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1. Introduction
1.1. Background

Quadric surfaces, being the simplest curved surfaces, are widely used in computational science for shape representation.
It is therefore often necessary to compute the intersection or detect the interference of two quadrics. In computer graphics
and CAD/CAM, the intersection curve of two quadrics needs to be found for computing a boundary representation of a 3D
shape defined by quadrics. In robotics (Rimon and Boyd, 1997) and computational physics (Lin and Ng, 1995; Perram et
al., 1996) one needs to perform interference analysis between ellipsoids representing or approximating the shape of various
objects. There have recently been rising interests in computing the arrangements of quadric surfaces in computational
geometry (Mourrain et al., 2005b; Berberich et al., 2005), a field traditionally focused on linear primitives.

The intersection curve of two quadric surfaces will be abbreviated as QSIC. Exact determination of the morphology of a
QSIC is critical to the robust computation of its parametric description. We will mainly consider the classification of a QSIC
in PR3 (3D real projective space) by its topological properties and algebraic properties, including singularity, the number of
its components, and the degree of each irreducible component, etc. This classification is slightly finer than the morphology
of the QSIC; for example, we distinguish a non-degenerate QSIC with two disconnected components from a reducible QSIC
with two disconnected components being two conics, though both have the same shape structure.
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There are many types of QSICs in PR> (Sommerville, 1947). A nonsingular QSIC can have zero, one, or two components.
When a QSIC is singular, it can be either irreducible or reducible. A singular but irreducible QSIC may have three different
types of singular points, i.e., acnode, cusp, and crunode. A reducible QSIC may consist of only planar components, such as
lines and conics, or consist of a real line and a real space cubic curve; further distinction can be made according to whether
its irreducible components are imaginary.

There are mainly three basic problems in studying the morphology of a QSIC: 1) Enumeration: listing all possible mor-
phologically different types of QSICs; 2) Classification: determining the morphology of the QSIC of two given quadrics;
3) Representation: determining the transformation which brings a given QSIC into a canonical representative of its class.
We emphasize on the second problem of classification, which is an algorithmic issue, while also having the first problem
solved. Specifically, we enumerate all 35 different morphologies of QSIC, and characterize each of these morphologies using
the signature sequence of the QSIC that can exactly be computed using rational arithmetic for the purpose of classification.
The third problem, not handled here, leads to a lengthy case by case study which depends a lot on the application behind.

Consider the intersection curve of two quadrics given by A: XTAX =0 and B: XTBX =0, where X = (x, y, z, w)T € PR3
and A, B are 4 x 4 real symmetric matrices. The characteristic polynomial of A and B is defined as

f(») =det(AA — B), (1)

and f(A) =0 is called the characteristic equation of A and B.

The characteristic polynomial f()) is defined with a projective variable A € PR; thus it is either a quartic polynomial or
vanishes identically. For two distinct quadrics, the latter case of f(A) vanishing identically occurs if and only if A and B
are two singular quadrics sharing a singular point or sharing a double line, that is, all the quadrics in the pencil formed by
A and B are singular. In this case, the pencil of A and B is said to be degenerate; otherwise, the pencil is non-degenerate.
For example, if .4 and B are two cones with their vertices at the same point, then they form a degenerate pencil; in this
case, by projecting the two quadrics from their shared vertex to a plane P not passing through the center of projection, we
reduce the problem of computing the QSIC to one of computing the intersection of two conics in the plane P, which is a
separate and relatively simple problem. Analyzing degenerate pencils can be reduced to factoring out the largest power of u
in det(AA — B — ul) and analyzing the remaining polynomial. It is a separate and similar problem as the one we are going
to describe, exploiting their normal form (Lancaster and Rodman, 2005, p. 419). For the sake of space, we will not cover the
case of f(1) vanishing identically. Hence, we assume throughout that f(A) does not vanish identically.

Our contributions are the following. We consider a new characterization of the QSIC of a pencil, namely the signature
sequence, and show how it can be computed effectively using only rational arithmetic operations. We establish a complete
correspondence among QSIC morphologies, Segre characteristics over real numbers, Quadric Pair Canonical Forms (Muth,
1905; Williamson, 1935; Uhlig, 1976) and signature sequences. This correspondence allows us to derive a direct algorithm
based on exact arithmetic for the classification of QSIC. We obtain a complete table of all the possible morphologies of QSIC,
with their Segre characteristics, signature sequences and Quadric Pair Canonical Forms. Tables 1, 2 and 3 in Section 4 give
the complete list of all 35 different types of QSICs in PR?> with non-degenerate quadric pencils. A detailed explanation of
these tables is given in Section 4.3.

Note that our results are not about affine classification of QSICs, although the results can be used in an implementation
of affine classification by further considering the intersection of a QSIC with the plane at infinity in an affine space.

The remainder of the paper is organized as follows. We discuss related work in the rest of this section. In Section 2, we
present necessary preliminary concepts, such as Quadric Pair Canonical Forms. Eigenvalue curves and index sequences are
introduced in Section 3. In Section 4, we present the complete list of QSICs and the algorithm for classifying the QSIC of
two given quadrics. An application of our classification results to collision detection is discussed in Section 5. We conclude
the paper in Section 6.

