Shene and Johnstone, 1994;
Miller and Goldman, 1995). Such a special class usually includes natural quadrics, i.e., spheres, circular
cones and cylinders, plus pairs of planes. The focus on natural quadrics is justified by their frequent
occurrence in engineering applications. In the following we review only methods using the algebraic
approach, since these methods normally accept arbitrary quadrics.

Levin's method is one of the early methods for computing the general QSIC of two arbitrary quadrics.

It produces a parameterization of the QSIC with a square-root function but does not yield information
about the reducibility or singularity of the QSIC. Hence, this method is mainly a technique for tracing
the intersection curve. Since the goal of the present paper is to improve Levin's method, we will review
Levin's method in more detail in Section 1.3.

Levin’s method is implemented by Sarraga in GMSOLID for computing the intersection curves of
natural quadrics (Sarraga, 1983). Sarraga also attempts to give a geometric interpretation of the zeros
of a quartic discriminant polynomiaku) generated in Levin's method for segmenting a QSIC but does
not provide a complete analysis regarding the reducibility, the singularity, and the number of connected
components of a QSIC. Ocken, Schwartz, and Sharir (1987) propose to use a projective transformation
to reduce two input quadrics to simple canonical forms whose intersection curve can easily be found.
It is not clear whether a complete classification of a QSIC can be accomplished by their results, since
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their procedures are not thoroughly analyzed and some cases are missing; for instance, the case of two
guadrics intersecting in a line and a space cubic is not accounted for.

Degenerate QSIC's of arbitrary quadrics are studied in (Farouki et al., 1989). A degenerate QSIC is
detected by the vanishing of the discriminant of the equafion+ B| = 0 of two quadricsXTAX =0
andXTBX =0, and is further classified by projecting the QSIC to a planar quartic curve and analyzing
this quartic curve. Wilf and Manor use the Segre characteristic to assist with classifying a QSIC before
invoking Levin's method to yield a proper parameterization of the QSIC (Wilf and Manor, 1993). Using
the Segre characteristic allows them to properly generate all linear components of a QSIC that might be
missed by Levin’s method and to generate a rational parameterization for a singular QSIC. However, this
method still cannot count the number of connected components of a nonsingular QSIC.

More recently, Wang, Joe, and Goldman (2002) compute the QSIC by first obtaining and analyzing a
planar cubic curve that is the image of the QSIC under a general stereographic projection. This method
accepts arbitrary input quadrics, classifies the morphology of a general QSIC, and yields a rational
parameterization for a singular QSIC; however, an initial point on the QSIC needs to be computed first
in order to invoke the method.

Other methods for computing the intersection curves of general parametric or algebraic surfaces can
also be applied to computing the QSIC; see, for example, (Abhyankar and Bajaj, 1989; Garrity and
Warren, 1989). However, since these methods are typically devised for more general classes of surfaces,
they normally do not take into account the specific algebraic properties of quadric surfaces. Therefore
they provide an algebraic representation of a QSIC that is usually more complicated than the one given
by Levin's method.

1.3. Levin’s method

Levin’s method is a procedure for parameterizing an arbitrary QSIC with a square root in the form

P(u) = a(u) £ d(u)y/swu),

wherea(u) andd(«) are vector valued polynomials andx) is a quartic polynomial. Levin published
two papers on this method (Levin 1976, 1978). The first paper presents the basic idea of using a real
ruled quadric, called thparameterization surface, in the pencil of two quadrics to find the QSIC and
proves the existence of such a parameterization surface. The second paper discusses implementation
issues and describes the procedure in detail. Levin’s method has inspired several subsequent papers on
its application and improvement (Sarraga, 1983; Wilf and Manor, 1993), as well as the present paper.

Two distinct quadrics4: XTAX =0 andB: X"BX =0, i.e., their coefficient matrices are linearly
independent, span a pencil of quadri&s:(AA + B)X = 0. The intersection curve od and 3 is called
the base curve of the pencil. It is evident that any member of the pencil passes through the base curve
and any two distinct members of the pencil intersect at the base curve. Hence, the intersection curve of
A andB can be computed by intersecting any two distinct quadrics in the pgR¢llA + B)X = 0.

Levin’s method is based on the critical observation that there exists a real ruled gsiadfics X =0
in the pencil XT(AA + B)X = 0. This surface is called parameterization surface. The quadricS
can be a pair of planes, a singly ruled quadric (i.e., a cone or a cylinder), or a doubly ruled quadric
(i.e., a one-sheet hyperboloid or a hyperbolic paraboloid). There is only one family of straight lines
on a singly ruled quadricS, all passing though the vertex of, the vertex is a point at infinity if
S is a cylinder. There are two reguli on a doubly ruled quadi¢Semple and Kneebone, 1952;
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Pottmann and Wallner, 2001); two distinct lines from the same regulus are skew and two lines from
different reguli intersect.

