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Abstract

Given two ellipsoids, we show that their characteristic equation has at least two negative roots and
that the ellipsoids are separated by a plane if and only if their characteristic equation has two distinct
positive roots. Furthermore, the ellipsoids touch each other externally if and only if the characteristic
equation has a positive double root. An advantage of this characterization is that only the signs of the
roots matter. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We present an algebraic condition for the separation of ellipsoids in three-dimensional
Euclidean space,E3. Two ellipsoids are said to be separated if they are on the opposite
sides of a plane and do not intersect the plane inE3; and to overlap if they have
common interior points. Two ellipsoids that touch each other externally are not regarded
as overlapping or as separated.

Ellipsoids have a small number of geometric parameters and are excellent for
approximating a wide class of convex objects in simulations of physical systems.
Detecting the collision or overlap of two ellipsoids is thus an important problem
with applications in computer graphics, computer animation, virtual reality, robotics,
CAD/CAM, computational physics, and geomechanics. However, the use of ellipsoids is
hindered by the lack of efficient methods for detecting separation or overlap.
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The intersection curves between two quadric surfaces in three-dimensional projective
complex space can be classified using Segre’s characteristics, which are defined by the
elementary divisors of the associated quadratic forms (Bromwich, 1906; Sommerville,
1947). For all degenerate intersection curves, this classification essentially takes place in
three-dimensional complex space, so it cannot be directly applied to the present problem of
detecting separation in real space. In some sense, our work is an extension of the classical
results in (Bromwich, 1906), since we consider the classification of a pair of ellipsoids in
real affine space.

Conventional methods (Farouki et al., 1989; Levin, 1979; Wilf and Manor, 1993) for
finding the intersection of two quadrics could also be used to detect whether two ellipsoids
overlap; if there are no real intersection points between them, then the ellipsoids are
either separated or one is contained in the other. However, these methods are designed to
compute the structure and parameterization of the intersection curve, rather than the gross
relationship between the ellipsoids, and are more complicated than the algebraic condition
that will be given in this paper.

The overlap of two ellipsoids has also been studied in computational physics for mole-
cule simulation (Perram and Wertheim, 1985; Perram et al., 1996), and in geomechanics
for modeling ellipsoidal particles (Lin and Ng, 1995); the methods proposed for these ap-
plications are essentially numerical. In contrast, our algebraic condition leads to simple,
efficient, and exact algorithms.

Given two ellipsoidsA: XTAX = 0 andB: XTBX = 0 inE3, whereX= (x, y, z,w)T

are the homogeneous coordinates, theircharacteristic polynomialis defined as

f (λ)= det(λA+B),

andf (λ)= 0 is called thecharacteristic equation. Here we assume that the interiors ofA
andB are defined byXTAX< 0 andXTBX < 0, respectively. We shall show that:

(i) The characteristic equationf (λ)= 0 always has at least two negative roots.
(ii) The two ellipsoids are separated by a plane if and only iff (λ)= 0 has two distinct

positive roots.
(iii) The two ellipsoids touch each other externally if and only iff (λ)= 0 has a positive

double root.
Note that only the signs are important—we do not need to solve for the exact roots. As soon
as two distinct positive roots are detected (e.g., using Sturm sequences (Dickson, 1914)),
one may conclude that the two ellipsoids are separated.

The remainder of this paper is organized as follows. In Section 2, we briefly review
some preliminaries on ellipsoids. In Section 3, we introduce an algebraic condition for the
separation of two ellipsoids, and show that it is a necessary and sufficient condition. Some
examples are given in Section 5. Finally, in Section 6, we conclude with some ideas for
future research.

2. Preliminaries

Given two ellipsoids, by applying an affine transformation as necessary, we may assume
that one ellipsoid is given in the standard form
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A: XTAX= x2

a2
+ y2

b2
+ z2

c2
− 1 = 0, (1)

with 0< a � b � c, and the other is given as a sphere

B: XTBX = (x − xc)
2 + (y − yc)2 + (z− zc)

2 − r2 = 0, (2)

whereX = (x, y, z,1)T, and

A =




1/a2

1/b2

1/c2

−1


 ,

B =




1 −xc
1 −yc

1 −zc
−xc −yc −zc −r2 + x2

c + y2
c + z2

c


 .