Overall, this paper is about a new algorithm for determining the type of an input QSIC based on a set of algebraic
conditions (i.e., signature sequences), as previously presented in our technical report (Tu et al., 2005). Since identifying the
signature sequences for all the 35 types of QSICs entails lengthy proofs, due to space limitation, we will only present the
proof in two cases to explain the main idea of our approach and refer the reader to the accompanying and updated technical
report (Tu et al., 2008) for the other proofs.

1.2. Related work

Literature on quadrics abounds, including both classical results from algebraic geometry and modern ones from computer
graphics, CAGD and computational geometry. Classifying the QSIC is a classical problem in algebraic geometry, but many
solutions found therein are given in PC> (3D complex projective space), and, moreover, little attention has been paid to
effective computation issues. QSICs in PR3, real projective space, are studied comprehensively in Killing (1872), Staude
(1914), but again the algorithmic aspect of classification is not considered. The topology of the zero-sets of non-degenerate
real quadratic mappings in any dimension is studied in Agrachév (1988), Agrachév and Gamkrelidze (1989).

Some methods for computing the QSIC in computer graphics and CAGD literature do not classify the QSIC morphology
completely, while others use a procedural approach to computing the QSIC morphology. The procedural approach is usually
lengthy, therefore prone to erroneous classification if floating point arithmetic is used or leading to exceedingly large integer
values or complicated algebraic numbers if exact arithmetic is used.
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When the input quadrics are natural quadrics, which are special quadrics including spheres, circular right cones and
cylinders, there are several methods that exploit their geometric properties to devise robust methods for computing the
QSIC (Miller, 1987; Miller and Goldman, 1995; Shene and Johnstone, 1994). However, we shall consider only methods for
computing the QSIC of two general quadrics and how these methods classify the QSIC morphology.

In algebraic geometry the QSIC morphology is classified in PC3, the complex projective space, using the Segre charac-
teristic (Bromwich, 1906). Given two quadratical forms A and B, the Segre characteristic is defined by the multiplicities of
the roots of f(A) =det(AA — B) =0 and the Jordan blocks associated with each multiple root with respect to the matrix
A~1B. The Segre characteristic assumes that the input quadrics are defined with complex coefficients, and therefore it does
not distinguish whether a root of f(1) =0 is real or imaginary. When applying the Segre characteristic in PR>, different
types of QSICs in PR® may correspond to the same Segre characteristic, thus cannot be distinguished. One example is the
case where four morphologically different types of nonsingular QSICs correspond to the same Segre characteristic [1111],
meaning that f(A) =0 has four distinct roots; (see cases 1 through 4 in Table 1, Section 4.3).

A well-known method for computing QSIC in 3D real space is proposed by Levin (1976, 1979), based on the obser-
vation that there exists a ruled quadric in the pencil of any two distinct quadrics in PR3. Levin's method substitutes a
parameterization of this ruled quadric to the equation of one of the two input quadrics to obtain a parameterization of
the QSIC. However, this method does not classify the morphology of the QSIC; for instance, it does not produce a rational
parameterization for a degenerate QSIC, which is always a rational curve or consists of lower-degree rational components.

Several methods have been proposed to improve Levin’s method. Sarraga (1983) refines Levin’s method in several aspects
but does not attempt to completely classify the QSIC. Wilf and Manor (1993) combine Levin's method with the Segre
characteristic to devise a hybrid method, which, however, is still not capable of completely classifying the QSIC in PR3;
for example, the four different types of nonsingular QSICs are not classified in PR>. Wang et al. (2003) give procedures
to classify irreducible QSICs within the framework of Levin’s method, but with no systematical approach to a complete
classification. Dupont et al. (2003) (see also Dupont (2004), Dupont et al. (2008a, 2008b, 2008c)) proposed a variant of
Levin’s method in exact arithmetic by selecting a special ruled quadric in the pencil of two quadrics, in order to minimize
the number of radicals used in representing the QSIC; an implementation of this method is described in Lazard et al. (2004).

The work of Ocken et al. (1987), Dupont et al. (Dupont, 2004; Dupont et al., 2008b), Tu et al. (2002) all use simultaneous
matrix diagonalization for computing or classifying the QSIC. The diagonalization procedure used by Ocken et al. is not
based on any established canonical form, such as the Quadric Pair Canonical Forms (Muth, 1905; Williamson, 1935; Uhlig,
1976), and it is incomplete—it leaves some cases of QSIC morphology missing and some other cases classified incorrectly;
for example, the case of a QSIC consisting of a line and a space cubic curve is missing and the cases where f(A) =0 has
exactly two real roots or four real roots are not distinguished. The classification by Dupont et al. involves criteria such as
signature and sign of deflated polynomials at specific roots of the characteristic polynomial. It is complete and leads to a
procedure to determine the type of a QSIC, covering also degenerate quadric pencils.