Recall that linear combinations of the homogeneous coordinates of two distinct pgiretad X1
generate all points on the line connectiKig and X;. So a ruled quadri€ can be parameterized by

qu, v) =b(u) + vd(u), (1)

whereq(u, v), b(u), andd(«) are vector valued polynomials in homogeneous coordinateésisisingly
ruled, b(u) is the vertex ofS andd(u) is a proper conic orf, i.e., b(u) has degree 0 and(x) has
degree 2. (Note that whe$iis a cylinder,b(x) is not a direction, but a 4D vector for the homogeneous
coordinates of the singular point Sfat infinity.) If S is doubly ruledb(«) andd(«) are two skew lines
from the same regulus, so both are of degree 1. In gerigial andd(«) are called the generating curves
for parameterizing the ruled surfadethrough (1).

SinceA or B are distinct surfaces, we can assume, without loss of generality, that the ruled surface
is distinct from.A. To find the base curve of the pendil (A\A + B)X = 0, we substitutey(u, v) for X
in XTAX = 0 and obtain

co(u)v? + 2c1(u)v + co(u) =0, (2)
where

co(u) =dw)"Adw),  ci(u) =bw)"Adu),  co(u) =Db(u)" Ab(u).
This equation has the solution

b —c1(u) £ /s(u)

c2(u)

where

s(u) = cEu) — ca(u)co(u) (3)

is the discriminant of (2) and a quartic polynomialinSubstituting the above solution forin q(«, v)
yields the following homogeneous parameterization of the QSIC

P(u) = c2(w)b(u) + [—c1(u) £ v/s(w) Jd(w) = a) £ v/s@wd(w), 4

where

a(u) = c2(w)b(u) — c1(w)d(w).

Levin’s method, as originally proposed, is mainly a technique for tracing a QSIC and is incapable
of providing the structural information of the QSIC, such as reducibility, singularity, and the number of
connected components. See also (Farouki et al., 1989; Wilf and Manor, 1993) for their remarks about the
difficulties with Levin’s method. Specifically, Levin’s method has the following problems:

(1) The reducibility of a QSIC is not detected properly. For example, as pointed out in (Wilf and Manor,
1993), if a QSIC consists of a ling and a space cubic, the linear componéntnay be missed
by Levin’'s method. We provide a detailed analysis of, as well as a remedy for, this problem in
Section 2.2.

(2) The singularity of a QSIC is not detected and classified. As a consequence, Levin's method may fail
to yield a rational parameterization for a singular QSIC, which is a rational curve.
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(3) The number of connected components of a nonsingular QSIBPHis not computed. The
enumeration and identification of different connected components of a QSIC is useful topological
information; for instance, when combined with the points at infinity on the QSIC, this information
can be used for segmenting the QSIQ\R®, the 3D real affine space, since only finite segments of a
curve are used in practice (Sarraga, 1983). Note that none of the existing methods for processing the
QSIC has addressed the problem of counting or identifying the number of connected components of
a nonsingular QSIC.

In addition, the algebraic proof by Levin for the existence of a real ruled surface in any quadric pencil
is lengthy and involved (Levin, 1976); it takes four lemmas and fills nearly two double-columned pages.
We give a much shorter and more accessible geometric proof of this fact in Appendix A.

2. Reducibleintersection curves
2.1. Planar Q9C's

There exist well-studied solutions to the problem of computing planar QSIC's (Levin, 1978; Sarraga,
1983; Miller and Goldman, 1995); the problem is basically reduced to computing the intersection
between a quadric and two planes. Hence, we turn our attention to the case of nonplanar reducible QSIC's
for which, in general, Levin’s method is known to fail.

2.2. Nonplanar and reducible QSC’s

A reducible but nonplanar QSIC consists a real space cubic curve and a real line. The line may
intersect the space cubic in two distinct real or complex conjugate points, or may be tangent to the space
cubic. Itis first pointed out in (Wilf and Manor, 1993) that Levin’s method cannot, in general, produce a
proper parameterization of the QSIC in this case, and that the linear component may be missing from the
parameterization entirely.

Consider a QSIC consisting of a lifg and a space cubic. Suppose tlyais doubly ruled. Let the
generating curvé(u) for parameterizingS by q(u, v) (1) be a linerg in the reguluskR on S. Suppose
further that the linear compone#t lies in the other regulug on S. Thent, is given byq(uog, v) for
some value:g. Thus Eq. (2) is satisfied by all, with u = ug. It follows that the three coefficients (i)
of EqQ. (2) vanish simultaneously at. This means that, with the parameterizatiptx) of the QSIC
given by (4), the single poimi(ug) corresponds to the entire liddg; that is, the lineZ4 is not represented
properly by the parameterizatiqr(u).

A similar analysis shows that the same problem also arises Whgsingly ruled. Hence, instead of
attempting to analyze the parameterizatn) in this case, a QSIC consisting of a line and space cubic
should be detected befopgu) is computed. And, if such a QSIC is detected, one should first extract the
linear component and then proceed to parameterize the residual cubic space curve.

A QSIC consisting of a space cubic and a line can be detected as follows. Suppose first that the
parameterization surfacg is singly ruled. Form the quadratic equation (2). Then the QSIC has a linear
component if and only if the three coefficientsu) of Eq. (2) vanish simultaneously for somg.
Sinceco(u) = b(u)"Ab(u) is a constant, one may check if it is zero. If it is nonzero, then the QSIC



W. Wang et al. / Computer Aided Geometric Design 20 (2003) 401422 407

does not have a linear component; if it is zero, then the QSIC has a linear component if and only if the
other two coefficients, (1) andc,(1) have a common nonconstant factor. Note that) andc, (1) are
polynomials of degree 2 and degree 4, respectively. They have a common nonconstant factor if and only
if Res(c1(u), c2(u)) = 0, or equivalently, if and only if GCR1(u), c2(u)) is not constant.