An affine transformation of two ellipsoidsA and B changes their characteristic
equation; however, the roots remain the same. LetÃ and B̃ be the result of applying
an affine transformationT to A and B. Then the corresponding matrices arẽA =
(T −1)TAT −1 andB̃ = (T −1)TBT −1, and the characteristic equation becomes det(λÃ+
B̃) = det−2(T )det(λA+ B) = 0, which has the same roots asf (λ) = det(λA+ B) = 0.
Clearly, the geometric relationship between the two ellipsoids does not change under the
affine transformationT . Thus it is sufficient to consider the simple case of an ellipsoidA
in standard form (1), and a sphereB in form (2).

The characteristic polynomial ofA andB is then given as follows:

f (λ) = −
(
λ

a2 + 1

)(
λ

b2 + 1

)(
λ

c2 + 1

)(
λ+ r2) (3)

+ x2
c

a2

(
λ

b2 + 1

)(
λ

c2 + 1

)
λ+ y2

c

b2

(
λ

a2 + 1

)(
λ

c2 + 1

)
λ

+ z2
c

c2

(
λ

a2
+ 1

)(
λ

b2
+ 1

)
λ.

An inspection of the above expression yields the following lemma.

Lemma 1. Assuming0< a < b < c, we have
(1) f (0) < 0;
(2) f (−a2) < 0 if xc �= 0, andf (−a2)= 0 if xc = 0;
(3) f (−b2) > 0 if yc �= 0, andf (−b2)= 0 if yc = 0;
(4) f (−c2) < 0 if zc �= 0, andf (−c2)= 0 if zc = 0.
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From Lemma 1, and considering the special case ofa = b or b = c, it is easy to
prove:

Theorem 2. Suppose0< a � b � c. Thenf (λ) = 0 has at least two negative roots in
[−c2,−a2], counting multiplicity. There is a real root in[−c2,−b2] and there is also a
real root in [−b2,−a2].

Lemma 3. A nonconstant common factor of all the3 × 3 minors ofλA+ B can only be
λ+ a2, λ+ b2 or λ+ c2.

Proof. It suffices to note that the first minor, det(λA+B)(1,2,3|1,2,3), is(
λ

a2 + 1

)(
λ

b2 + 1

)(
λ

c2 + 1

)
. ✷

3. Separation of two ellipsoids

We first consider a necessary condition for the separation of two ellipsoids.

Theorem 4. If A andB are separated, thenf (λ)= 0 has two distinct positive roots.

The next lemma will be used in the proof.

Lemma 5. If f (λ) = 0 has a positive double root, thenA andB have a real touching
point.

Proof. Letλ0> 0 be a positive double root off (λ)= 0. By Lemma 3,λ0 is not a common
zero of all the first 3× 3 minors ofλA+ B. Hence, the matrixλ0A+ B has rank 3 and
its null space, Ker[λ0A + B], has dimension 1. Further,λA + B = A(λI − (−A−1B)),
and thusλ0 is an eigenvalue of−A−1B with multiplicity 2, and the null space Ker[λ0I +
A−1B] has dimension 1. By the Jordan canonical form, there are a real eigenvectorX0 and
a generalized eigenvectorX1 of −A−1B (see Appendix B of (Strang, 1988)) such that(

A−1B
)
X0 = −λ0X0 and

(
A−1B

)
X1 = −λ0X1 +X0,

or, equivalently,(
λ0I +A−1B

)
X0 = 0 and

(
λ0I +A−1B

)
X1 =X0,

which implies that(λ0I +A−1B)2X1 = 0. SinceA andB are symmetric,

XT
0AX0 =XT

1A
(
λ0I +A−1B

)2
X1 = 0.

Consequently,X0 is a point onA. Note thatX0 is also a point onB sinceXT
0BX0 =

XT
0 (λ0A+B)X0 =XT

0A(λ0I +A−1B)X0 = 0.
The tangent planes ofA andB atX0 areXTAX0 = 0 andXTBX0 = 0, respectively.