A different idea of computing the QSIC using a procedural approach is to project a QSIC into a planar algebraic curve and
analyze this projection curve to deduce the properties of the QSIC, including its morphology and parameterization. Farouki
et al. (1989) project a singular QSIC to a planar quartic curve and factorize this quartic curve to determine the morphology
of this singular QSIC. Wang et al. (2002) project a QSIC to a planar cubic curve using a point of the QSIC as the center of
projection; this cubic curve is then analyzed to compute the morphology and parameterization of the QSIC. However, exact
computation is difficult with this method, since the center of projection is computed with Levin’s method.

In this paper we intend to classify the morphology of a QSIC by simple algebraic conditions, rather than by invoking a
procedure to compute an equation of the QSIC. Several arguments are in favor of this algebraic treatment. Firstly, a descrip-
tion of the configurations of a QSIC by algebraic conditions allows us to easily introduce new parameters. For instance, by
introducing the time parameter, it has direct application in collision detection problems involving moving quadrics. Secondly,
it provides a computational framework to analyze the space of configurations of QSICs and the stratification induced by this
classification, that is, how the different types of QSICs are related and what happens when we move across the “border”
between these types. Finally, the correlation between the canonical form of pencils and the algebraic characterization can
be extended to higher dimensions.

Algebraic conditions have recently been established for QSIC morphology or configuration formed by two quadrics in
some special cases. The goal here is to characterize each possible morphology or configuration using a simple algebraic
condition, which can be tested or evaluated easily and exactly to determine the type of an input morphology or configura-
tion. In related topics, a simple condition in terms of the number of negative real roots of the characteristic equation f (1)
is given by Wang et al. (2001) for the separation of two ellipsoids. Similar algebraic conditions are obtained in Wang and
Krasauskas (2004) for characterizing non-degenerate configurations formed by two ellipses in 2D and ellipsoids in 3D.

As for QSICs, the Quadric Pair Canonical Form is used in Tu et al. (2002) to derive characterizing algebraic conditions
for the four types of nonsingular QSICs in terms of the number of real roots of the characteristic polynomial; however, two
of the four types are not distinguished, i.e., they are covered by the same condition. This pursuit of algebraic conditions is
extended in our technical report (Tu et al., 2005) to cover all 35 QSICs of non-degenerate quadric pencils, which again uses
the Quadric Pair Canonical Form to derive characterizing conditions in terms of signature sequences. The present paper is
based on Tu et al. (2005).
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2. Preliminaries on quadric pair canonical forms

Recall that two square symmetric matrices C and D are congruent if there exists a nonsingular matrix Q such that C =
QTDQ. When C and D are congruent, the quadrics XTCX =0 and XTDX =0 are related by a projective transformation.

Given two arbitrary quadrics, there is a projective transformation to simultaneously transform the two quadrics to canon-
ical forms having the same QSIC morphology and the same root pattern of the characteristic equation. This transformation
is based on the standard results on simultaneous block diagonalization of two real symmetric matrices under congruence
(Muth, 1905; Williamson, 1935; Uhlig, 1976), which we will review below.

Definition 1. Let A and B be two real symmetric matrices with A being nonsingular. Then A and B are called a nonsingular
pair of real symmetric (r.s.) matrices.

Definition 2. A k x k square matrix of the form
A e

M=
e

A kxk

is called a Jordan block of type I associated with A if A€ R and e=1 for k>2 or M = (1) with A € R for k=1; M is called a
Jordan block of type II associated with complex conjugated values a & ib if

a —b 10
A_<b a) a,beR, b#0 and e_<0 1),

for k>4 or

a —b
=5 7)
for k=2, with a,be R, b#0.

Definition 3. Let Jq,..., J; be all the Jordan blocks (of type I or type II) associated with the same eigenvalue A of a real
matrix A. Then

C=C®) =diag(J1,..., Ji),
where dim(J;) > dim(J;+1), is called the full chain of Jordan blocks or full Jordan chain of length k associated with A.

Definition 4. If 11, ..., A are all distinct eigenvalues of a real matrix A, with only one being listed for each pair of complex
conjugate eigenvalues, then the real Jordan normal form of A is J = diag(C(A1), ..., C(A)).

Theorem 1 (Quadric Pair Canonical Form). Let A and B be a nonsingular pair of real symmetric matrices of size n. Suppose that
A~1B has real Jordan normal form diag(J1, ..., Jr, Jr41,---, Jm), Where 1, ..., J; are Jordan blocks of type I corresponding to the
real eigenvalues of A"'B and J;41, ..., Jm are Jordan blocks of type II corresponding to the complex eigenvalues of A~!B. Then the
following properties hold:

(1) A and B are simultaneously congruent by a real congruence transformation to
diag(e1E1, ..., &Er Erpr, ..., Em)
and

diag(e1E1J1, ..., & ErJr Erpt Jr1s oo EmJm),
respectively, where €; = £1 and the E; are of the form

0 . 01
1
A
10 .0
of the same size as Ji, i =1, 2, ..., m. The signs of €; are unique (up to permutations) for each set of indices i that are associated
with a set of identical Jordan blocks J; of type I.
(2) The characteristic polynomial of A~'B and det(AA — B) have the same roots A j with the same multiplicities y;.
(3) The sum of the sizes of the Jordan blocks corresponding to a real root A; is the multiplicity y; if A; is real or twice this multiplicity
if A; is complex. The number of the corresponding blocks is p; =n — rank(1;A — B), and 1 < p; < ;.
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As detailed in the review article (Lancaster and Rodman, 2005), this result about Quadric Pair Canonical Form has a long
history. It was proved in Muth (1905) for non-degenerate pencils, and then further extended and rediscovered several times.