When S is doubly ruled, one may first derive two parameterizationss pfvith the generating line
b(u) chosen from each of the two reguli @& Then the QSIC contains a linear component if and
only if the three coefficientsg(u), c1(u), andcy (1) of Eg. (2) have a common nonconstant factor for
either of these two parameterizations&fNote that in this case the («) are quadratic polynomials.
It is easy to show that the (1), i = 0, 1,2, have a common factor if and only if the three resultants
Regco(u), c2(u)), Regcei(u), co(u)), and Reéeo(u) + c1(u), co(u)) are zero. Alternatively, one may
compute GCIGCD(co(u), c1(u)), c2(u)) to detect if thec; (1), i =0, 1, 2, have a common nonconstant
factor.

3. Irreducibleintersection curves
3.1. Sereographic projection

The main idea in the analysis of an irreducible QSIC is to use a stereographic projection to project the
QSIC to a planar cubic curve that has the same structure as the QSIC. To facilitate the construction of
the stereographic projection, we first give two conditions that characterize a QSIC devoid of real regular
points. Note that an irreducible QSIC cannot have more than one singular point.

The following two results are obvious.

Theorem 1. If a QS C isdevoid of real pointsthen s(u) < O for all u.

Theorem 2. If an irreducible QS C has one real singular point but no other real points then s(u) < 0 for
all u except for one value ug at which s(ug) = 0.

Since the case of an irreducible QSIC with no real regular points can be characterized by Theorems 1
and 2, in the following we will consider only QSIC’s with real regular points. Eedlenote a parame-
terization surface used in Levin's method, which is a ruled quadric in the pencil of two input quadrics
andB. We define a stereographic projectibhfrom the ruled quadricS that maps the QSIC to a planar
cubic curve’ on a planeP in RP3. (See (Sommerville, 1947; Wang et al., 1997) for a stereographic
projection on a general quadric surface and its properties.) We will see that this projection preserves a
number of algebraic and topological properties of the QSIC, i.e., the QSICHahdve the same re-
ducibility, the same type of singularity, and the same number of connected components. In addition, the
projectionM maps a regulus o8 to a pencil of lines centered at a point Bh These properties dfl
are critical in performing a rigorous analysis of the geometric meaning of the polynefjalsince the
problem is translated to studying the intersection of a planar cubic curve with a pencil of lines.

First suppose that is a doubly ruled quadric. See Fig. 1. [Rtand L denote the two reguli 0§. Let
No be areal regular point on the QSIC. Lgte R andl, € £ be the two lines passing through the point
No, and letrg be the lineq(u, 0) = b(x) used in the parameterization (1) 8f Take Ny as the center of
a stereographic projectiav from S to a planeP in RP® not passing throughvy. Suppose that the line
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b(u) [b(u)]

= e HCP

Fig. 1. A stereographic projection @h

ro is projected byM to a pointRy in the planeP. Then, since the cente¥, of M is a regular point of
the QSIC, the QSIC is mapped b to a planar cubic curvé{ passing througiR, on P (Baker, 1923;
Sommerville, 1947). Thak{ is a cubic curve can easily be seen as follows. Bebe a generic plane
passing through the poirify; thus the intersection betweé?i andP is a generic line, denoted b,
onP. Since the QSIC is a space quartic curi?jntersects the QSIC afy and three other free points.
Clearly, the three free intersection points are in one-to-one correspondence with intersections between
the line ¢’ and the curveH{. Hence,H is a planar cubic curve since it is intersected three times by a
generic line?’ in the plane. Furthermore, all the lineshare mapped to a pencil of lingscentered at
the pointR, € H in the planeP (see Fig. 1).

WhenS is singly ruled, in a similar manner we may also define a stereographic projétt@nS. In
this case, the base curdén) in (1) for parameterizing is a conic, and () is a constant vector for the
vertex ofS (see Section 1.3). Suppose that the catic) passes through a real regular paiy on the
QSIC. TakeN, as the center of a stereographic projectirfrom S to a planeP in R P23 not passing
throughNo. Let the vertexb(u) of S be projected through, to a pointR, onP. Then the QSIC is again
projected byM to a planar cubic curvé{ passing througi®, and all the lines oS, denoted as a group
by £, are projected to a pencil of linéscentered at the poirity in the planeP. Hence, we have defined
a stereographic projection on the parameterization suasbens is doubly ruled or singly ruled.

Assumption. (a) When the parameterization surfages doubly ruled, the lind(«) in the parameter-
ization of S given by (1) passes through the cendéy of the stereographic projectiavi; or (b) when

the parameterization surfacgis singly ruled, the conid(u) in the parameterization & given by (1)

passes through the centgg of the stereographic projectidvi .
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Remark. The above assumption facilitates the subsequent discussion in this subsection. But this
assumption will be dropped as a consequence of Lemma 3 in Section 3.2, since it is not essential to
the validity of the final results listed in Theorem 11 in Section 3.4.