Since(λ0I + A−1B)X0 = 0, it follows that−λ0AX0 = BX0; in other words, the two
tangent planes are identical. HenceA andB have a real touching point atX0. ✷
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Proof of Theorem 4. Consider a sphereB0 with radiusr > 0 and center(a+ r + 1,0,0).
Clearly,A andB0 are separated. A simple calculation shows that the characteristic equation
f0(λ) = 0 of A andB0 has two negative roots,−b2 and−c2, and two distinct positive
roots.

Given a sphereB of radius r, separated fromA, it is possible to move a sphere
B(t), t ∈ [0,1], of radiusr from B0 to B, while B(t) remaining out of contact withA
for any t ∈ [0,1]: hereB(0) is B0 andB(1) is B. Let f (λ; t)= 0 denote the characteristic
equation of the ellipsoidA and the moving sphereB(t). We shall show that, for each
t ∈ [0,1], the characteristic equationf (λ; t)= 0 has two distinct positive roots. The proof
will then follow from the case wheret = 1.

Recall the following result on the continuity of the roots of a polynomial (see (Bhatia,
1997)): Let aj (t), 1 � j � n, be continuous complex-valued functions defined on an
interval I. Then there exist continuous complex-valued functionsα1(t), . . . , αn(t) which,
for eacht ∈ I, constitute the roots of the polynomial equationλn − a1(t)λ

n−1 + · · · +
(−1)nan(t) = 0. This result is applicable to our case (n= 4) since the leading coefficient
of f (λ; t) = 0, which is −(abc)−2, is a nonzero constant for allt . Let αi(t), where
i = 1,2,3,4, be continuous functions that constitute the four roots off (λ; t) = 0. Since
f (λ;0)= 0 has two negative roots and two distinct positive roots, the functionsαi(t) can
be labeled such thatα1(0)� α2(0) < 0< α3(0) < α4(0). Note that, by Theorem 2,α1(t)

andα2(t) are real-valued and negative for allt ∈ [0,1].
Suppose thatf (λ; t0)= 0 does not have two distinct positive roots for somet0 ∈ (0,1].

We recall thatf (λ;0)= 0 does have two distinct positive roots, and so we must have one
of the following two cases:

(i) Either α3(t) or α4(t) changes from a positive root into a non-positive real root
through 0 or∞, without ever becoming imaginary first.

(ii) The valuesα3(t0) andα4(t0) are a pair of imaginary conjugate roots.
Case (i) is clearly impossible, since the first and last coefficients off (λ; t) are det(A) =
−(abc)−2 �= 0 and det(B(t))= −r2 �= 0, respectively.

As regards case (ii), consider the factorizationf (λ; t)= a0(λ−α1(t))(λ−α2(t))g(λ; t),
whereg(λ; t) = (λ − α3(t))(λ − α4(t)). Let ∆(t) denote the discriminant ofg(λ; t):
∆(t) = (α3(t) − α4(t))

2, which is a real-valued function oft . Clearly,∆(0) > 0 and
∆(t0) < 0. By continuity,{t ∈ [0,1] | ∆(t) = 0} is nonempty and closed; so there exists
a least value oft , tmin, such that∆(tmin) = 0. It follows thatg(λ; tmin) has a double real
rootα3(tmin)= α4(tmin). Because of the minimality oftmin, if α3(tmin)= α4(tmin)� 0 were
to hold, we would have case (i), which has been shown to be impossible. On the other hand,
if α3(tmin)= α4(tmin) > 0, then, by Lemma 5, the ellipsoidA and the sphereB(tmin) touch
each other, which contradicts the way thatB(t) is constructed. These contradictions imply
that not0 ∈ [0,1] exists such that∆(t0) < 0; in other words, case (ii) is also impossible.
Hence,∆(t) > 0 for all t ∈ [0,1]. Consequently,α3(t) andα4(t) are distinct and positive
for anyt ∈ [0,1]. ✷

The next two lemmas will be used later.