There are two transformations that can be used to simplify the analysis of the QSIC of two quadrics A: XTAX =0 and
B: XTBX = 0. Based on Quadric Pair Canonical Form, we may apply a projective transformation to both .4 and B to get
a pair of quadrics A’: XT(QTAQ)X =0 and B’: XT(QTBQ)X =0 in canonical forms. The transformed quadrics A’ and
B’ are projectively equivalent to .4 and B, therefore have the same QSIC morphology in PR3 and the same characteristic
equation as the pair A and B.

To simplify the study of a QSIC as the base curve of the pencil spanned by two quadrics A and B, we may also replace
A and B by some other two distinct quadrics in the pencil, since any two distinct members of the pencil have the same
QSIC as that of A and B, and their characteristic polynomial is different from that of A and B only by a projective (i.e.,
rational linear) variable substitution, which does not alter the multiplicities of the roots of the characteristic polynomial of
A and B.

In order to apply Theorem 1, apparently, A needs to be nonsingular. For a given pair of quadrics A and B, if A is singular,
since we assume that they form a non-degenerate pencil (see Section 1), A can be replaced by a nonsingular quadric A’ in
the pencil. Then A’ and B are a nonsingular pair of real symmetric matrices and they form the same pencil as A and B,
thus they have the same intersection curve. Note that only the existence of a nonsingular member in the pencil is required
in our application of Theorem 1, and there is no need to actually compute such a nonsingular member. Hence, our results
are still valid in the case where A or B is singular, as long as they form a non-degenerate pencil, that is, f(A) does not
vanish identically.

3. Signature sequences
3.1. Eigenvalue curves and index sequences

Signature and index: Any n x n real symmetric matrix D is congruent to a unique diagonal form D’ = diag(l;, —I;, Og).
The signature, or inertia, of D is (04,0—,00) = (i, j, k). The index of D is defined as index(D) =i, the number of positive
eigenvalues of D.

Index function: The index function of a quadric pencil AA — B is defined as
Id(») = index(AA — B), A e PR.

Since A and B are matrices of order 4 in our discussion, i.e., n =4, we have Id(A) € {0, 1, 2, 3, 4}. Note that Id(A) has a
constant value in the interval between any two consecutive real roots of f(A) = 0. The index function may have a jump
across a real root of f(1) =0, depending on the Jordan blocks associated with the root, as we will see below. The index
function Id()) is also defined for A = co and —oo. Clearly, Id(—o0) + Id(400) = rank(A).

Eigenvalue curve: We consider the real eigenvalues of the pencil AA — B, defined by the equation
C(h, ) =det A — B — pul) =0,

which defines the eigenvalue curve in the A-u plane. The morphology of the QSIC of a pencil (A, B) can be characterized
by the geometry of the curve C: C(A, u) = 0. First, we note that the total degree of C(A, ) =0 is 4 and its partial degree
in each of A and u is also 4. Since a 4 x 4 symmetric matrix has 4 real eigenvalues for any A € R, the number of real
roots C(A, ) =0 in u is 4, counted with multiplicities. Consequently, there are four A-monotone branches of C. For any
fixed Ao € R, the number of points of C on the line A = A¢ but not on the A-axis (i.e., & # 0) is the rank of the quadratic
form A9A — B, and the number of points of C above the A-axis and the number of points of C below the A-axis determine
the signature of A9A — B. Fig. 1 shows the eigenvalue curve of the pencil spanned by the two quadrics (y? +2xz+1=
0,2yz+1=0).

Index sequence: Let Aj, j=1,2,...,r, be all the distinct real roots of f(1) =0 in the increasing order. Let qi, k =
1,2,...,r =1, be any real numbers separating the 1, i.e.,

—00 <A <1 <Ay <+t <(Gro1 <Ar <00

Denote s; =1d(q;), j=1,2,...,r — 1. Denote sp =Id(—o0) and s; =1d(cc). Then the index sequence of A and B is defined
as

(sots1t...1s—171s),

where 1 stands for a real root, single or multiple, of f(1)=0.