To recap, the projectiol preserves the following algebraic and topological properties of the QSIC:

(1) The QSIC is nonsingular if and only if the culfitis nonsingular;

(2) When they are nonsingular, the QSIC and the cuMichave the same number of connected
components;

(3) When they are singular but irreducible, the QSIC and the ctbiooth have one double point;
furthermore, their double points have the same type, i.e., either an acnode, a crunode, or a cusp.

The parameterization (4) of the QSIC is mappedbyo the following parameterization of the planar
cubicH:

B(u) =M (p(1)) = c2)M (b)) + [—c10) £ v/5(w) M (dw)) = &) £ V/s@)d(w), 5)

where
a(u) = c2M (b(w)) — c1@M (d(w)) and d(u) =M (d(w)).

When the parameterization surfagés doubly ruledM (b(«)), which is the projection of the ling € R,
is the fixed pointR,, andM (d(u)), which is the projection of another ling € R, is a line not passing
throughR, in the planeP, sincery andr; are two skew lines in the same reguf@sthat is,M (b(«)) has
degree 0 ani (d(x)) has degree 1. Whefi is singly ruled,M (b(«)) is also a fixed point, since it is the
projection of the vertex of, andM (d(«)) is also a line, since it is the projection of the codia) with
the projection centeNg located ord(u); hence, agairM (b(x)) has degree 0 ard (d(x)) has degree 1.

The above parameterizatigitu) (5) of the cubicH is actually the same parameterization?éfthat
can be obtained by intersectifigwith the pencil of the lineg: Ro+vM (d(x)) centered at the poirR,.
Let? € £ denote a line that is the image of a lihe £ under the projectioM . Then the two intersection
points /o and /; between a line i € £ and the QSIC correspond under the projectidrto the two
intersection pointdy and I; between? and the cubic curvé{. Moreover, (i)Io and I, are two distinct
real points if and only iffo and fl are two distinct real points; and (ify and /; collapse into a double
real point if and only iff; and I; collapse into a double real point. Further, from (5) we see that the
sign of s(u) determines whether the two intersection poift@nd I; of a line ¢ € £ and the cubicH
are two distinct real points or two complex conjugate points. In particular, the vanishi@)ofas the
discriminant of (2), signals that the poinigandI; form a double real point, a case that occurs when the
line ¢ is tangent to the cubi{ at a point other tha®, or when the line/ passes through a double point
of a singular planar cubie{.

Since planar cubic curves are well understood (Salmon, 1934, Bix, 1998), the intersection configura-
tions between a planar cubic and a pencil of lines centered on the cubic can be studied in an exhaustive
and rigorous manner. This investigation can then lead to a thorough analysis of the geometric interpre-
tation of the zeros of (1) in connection with the planar cubié, and hence also in connection with the
QSIC through the stereographic projectidnthat relates the cubi#f to the QSIC.

Because the intersection properties we are concerned with here are not affected by projective
transformations in the plan®, we may simplify our discussion by considering only t@mal form
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of an irreducible planar cubic under projective transformations. The normal form of an irreducible planar
cubic curve under projective transformationyfs= x+ px +¢ (Bix, 1998). There are five topologically
different species of an irreducible planar cubic in the normal form. Figs. 2—7 show singular but irreducible
cubics with three different types of double singular points. Figs. 8-10 show two kinds of nonsingular
cubics with one and two connected components, respectively. In the next two subsections we consider
the intersection between the penfibnd the planar cubig{, assuming in turn thak{ is of each of these

five types.

3.2. Sngular and irreducible intersection curves

In this section we consider a singular and irreducible QSIC. Since the center of the proMcison
chosen to be at a regular point of a QSIC, a singular QSIC is projected to a planar cubic curve with one
double point, which is an acnode, a crunode, or a cusp.

Lemma 3. Given two quadrics A and B, suppose the parameterization surface S in Levin's method has
two parameterizations

q(u, v) =b(u) + vd(u)
and

qu, v) = (yv+ p)b) + (v + B)d(u),
where «, 8, v, and u are real constants with § = au — By # 0. Let s(u) and 5(u) be the discriminant
polynomials resulting fromusing q(u, v) and §(u, v), respectively (see Section 1.3). Then s (u) = 825 (u).
Proof. Substituting the two parameterizatioggu, v) and q(u, v) of S into XTAX = 0 yields the
following two different quadratic equations, in place of (2):

co(u)v? 4 2¢1(u)v + co(u) =0,
and

c2u)(@v + B)* + 2c1(w) (@v + B (y v + ) + co) (y v + p1)* = 0. (6)
Thens(u) = c2(u) — co(u)c2(u) ands(u) is the discriminant of the quadratic equation (6)uinlt is

straightforward to verify that () = 625(«). This completes the proof.o

Theorem 4. If the QI C is singular with an acnode plus a connected component, then either (a) s(u)
has a double root ug with s”(1g) < 0 and two simple real roots; or (b) s(u) = cf(u) where ¢1(u) isa
guadratic polynomial with two complex conjugate roots. Furthermore, the parameterization p(«) of the
QS C given by (4) isrational if and only if case (b) occurs.