Lemma 6. If A and B have a common interior point, thenf (λ) = 0 has no positive
root.
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Proof. LetX0 = (x0, y0, z0,1)T denote a point that is contained in the interiors of bothA
andB; i.e.,XT

0AX0 < 0 andXT
0BX0 < 0. Suppose thatf (λ0) = det(λ0A+ B) = 0, for

someλ0> 0. Then

XT
0 (λ0A+B)X0 = λ0X

T
0AX0 +XT

0BX0< 0.

Now, for an arbitrary directionX1 = (x1, y1, z1,0)T, let us consider the line

X(t)=X0 + tX1 = (x0 + tx1, y0 + ty1, z0 + tz1,1)T.

The value of

X(t)T(λ0A+B)X(t)= λ0X(t)
TAX(t)+X(t)TBX(t)

is negative att = 0, and positive for a sufficiently large|t|, since in that caseX(t) is outside
both A andB. ThusX(t)T(λ0A + B)X(t) vanishes at least twice; in other words, the
lineX(t) intersects the quadricXT(λ0A+B)X = 0 at two different real points. Since this
is the case for an arbitrary directionX1, the quadricXT(λ0A+B)X = 0 must be a closed
surface inE3, which must be an ellipsoid. Thus det(λ0A+ B) �= 0, since the ellipsoid is
nondegenerate. But this contradicts the assumption thatλ0 is a root off (λ0)= 0. Hence,
all the real roots off (λ)= 0 are negative. ✷
Lemma 7. If two ellipsoids touch each other externally, then their characteristic equation
has a positive double root.

Proof. We shall first show that the characteristic equation has a positive root, and then
show that this positive root is a double root. LetA: XTAX = 0 andB: XTBX = 0
be two externally tangent ellipsoids. LetX0 be the tangent point ofA and B. Then
BX0 = −λ0AX0 for some real valueλ0 �= 0, sinceA andB share the same tangent plane
atX0. Thus,(λ0A+B)X0 = 0; that is,λ0 is a root off (λ)= 0, the characteristic equation
of A andB. LetY0 be an interior point ofB. ThenY0 must be outsideA, sinceA andB are
externally tangent. It follows thatY T

0 BY0< 0, andY T
0 AY0> 0. On the other hand, the line

throughX0 andY0 intersectsA at a pointU0 distinct fromX0, and intersectsB at a pointV0
distinct fromX0. Without loss of generality, we may assume that the last components of
X0, Y0,U0, andV0 are all equal to 1. Then we may expressU0 = (1− s)X0 + sY0 for some
s < 0, andV0 = (1− t)X0 + tY0 for somet > 1. SinceU0 is onA,

0 =UT
0AU0 = (1− s)2XT

0AX0 + 2(1− s)sY T
0 AX0 + s2Y T

0 AY0

= 2(1− s)sY T
0 AX0 + s2Y T

0 AY0.

Hence,Y T
0 AX0 = −sY T

0 AY0/[2(1 − s)] > 0; similarly, we can show thatY T
0 BX0 =

−tY T
0 BY0/[2(1− t)]< 0. Since(λ0A+B)X0 = 0, we obtain

0 = Y T
0 (λ0A+B)X0 = λ0Y

T
0 AX0 + Y T

0 BX0.

It follows thatλ0 = −Y T
0 BX0/Y

T
0 AX0> 0.

Recall from Eq. (3) that the leading and last coefficients off (λ)= 0 are−(abc)−2 and
−r2, respectively. Thus the product of all the four roots off (λ)= 0 is (abcr)2> 0. Since
there are two negative roots off (λ)= 0, and moreoverλ0> 0, the fourth rootλ1 must be
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positive. Now we are going to show by contradiction thatλ1 = λ0, and consequently that
λ0 is a double root off (λ)= 0.