To distinguish different types of multiplicity of a real root in place of an 1, we use | to denote a real root associated
with a 1 x 1 Jordan block, and use : for p (p > 2) times in a row to denote a real root associated with a p x p Jordan block.
For example, a real root with Segre characteristic [11] will be denoted by || in place of an 1 in the index sequence, and a
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Fig. 1. The eigenvalue curve of the two quadrics (y2 +2xz+1=0,2yz+1=0).

real root with the Segre characteristic [21] will be denoted by x| in place of an 1. When the Segre characteristic is (22), we
use 22 to distinguish it from wx, which corresponds to the Segre characteristic [4]. Supposing that Ag is a real zero of f (1)
with a Jordan block of size k x k, we use :---2; or :---:_ to indicate that the corresponding sign &; of the block is + or —.

Since A is a projective parameter, a projective transformation A’ = (ax + b)/(cA + d), with ad — bc # 0, does not change
the pencil but may change the index sequence of the pencil. Since the projective real line of A is a circle topologically,
such a transformation induces either a rotation or a reversal of the order of the index sequence of the pencil. Therefore we
need to define an equivalence relation of all index sequences of a quadric pencil under projective transformations of A. In
addition, replacing A and B by —A and —B changes each index s; to rank(LA — B) — s; but essentially does not change the
pencil LA — B. Note that the above replacement changes the sign associated with a Jordan block of a root; for instance, if
the quadrics A and B have the index sequence (22_2|3|2), then —.A and —B have the index sequence (2x,2|1]2).

We choose a representative in each equivalence class of index sequences such that A is nonsingular; therefore, co is
not a root of f(A) =0 and sg + s, = 4. Taking these observations and conventions into consideration and denoting the
equivalence relation by ~, this equivalence of index sequences is then defined by the following three rules:

1) Rotation rule:

(sotsit...tsr—1 s ~{(d—sr—1tsotstt...1sr—1), (2)
(sotstt...ts—1tse)~(s1ts2t...tsr 1 4d—s1).

2) Reversal rule:

(sotstt . tsr—1hse) ~(sr P sr—1 1 ... 15171 So). (3)
3) Complement rule:
(sots1t...tsr—1tse)~(@G—sotd—s11...14—s-114—5p). (4)

3.2. Vanishing branches of eigenvalue curves

The first goal of this paper is to tabulate the index sequences of all different quadric pencils. For this purpose we need to
calculate the change of the index function, i.e., index jump, at the degenerate members of a quadric pencil H(A) = 1A — B;
here we just need to consider the signature variation of H(A) at the real zeros of f(A) =det(H(A)) =0. This then entails us
to study the behavior of the individual branches of the eigenvalue curve C(%, ) =0 at a real root of f(A) =0, which are
determined by the Jordan blocks of the pencil represented in Quadratic Pair Canonical Forms.

We will first show that the signature variation, i.e., the behavior of the branches of C(A, u) =0 at real zeros of f (1), is
projectively invariant. Although this is implied by Sylvester’s law of inertia, we apply Proposition 1 below, which is stronger
than Sylvester’s law of inertia on the invariance of the signature of a real symmetric matrix under congruence transforma-
tions. This is a new result that provides a deeper understanding of the invariance of the behavior of the eigenvalue curve’s
branches at a zero of f(1) =0 and extends the results in Agrachév (1988), Agrachév and Gamkrelidze (1989) to degenerate
quadratic mappings.

Consider a transformation H'(A) = PTH(X)P of H(}), where P is an invertible matrix. First, we compare the behavior of
the eigenvalues of H’(1) and H()). For any real symmetric matrix Q of size n, we denote by p,(Q) the k-th real eigenvalue
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of Q, that is, p1(Q) < p2(Q) < --- < pp(Q). By the Courant-Fischer Maximin Theorem (see Golub and van Loan, 1989,
p. 403), we have the following inequalities:

Pk(Q)o1(P)* < pr(PTQP) < pr(Q)on(P)?, (5)

where o1(P) (resp. o,(P)) is the smallest (resp. largest) singular value of P.

Proposition 1. Let P be an invertible matrix and H'(\) = PTH(X) P. If pr(H(L)) = ard(1+o0(1)) witha # 0, q € Q, then py(H' (L)) =
a’A9(1 + o(A)) with sign(a) = sign(a’).

Proof. As the eigenvalue pi(H’(1)) has a Puiseux expansion (Abhyankar, 1990; Walker, 1962) near A = 0 of the form
o(H' W) = p’ +a'29 (1 +0(1)) with p/,a’ € R and ¢’ € Q, we deduce from the inequalities (5) that p' =0, ¢’ =q and
sign(a’) =sign(a). O

Proposition 1 allows us to deduce the behavior of the eigenvalues of the pencil H(A) from that of its Quadric Pair
Canonical Form. Indeed, by Theorem 1, H(A) is equivalent to

D(h) = diag(e1E1 (A1 — J1(M)), 82E2(A2 — J2(h2)), ..., & Er (Alr — Jr(Ap)), D'(V), (6)

where I; is the identity matrix of the same size as that of the Jordan block J;(;) of the eigenvalue A;, and det(D’(1))
has no real roots. Let Nig(%, p, &) = eEkOLIK — ]k(p)) denote a block of the preceding form of size k x k. Then we have the
following property:

Proposition 2. The eigenvalue branch p().) corresponding to Ny (A, po, &) which vanishes at . = pg is of the form
0= svk(l +o(v)),
where L = pg + V.