Proof. We first show that, without loss of generality, it may be assumed that either (i) the generating line
b(u) of S passes through a real regular poi of the QSIC when the parameterization surfatés
doubly ruled; or (ii) the generating conit{u) of S passes through a real regular paWy of the QSIC

when the parameterization surfagés singly ruled. For otherwise, & is doubly ruled, we may choose
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an appropriatey such that the lind(u) = b(u) + vod(u) passes through a real regular pay of the
QSIC, and then use the following parameterizationddsee Fig. 1):

q(u, v) = b(u) + vdu) = bu) + (v + vo)d(u).

By Lemma 3, the same(u) will result from usingq(u, v) or q(u, v). If S is singly ruled and the conic
d(u) does not pass through any real regular point of the QSIC, we may choose an apprepsiate
that the coni@(«) = yob(u) +d(«) passes through a real regular paiftof the QSIC, and then use the
following parameterization fof:

q(u, v) = b(u) + vd(u) = (yov + Dbu) + vd(u).

By Lemma 3, again, the saméu) will result from usingq(u, v) or q(u, v). Thus, in both cases where
S is doubly ruled or singly ruled, the discriminant polynomiék) remains the same with or without the
assumption made at the start of this proof.

Consider the stereographic projectivh: S — P, centered atVy. Suppose that the QSIC is mapped
by M to the planar cubid, its acnodeX, mapped to the acnod&, of H, and the lines inC on S
mapped to the pencil of lines centered at a pd&igbn the cubicH in the planep.

There are two subcases: (B) is a regular point of{ and thereforeRy # Xo; and (b) Rg = Xo. In
case (a), the lin&ky X, has a double intersection with at X,. (See Fig. 2.) Thus(xz) has a multiple
root uo which gives rise to the lin&oX,. SinceXg is an isolated real point, we hayéu + ¢) < 0 for a
sufficiently smalle > 0. It follows thatug is a double root with” (1g) < 0. Moreover, since two tangents
can be drawn from the poi, to the cubicH (Salmon, 1934)s(«) has two simple real roots.

In case (b), a liné € £ has two fixed intersection points with the cubicat X and only one variable
intersection point with, or equivalently, a lin€ € £ on the ruled quadri§ has, in general, only one
variable intersection with the QSIC. This implies ti&ais a singly ruled quadric with its vertex at the
double pointX, of the QSIC; for otherwise, i& was doubly ruled, then a liné e £ would have, in
general, two variable intersections with the QSIC (which is irreducible); this is a contradiction. Recall
that the two solutions fov of Eq. (2) give the two intersections éfwith the QSIC, or equivalently, the
two intersectiond, and I; of £ with the cubic. Thus the last coefficient () = 0, accounting for the

Fig. 2. A singular cubic with an acnodgq and Fig. 3. A singular cubic with an acnodgq and
Ro # Xo. Ro = Xo.
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fact thatv = 0 is always a solution of Eq. (2), i.e., one hfand I; is always atR, and the other is a
variable intersection given by= —2c1(u)/c2(u). SO

s(u) = E(u) — deo(u)ca(u) = c3(u).

Furthermore, sinc&, = X, is an isolated singular point, the only variable intersection point between
the pencil £ and the cubicH cannot be atR, for any real value of.. (See Fig. 3.) It follows that
v = —2c1(u)/co(u) does not vanish for any real value ©of Hence,c; (1) has two complex conjugate
roots. In this case no real tangent can be drawn fRyre: X to  and the parameterization (4) becomes
rational, given byp(u) = co(u)b(u) — 2¢1d (). This completes the proof.O

Remark. When counting the tangents that can be drawn fi®gto H, we are concerned only with
whether or not the two variable intersection pomi@sand I, between a ling € £ and H coincide.
Therefore, unles, is an inflection point of, the tangent of{ at Ro is not counted, since in this case
Ip and I, are distinct and only one of them coincides with. This convention on counting the number
of tangents fromR, to  is followed throughout this section.

We can also prove the following results regarding a QSIC with a crunode or a cusp. The proofs are
similar to the proof of Theorem 4, so are omitted.

Theorem 5. If the QS C is singular with a crunode, then either (a) s(u) has a double root ug with
s"(ug) > 0 plus two simple real roots; or (b) s(u) = cf(u) where ¢1(1) has two distinct real roots.
Furthermore, the parameterization p(u) of the QSC given by (4) is rational if and only if case (b)
OCCUrS.

Remark. In case (a) the double root efu) is generated by a line drawn from a regular patgton H

toits crunodeX, and the other two simple roots correspond to two real tangents that can be drawn from
Ro to H (Salmon, 1934). (See Fig. 4.) In case (b), the two simple roots(@h correspond to the two
tangents of{ at its crunode. (See Fig. 5.)

Fig. 4. A singular cubic with a crunod&g and Fig. 5. A singular cubic with a crunod&g and
Ro # Xo. Ro = Xo.
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Fig. 6. A singular cubic with a cusgXo and Fig. 7. A singular cubic with a cusgo and
Ro # Xo. Ro = Xo.

Theorem 6. If the QS C is singular with a cusp, then either (a) s(u) has a triple root ugp plus
another simple real root; or (b) s(u) = c2(u), where c1(u) has a real double root. Furthermore, the
parameterization p(u) of the QS C given by (4) isrational if and only if case (b) occurs.