Supposeλ1 �= λ0. Then the real eigenvectorX1 associated withλ1 is linearly
independent fromX0, i.e.,X1 satisfies(λ1A + B)X1 = 0, andX1 andX0 are distinct
points. From the equations(λ0A+ B)X0 = 0 and(λ1A+ B)X1 = 0, we getXT

0 (λ0A+
B)X1 = 0 andXT

0 (λ1A + B)X1 = 0, which implies thatXT
0AX1 = XT

0BX1 = 0, since
λ0 �= λ1. Thus,X1 is a point on the common tangent plane ofA and B at X0, and
X1 is therefore outside bothA and B: that is,XT

1AX1 > 0 andXT
1BX1 > 0. From

(λ1A+B)X1 = 0, we obtain

0 =XT
1 (λ1A+B)X1 = λ1X

T
1AX1 +XT

1BX1> 0.

This contradiction implies that the two positive rootsλ0 andλ1 of f (λ) = 0 cannot be
distinct. Hence,f (λ)= 0 has a positive double root.✷

The next result is the main contribution of this paper.

Theorem 8. LetA andB be two ellipsoids with the characteristic equationf (λ)= 0.
Claim (1):A andB are separated if and only iff (λ)= 0 has two distinct positive roots;
Claim (2): A andB touch each other externally if and only iff (λ) = 0 has a positive

double root.

Proof. The ‘only if’ part of claim (1) is proved by Theorem 4. For the ‘if’ part, suppose
thatf (λ)= 0 has two distinct positive roots. Then, by Lemmas 6 and 7,A andB do not
have a common interior point and do not touch each other externally. Hence,A andB are
separated.

The ‘only if’ part of claim (2) is proved by Lemma 7. For the ‘if’ part, suppose that
f (λ) = 0 has a positive double root. Now, by Lemma 5,A andB touch each other. IfA
andB touch each other internally, thenA andB have common interior points. Further, by
Lemma 6,f (λ) = 0 has no positive root; this is a contradiction. Hence,A andB touch
each other externally.✷

4. Examples

Three examples of the use of Theorem 8 are presented in this section to illustrate our
results.

Example 1. Consider the sphereA: x2 + y2 + z2 − 25= 0 and the ellipsoidB: (x −
9)2/9 + y2/4 + z2/16− 1 = 0. The four roots of the characteristic equation are−6.25,
−1.5625, 0.60111, and 4.6211. Since there are two distinct positive roots,A andB are
separated.

Example 2. Consider the sphereA: x2 + y2 + z2 − 25= 0 and the ellipsoidB: (x −
6)2/9 + y2/4 + z2/16− 1 = 0. The four roots of the characteristic equation are−6.25,
−1.5625, 0.1111± 1.663i. Since there are no positive roots,A andB overlap.
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Example 3. Consider the sphereA: x2 + y2 + z2 − 4 = 0 and the ellipsoidB: (x −
8)2/25+y2/4+z2/4−1= 0. The four roots of the characteristic equation are−1.0,−1.0,
0.12554 and 1.2745. Since there are two distinct positive roots,A andB are separated.
Note that the negative double root−1 indicates that the intersection curve ofA andB is
degenerate in the projective complex space; however,A andB do not touch each other.

5. Conclusions

We have presented a necessary and sufficient condition for detecting the intersection of
two ellipsoids: their characteristic equation has positive roots if and only if the ellipsoids
do not have common interior points. To prove this result for two ellipsoids, an affine
transformation is applied to convert one ellipsoid into a canonical form and the other one
into a sphere. However, the same condition can be obtained from the characteristic equation
of the two original ellipsoids, since affine transformations do not change the roots of the
characteristic equation. Hence, an algorithm for testing whether ellipsoids are separated
using the above condition does not need to perform an affine transformation.

To apply Theorem 8, the equationsA: XTAX = 0 and B: XTBX = 0 must be
normalized so thatXT

0AX0< 0 andXT
0AX0< 0, for the interiors ofA andB, respectively.

Under this assumption, the two equations can be converted by an affine transformation into
the equations (1) and (2), with some positive proportional constants. Since these positive
constants do not change the signs of the roots of the characteristic equation, Theorem 8
still holds irrespective of their particular values.

The numerical behavior of an algorithm based on the condition presented here is also
of importance; but such a study is beyond the scope of this paper. Furthermore, when
two ellipsoids are in motion, and possibly also undergoing some smooth deformation, it is
appropriate to consider the zero-set off (λ; t)= 0. These issues will be discussed in future
work.
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