Proof. By an explicit expansion of the determinant N (A, i) = det(Ny (X, po, €) — l) and denoting v = A — pp, we obtain

(k=1)(k=2) k(k—1)

NO =N, =Dk b+ (o) (=1 2 a1 2 vk,

The vertices of the lower envelope of the Newton polygon of N (v, n) in the (u,v)-monomial space are the points
(k,0), (1,0), (0,k). By Newton’s theorem (see Abhyankar, 1990, p. 89), the Puiseux expansion of the root branch which
vanishes near pg is of the form

o= svk(l +o(v)).
This completes the proof. O
According to Propositions 1 and 2, if the pencil H() is equivalent to (6), then near each root 1;, the eigenvalue branches

approaching 0 are of the form &;(A — A;)* (1 + o(x — A;)), where k; is the size of a block of the Quadratic Pair Canonical
Form (6) of the eigenvalue A; and ¢; is the corresponding sign.

3.3. Index jump and signature sequences

The preceding analysis helps to explain how the index function Id(A) changes its value when XA crosses a real root of
f() =0. Let o be a real root of f(A) =0. Let «— and o4 be values sufficiently close to «, with o < o < . Then the
index jump A(x) of Id(A) at « is defined as

Ao) =ld(ay) = ld(a_) = A~ (o) + AT (),
where
A" (o) =ld(a) — Id(xx_), AT () =Id(ay) — Id(a).

Suppose that the pencil H()) is equivalent to (6). Let Aii(oz) denote the changes of signature functions of the blocks
Ny, (A, Aj, &) at . Then, we have

A=) Ai@), At@=) Af@, A@=) A (@). (7)

i=1 i=1 i=1

For the index sequence (so 15171 ...1 Sr—1 1 Sr) of the pencil H(A) = LA — B, its corresponding signature sequence is
defined as

(50, G- (Prom) =), S0 Seo, G (Praie) -+ ), sp)),
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where s; is the index of H(A) between two consecutive real roots of f(1) =0, p; is the number of positive eigenvalues
and n; the number of negative eigenvalues at a real zero A; of f(A). Thus, (p;j,n;) is the signature of H(A;) at Aj, and
pi +nj =rank(A;A — B). The number of parentheses is the multiplicity of A;.

Now let us describe the signature sequence of each of A(w), Afr(a) and A; (@) separately for the cases of k; =1,2,3, 4.
For any a € R, in the following we denote a* = max(a, 0) and a~ = min(a, 0). Note that a™ + a~ = a. Furthermore, it is
clear that the index jumps A(w), Afr(a) and A; (@) are zero if A; # «. Therefore, we assume that A; = « in the following.

(1) Jordan block of size 1 x 1: In this case, there is one positive eigenvalue when A > « and one negative eigenvalue when
A < a. Then we have the following signature sequence (—¢; , (0, 0), 81.*) and the jumps are A; (@) =¢;, Ai*(oz) = 81-+ and
Ai(a) =¢&;.

(2) Jordan block of size 2 x 2:

0 A—a]

Ny (A o, €) = € [A_a _q

In this case, there are two branches of the eigenvalue curve corresponding to Ni, (X, o, &)—one is above the A-axis and
approaches 0 when A approaches « and the other is below the A-axis when A = «. By Proposition 2, the branch vanishing
at o is equivalent to &;(A — or)?; therefore its sign is the same before and after «. If &; > 0, we have a positive eigenvalue
branch which goes to 0 at «; otherwise, we have a negative one. Therefore, the signature sequence of Ny, (A,«,¢&;) is
(1,((1 — &, 14¢;)),1) and the index jumps are A (o) = —¢;", A (@) = ¢;" and Aj(w) =0.

(3) Jordan block of size 3 x 3:

0 0 A—o
Nki()»,oz,sj):£;|: 0 r—a -1 i|
rA—a -1 0

By Proposition 2, the vanishing eigenvalue branch is equivalent to &;(A — )3, whose sign changes before and after .
It can be shown that, if & =1, the signature of Ny, (A, o, &;) is (1,2) when A <« and (2,1) when A > a. If & = —1,
the signature of Ny, (A, «,¢;) is (2,1) when A <« and (1,2) when A > «. Thus, we have the signature sequence (5,7* -
26, (L), 2 —e7 )= —¢, (1, D), 1+¢1) and A; (@) =¢;, Af (@) =¢" and Aj(@) =¢;.

(4) Jordan block of size 4 x 4: Using a similar argument, we can show that there are two positive eigenvalues and two neg-
ative eigenvalues before and after o and, by Proposition 2, the eigenvalue curve approaching zero has the form &;( — o)%.
Thus, the signature sequence of Ny, (A, &, &) is (2, (2 — &, 2+ ¢;)))),2) and A7 (@) = —¢&;", Af (@) = ¢, Aj(@) =0.