Remark. In case (a) the triple root of(x) is generated by a line drawn from a regular paigton H

to its cusp, and the simple root ofx) corresponds to a real tangent that can be drawn fRgno
(Salmon, 1934). (See Fig. 6.) In case (b), the double roet @f) corresponds to the unique tangent of
H at its cusp. (See Fig. 7.)

By Theorems 4-6, in particular the argument in the proof for case (b) of Theorem 4, we obtain the
following theorem.

Theorem 7. For a QS C with one singular point X, the parameterization p(u) by (4) isrational if and
only if the parameterization surface S used in Levin's method is a singly ruled quadric with its vertex
at Xo. Furthermore, when such a parameterization surface is used, a rational parameterization of the
QY Cisgiven by

P(u) = ca(u)bu) — 2c1d(u).

Theorem 8. Let A: XTAX =0and B: X"BX = 0 be two quadrics whose intersection curve is singular
but nonplanar. Then there exists a singly ruled quadric in the pencil of A and B whose vertex is at a
singular point of the intersection curve of A and 5.

Proof. Let Xq be a singular point of the QSIC of andB. Suppose that neithet nor B is singly ruled

with its vertex atXo, for otherwise we are done. Then the respective tangent plEjast = 0 and
XJBX =0 of AandB at X, are well-defined and identical, i.6(] A = p X B for some real constant.
Hence, the quadriSy: XT(A — pB)X = 0 in the pencil of4 or B is a singly ruled quadric with its vertex

at Xo, sinceXj (A — pB) = 0. Note thatSy cannot be a pair of planes, since the QSIC is nonplanar. This
completes the proof. O
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Fig. 8. A nonsingular cubic with one component.

Note that Theorem 8 also covers the case where a QSIC consists of a line and a space cubic.
Coroallary 9. Any singular QS C isrational.
3.3. Nonsingular intersection curves

Theorem 10. If the QS C is nonsingular with one connected component, then s(«) has two simple real
roots and two complex conjugate roots.

Proof. Similar to the proof of Theorem 4, with the aid of the stereographic projeMipthe argument is
reduced to counting the number of real tangents that can be drawn to a nonplanat ¢udsica regular
point Ry on H, since each of these tangents is accounted for by a simple real ropt)oSince’{ has

one connected component, we know that exactly two tangents can be drawmRfrtorH (Salmon,
1934). (See Fig. 8.) Hence(u) has two simple real roots and two other complex conjugate roots. This
completes the proof. O

Theorem 11. If the QI C is nonsingular with two connected components, then either (a) s(«) has four
simplereal roots; or (b) s(x) hasno real roots and s(u) > O for all u.

The proof of Theorem 11 is similar to that of Theorem 10, so is omitted. The two cases in Theorem 11
correspond to whether the pencil cenf&yis on the infinite branch or the oval branch of the cukic
When Ry is on the infinite branch, four tangents can be drawn figiio H (see Fig. 9); wherk, is on
the oval branch, no tangent can be drawn frBgrto + (Salmon, 1934) (see Fig. 10).

3.4. Complete characterization of irreducible Q9C’s

In Sections 3.2 and 3.3 we obtained necessary conditions in terms of the roefs)dbor all
morphologies of irreducible QSIC’s. Because these necessary conditions are distinct from each other,
they are therefore also sufficient for the respective morphologies. We summarize these necessary and
sufficient conditions for different cases in the following theorem.
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Fig. 9. A nonsingular cubic with two components Fig. 10. A nonsingular cubic with two components
and Rg on the infinite branch. and Rg on the oval branch.

Theorem 12. Let Q be an irreducible QS C.

(1) Q hasonereal singular point but no other real pointsif and only if s(u) < O for all u except for one
value ug at which s(ug) = 0.

(2) Qissingular with an acnode plus a connected component if and only if either (a) s(«) has a double
root ug with s” (ug) < 0 and two simple real roots; or (b) s(u) = cf(u) where ¢1 (1) has two complex
conjugate roots. The parameterization p(u) of Q given by (4) isrational in case (b).

() Q issingular with a crunode if and only if either (a) s(x) has a double root uy with s”(ug) > 0
plus two simple real roots; or (b) s(u) = cf(u) where c¢1(u) has two distinct real roots. The
parameterization p(u) of Q given by (4) isrational in case (b).

(4) Qissingular with a cusp if and only if either (a) s(u) has a triple root ug plus another simple real
root; or (b) s(u) = c2(u) where c1(u) has areal double root. The parameterization p(u) of Q given
by (4) isrational in case (b).

(5) Q isdevoid of real pointsif and only if s(«) < O for all u.

(6) Q isnonsingular with one connected component if and only if s(«) has two simple real roots and
two complex conjugate roots.

(7) Q isnonsingular with two connected components if and only if either (@) s(«) has four simple real
roots; or (b) s(«) hasno real rootsand s(u) > O for all u.

4. Enhanced Levin’s method

Based on the procedure in Section 2 and the results summarized in Section 3.4, we are now
able to present an enhanced Levin's method, to be referred to as ELM, that is capable of detecting
reducibility and singularity, as well as counting the connected components of a QSIC. In addition, the
method produces a rational parameterization for a singular QSIC through a special selection of the
parameterization surface.
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Procedure ELM

Input: Two quadrics4: XTAX =0 andB: XTBX =0.