To summarize, taking into account the sign ¢; = +1, we have A;(x) =¢; if J; has the size 1 x 1 or 3 x 3, and A;(x¢) =0
if J; has the size 2 x 2 or 4 x 4. The rank of H(A) drops by 1 at A = ; for each block of the form Ny, (%, 1;, &). Thus,
the signature of H(A;) can be deduced directly from Jordan blocks associated with the eigenvalue A; and the corresponding
signs of the blocks.

3.4. Computation of signature sequences

Using the signature sequence is computationally simpler than using the index sequence—we just need to compute the
multiplicity of a real root and determine the signature of AA — B at the root; this is much simpler than determining the size
of each Jordan block, as required for computing the index sequence. For a given pair of quadrics, the signature sequence is
computed using only rational arithmetic as described below. Similar equivalence rules to those for index sequences apply to
signature sequences as well. The signature sequences of all 35 QSIC morphologies are listed in the third column of Tables 1,
2 and 3 in Section 4.

Based on the previous analysis, it is straightforward to determine the signature sequence of the pencil H(A) = 1A — B
from its Quadric Pair Canonical Form. For 30 out of the 35 cases to be considered, the signature sequence provides a unique
characterization of the QSIC. The remaining 5 cases are further distinguished by their Segre characteristics. The details of
this are given in Section 4.4.

Now we discuss how to use rational arithmetic to compute the signature sequence of a pair of quadrics. Consider the
polynomial

C(r, p) =det(hA — B — pul) = pu* + s + ca)p? + c1 M+ co(h).

The values where the signature changes are defined by C(A, 0) =co(A) = f(A) = 0. For a fixed A, the rank of the correspond-
ing quadratic form is the number of non-zero roots of C(i, ;) = 0. For any fixed A, the number of real roots in w, counted
with multiplicity, is 4. The signature of LA — B is determined by the rank of AA — B and the number of positive roots of
C(A, ) =0 in w. Recall that the Descartes rule gives an exact counting of the number of positive roots if the number of
real roots equals the degree of the polynomial (Basu et al., 2003). Hence, we have the following property:
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Theorem 2. For any 1 € R,

e the number of positive eigenvalues of LA — B is the number of sign variations of [1, c3(1), c2(X), c1(A), co(M)];
o the number of negative eigenvalues of LA — B is the number of sign variations of [1, —c3()), c2(A), —c1(A), co(L)].

Computing the signature AA — B for A € Q is straightforward. Computing its signature at a root of C(A,0) = f(1) =0 can
also be performed using only rational arithmetic. According to the preceding discussion, this reduces to evaluating the sign
of ¢c;(1), 1=0,1, 2, 3. This problem can be transformed into rational computation as follows. First, we represent a root « of
f(»)=0 by

e the square-free part p(A) of f(1) =0 and
e an isolating interval [a, b] with a, b € Q such that « is the only root of p(1) in [a, b].

Isolating intervals can be obtained efficiently in several ways (see, for instance, Mourrain et al. (2005a)). They can even
be pre-computed in the case of polynomials of degree 4 (Emiris and Tsigaridas, 2003). In order to compute the sign of a
polynomial g at a root o of f(A) =0, we use sub-resultant (or Sturm-Habicht) sequences (Yap, 2000; Basu et al., 2003).
We recall briefly the construction here and refer to Basu et al. (2003) for more details.

Given two polynomials f (1) and g(A) € A[)A], where A is the ring of coefficients, we compute the sub-resultant sequence
in A, defined in terms of the minors of the Sylvester resultant matrix of f(1) and f’(A)g(A). This yields a sequence of
polynomials R(A) = [Ro(A), R1(1), ..., Ry(A)] with R;(A) € A[A], whose coefficients are in the same ring A.

In our case, we take A =Z. For any a € R, we denote by Vy (a) the number of sign variation of R(a). Then we have the
following property (Basu et al., 2003):

Theorem 3.

Vi g(@) — Vg g(b) =#{a € [a, b] root of f(1) =0 where g(ex) > 0} — #{« € [a, b] root of f(1) =0 where g(cx) < 0}.

In particular, if the interval [a, b] is an isolating interval for a root o of co(A) =0, then V¢ 4(a) — V ¢(b) gives the sign
of g(w). Taking g(A) to be the coefficients c;j(A) in Theorem 2, this method allows us to exactly compute the signature of
oA — B, using only rational arithmetic.

Efficient implementations of the algorithms presented here are available in the library syNnaPs! and have been applied to
classifying QSIC morphologies, based on the signature sequences derived in this paper.

4. QSIC classification
4.1. Null-homotopic components and non-null-homotopic components

Topological properties are an important consideration in the classification of QSICs. We start with the definition of a loop.
A loop C in a topological space X is a map from the circle S into X. If C can deform continuously into a point p € X,
which is a constant loop, then C is homotopic to p and is said to be null-homotopic (Jdnich, 1984; Roseman, 1999). In our
setting a real curve component C of a QSIC in PR3 is always a loop. Therefore, if there exists a plane P in PR such that
it does not intersect C, then C is a null-homotopic component. That is because such a component C appears as a bounded
loop in the affine realization of PR with the plane P as the plane at infinity and, hence, it can deform continuously into
a point. For example, a real non-degenerate conic C is null-homotopic in PR3, since it appears as an ellipse in some affine
realization of PR>.