Output: A parameterizatiop(«) given by (4) of the QSIC ofd andB, together with its reducibility, the
type of singularity, or the number of connected compongnts) is rational if the QSIC is singular.

Begin

(1) (For aplanar QS C.) Detect if there is a pair of planes in the pencil4fandB. If yes, compute the
planar QSIC, and quit; otherwise go to step (2).

(2) (For aQSC consisting of aline £, and a space cubic C.) Find a real ruled quadri§ in the pencil of
A andB. Use the resultant-based procedure in Section 2.2 to detect whether the QSIC has a linear
component. If not, go to step (3). If yes, extract the linear compobgrand then go to step (3) to
compute a rational parameterization of the remaining cubic component of the QSIC.

(3) (For asingular QSIC with onereal singular point or the cubic component of a nonplanar reducible
QS C.) Find all singly ruled quadric§ in the pencil of.4 andB. If there is no such surface, go to
step (4). For each singly ruled surface in the pencil, compute its vertex and check whether or not
the vertex is onA. If any of the singly ruled quadrics, s&p, has its vertexXy on A, thenXj is a
singular point of the QSIC, and the parameterizafign) of the QSIC constructed witl§, as the
parameterization surface is rational (by Theorem 7). If none of the singly ruled quadrics in the pencil
has its vertex o4, go to step (4).

(4) (For a nonsingular QSC.) Use any real ruled quadri§ in the pencil of A and B to generate a
parameterizatiop(x) of the QSIC by (4). Use the conditions in Theorem 12 to compute the number
of connected components of the QSIC.

End

Finding a pair of planes or a parameterization surf&cen a quadric pencilX"(AA + B)X =0
entails solving for the roots of the quartic equatibpA + B| = 0, as well as determining the
multiplicities of these roots. The need for solving or analyzing a quartic equation also arises from
analyzing the discriminant polynomialu) (3), as required in ELM. We will not discuss here in detalil
techniques for solving quartic equations, but instead refer the interested reader to (Dickson, 1914;
Uspensky, 1948).

The following three examples of computing QSIC’s using ELM verify some of the conditions listed
in Theorem 12.

Example 1. (Reducible intersection of two cones, comprising a line and a space cubic. See Fig. 11.) The
matrices of the input quadrics are

10 00 00 -05 075 00 -05 0125
A 00 075 -05 -05 B_ 00 10 00 0.0
| 00 -05 00 00 |’ | =05 00 00 0.25

-05 -05 00 025 0.125 Q0 025 -0.3125
Using ELM, the parameterization surfaSes a cone (see Fig. 12), and

s(u) = (u2 — 1)2.
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Fig. 11. The reducible intersection of two cones. Fig. 12. The same intersection curve as in Fig. 11 with the
parameterization surfacg derived by ELM.

The roots ofs (1) are:u; = 1.0, u, = 1.0,u3 = —1.0,u4 = —1.0. The linear component is
(0.5,0,—-1,1)" +v(0,0, 3.46,0)".
A rational parameterization of the cubic component is

0,093 — 2.76u% — 4.4 + 1.82

| —6.924° 1 6.9242 —6.924 + 2.3
P =1 03643 + 4.9742 + 1.53 + 3.81
—3.82%83 — 1.5142 — 4.99% — 0.34

Example 2. (Sngular intersection with a cusp of a sphere and a cone. See Fig. 13.) The matrices of the
input quadrics are

1 0 0 O 1 00
0 1 0 -1 0 010
A=1o 0 1 o|° B=|lo 1 0 of
0 -1 0 O 0 00O
Using ELM, the parameterization surfaSds a cone (see Fig. 14), and
s(u) = (u — 1.

The roots ofs(u) are:u; = 1.0, up = 1.0, uz = 1.0, uy = 1.0 (ref. condition 4(b) in Theorem 12).
A rational parameterization of the QSIC is
—1.4144* + 2.828% — 2.828 + 1.414
() = —u*+4.0u® — 6.0u® +4.0u — 1.0
o ut—2u? +1
—2u* —4u? -2
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Fig. 13. The singular intersection of a sphere and a cone with a cusp.

Fig. 14. The same intersection curve as in Fig. 13 with the parameterization sSrfEresed by ELM.

Example 3. (Nonsingular intersection of an ellipsoid and a two-sheeted hyperboloid with two compo-

nents. See Figures 15and 16.) The matrices of the input quadrics are

3993 -0.448 -2.606 QO 2778 Q008 Q050

—0.448 -3.381 -3.356 Q0 B 0.008 2662 Q047

—2.606 —3.356 4177 Q0 |’ ~ | 0.050 Q047 2847
0 0 0 1 0.528 —-0.764 Q972

A=

0528
—0.764
Q972
—0.845
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Fig. 15. The nonsingular intersection of an ellipsoid ariig. 16. The same intersection curve as in Fig. 15 with the
a two-sheeted hyperboloid with two components. parameterization surface.

Using ELM, the parameterization surfasds a hyperbolic paraboloid, and
s(u) = —2.3%" — 2.4%° + 3.48/% + 3.17u — 0.14.

The roots ofs(u) are:
u1=—1.324 u, =—0.897, uz =0.043 us=1.169

(ref. condition 7(a) in Theorem 12). A parameterization of the QSIC is

0.84u® + 0.19%2 — 0.62u — 0.09 —0.74u — 0.49
| 11mf 42102 +1.724 4 0.39 0.34u +0.29
P =1 05321152+ 000 +035 | TVSW| " _p4s
2.51u? + 2.54u + 0.88 0

5. Conclusions

We have presented an analysis of Levin’s method for computing the intersection curve of two
quadric surfaces (QSIC). We have introduced additional tests in order to make this method capable of
computing geometric and structural information—irreducibility, singularity, and the number of connected
components—for the QSIC. We have also provided an enhanced version of Levin's method that generates
a rational parameterization for any singular QSIC. Further research is still required to examine the
numerical accuracy of Levin's method in order to insure that this method is numerically robust.
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Appendix A

Levin’ method is based on the existence of a real ruled quadric in any quadric pencil. The proof given
by Levin (1976) for this result is involved and lengthy, filling nearly two double-columned pages. In this
appendix we present a geometric proof, which is not only shorter, but also provides useful insight into
this geometric fact.

Theorem A.1. There exists areal ruled quadric in the pencil of any two distinct real quadrics.

Proof. Let A: XTAX =0 andB: X" BX = 0 be two distinct quadrics, witteal coefficient matricest
andB. Let Xo and X, be two distinct real points on the QSIC dfand 3, then the line passing through
Xo and X, denoted byXyX4, is a real line. If there do not exist two real points on the QSIC, then we
chooseX and X to be two complex conjugate points on the QSIC. We now show that th&liXe is
alsoreal. LetXo=U +iV andX, = U —iV, whereU andV are two linear independent real 4D vectors
(i.e., two distinct real points). Theti = (Xo + X;)/2 andV = (Xo — X;)/(2i), as linear combinations
of Xo and X, are two distinct real points on the lid&X;. Hence XoX; is a real line.

Next we choose a real poit* on the lineXyX; such thatX* is distinct from X, or X1. Obviously
there exists.o such thatX* is on the quadricS: X'SX = XT(A0A + B)X = 0; note that, ifX* is also on
the QSIC, i.e. X* is on both.A andB, thenX* is on XT (LA 4+ B)X = 0 for anyx. Hence, by Bézout’s
theorem S contains the real lin&yX; since it contains three distinct poink, X,, andX* on the line.

It follows thatS is a real ruled quadric, for otherwisewould be an ellipsoid, an elliptic paraboloid, or
a two-sheet hyperboloid, which could not contain any real line. This completes the proof.

Although Levin’s method works as long as there exists a real ruled quadric in the pencil of two input
guadrics, one might prefer to use some special ruled quadrics for the parameterization Sutfate
have relatively simple parameterizations in affine space; this viewpoint is espoused in Levin's paper
(1976). For this reason, the ruled quadficdhat is allowed as the parameterization surface in Levin's
original method can only be a pair of planes, a hyperbolic paraboloid, or a cylinder (Levin, 1976, p. 560).
(Incidentally, Levin adds the cone into the list of allowable parameterization surfaces in his other paper
(Levin, 1978, Table 1, p. 75).) The next theorem is the specific result stated and proved by Levin, for
which we now give a more concise proof.

Theorem A.2 (Levin, 1976, p. 561)The intersection curve of two quadric surfaces liesin a plane, pair
of planes, hyperbolic or parabolic cylinder, or a hyperbolic paraboloid.

Proof. Let A: XTAX =0 andB: X"BX = 0 be two distinct quadrics, wher® = (x, y,z, w)" are
homogeneous coordinates with= 0 representing the plane at infinity. Let the uppet 3 submatrices
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of A and B be denoted by, and B, respectively. The intersection of the pencilXf(AA + B)X =0
with the plane at infinityw = 0 is the pencil of conicXT (1A, + B,)X =0, whereX = (x, y, z). We
may assume that the conigs X" 4, X =0 andB: X"B,X = 0 are distinct, for otherwise the QSIC 4f
andB is planar and the proof is done. Clearly, all the special quadifcsX = 0 listed in Theorem A.2
are characterized by the fact that their intersection with the plage0 is a degenerate conic containing
areal line.

Now the proof proceeds with much the same idea as the proof of Theorem A.1; we need to find a
conic in the pencilXT(LA, + B,)X = 0 that contains a real line. First choose two poiktsand X
to be either (1) two distinct real intersection points.4fandB; or (2) two distinct complex conjugate
intersection points of4 and B; or (3) both at the only intersection poidg of A and B if A and B
intersect at/y, with multiplicity 4. In cases (1) and (2), we have a unique real &, connectlngXo
and X;. In case (3) there exists a line that has at least double contact withattd B at I, and thus
also has at least double contact@tvith any conic in the pencil of and B; in this case the line is still
denoted beoXl for notational uniformity. Now choose another real paifit on the lineXyX, that is
distinct from X, or X;. Then there exists, such that the conuXT(AoA + B,)X = 0 containsX*. It
follows, by Bézout's theorem, that the con‘i(E(AoA + B,)X = 0 contains the real lin& X3, since it
containsX* and two other points(, and X; (with multiplicity counted) on the line. Hence, the QSIC
of A andB lies on the corresponding quadiic’ (A oA + B)X = 0, which is one of the special quadrics
listed in Theorem A.2. This completes the proof]
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