Refer to cases 4 and 8 in Table 1 in Section 4.3 and the corresponding illustrations in Figs. 4 and 6. It can be shown that
each component of the QSIC in the two cases is a loop and has exactly one traversal intersection with the plane w =0 in
certain standard form (see details in the proofs in the accompanying technical report (Tu et al., 2008)). These components
are non-null-homotopic, because a null-homotopic loop has an even number of intersections (multiplicity counted) with any
plane. That is to say, these components cannot deform into a single point. The presence of non-null-homotopic components
in the projective space PR3 is not surprising, since PR? is not simply connected. Note that, although a null-homotopic com-
ponent and a non-null-homotopic component are both homeomorphic to a circle, they are not of the same homotopy class.
Furthermore, whether a component is null-homotopic or not is a property that is invariant under projective transformations.

4.2. Identifying signature sequences of all types of QSICs

We now explain the main idea of our approach to identifying the signature sequences of all types of QSICs. First, we enu-
merate all different Segre characteristics over the reals—this amounts to enumerating all different Quadratic Pair Canonical

1 http://www-sop.inria.fr/galaad/software/synaps/.
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Fig. 2. Left: Intersection of the elliptic cylinder B’ and the unit sphere A’; right: the sectional view in the z-x plane.

Forms, in terms of Jordan chains and sign combinations (see Theorem 1). Then, for each of these Quadratic Pair Canonical
Forms, we find its index sequence and identify its morphology. The derivation of the index sequence is based on our preced-
ing study on eigenvalue curves and index jumps at the real roots of the characteristics equation, while the determination of
the QSIC morphology is largely a case-by-case geometric analysis of the two quadrics in their Quadric Pair Canonical Form.
Finally, we convert all index sequences to their corresponding signature sequences for efficient and exact computation. In
this way, we will establish a complete correspondence among the QSIC morphologies, Quadric Pair Canonical Forms and
signature sequences, plus Segre characteristics.

In the following we will illustrate our approach in the simple case where the characteristic equation f(A) =0 has four
distinct real zeros. The proofs of all the other cases can be found in the accompanying technical report (Tu et al., 2008).

Theorem 4. Given two quadrics A: XT AX = 0 and B: XT BX = 0, if their characteristic equation f () = 0 has four distinct real roots,
then the only possible index sequences are (1|2|1|2|3) and (0|1|2|3|4). Furthermore,

(1) (Case 1, Table 1) when the index sequence is {1|2|1|2|3), the QSIC has two null-homotopic components;
(2) (Case 2, Table 1) when the index sequence is (0|1|2|3|4), the QSIC is vacuous in PR3,

Proof. Let Aj, i =1,2,3,4, denote the four distinct real roots of f(A) =0. By Theorem 1, A and B are simultaneously
congruent to

A =diag(e1,€2,63,64), and B =diag(e121, 212, 343, £404),

where ¢; = +1,i =1, 2, 3, 4. Without loss of generality, we suppose that A1 < Ay < A3 < A4; this permutation of the diagonal
elements can be achieved by a further congruence transformation to A and B. Clearly, the only possible index sequences
are (up to the equivalence rules described in Section 3.1) (1|2|1|2|3) and (0|1]2|3|4).

Recall from Section 3.3 that the index jump at a simple root (i.e., with a 1 x 1 Jordan block) is 1 or —1, depending on the
sign &; associated with the Jordan block in the Quadratic Pair Canonical Form. Hence, in order to produce the first sequence
(112]1|2|3), the only choices of the signs in the Quadratic Pair Canonical Forms are &1 =1,&, = —1,¢3 =1, &4 = 1. Setting
Ato A’ and B — A4A to B/, we obtain

A’ =diag(1,-1,1,1), B = diag(()q —Ag), —(A3 — X4), (A3 — A4g), 0).

Consider the affine realization of PR? by making y = 0 the plane at infinity. Then A’ is a sphere, which intersects the x-z
plane in a unit circle, while the quadric B’ is an elliptic cylinder with the w-axis being its central direction, which intersects
the x-z plane in an ellipse, denoted as &, since A;j < A4, i =1, 2, 3. It follows from the assumption A1 < Ay < A3 < A4 that
one semi-axis of £ is less than 1 and the other semi-axis of £ is great than 1, shown as the configuration on the left in
Fig. 2. Obviously, in this case the elliptic cylinder B’ intersects the sphere A’ in two disconnected null-homotopic loops.

For the second index sequence (0|1|2|3|4), since it contains the index 0 and 4, any pencil with the index sequence
(0]1]23]4) contains a negative definite or positive definite quadratic form, which is an empty quadric in PR3. It follows that
the QSIC is vacuous in this case. This completes the proof. O

4.3. Alist of all different types of QSICs

All the 35 different types of QSICs are listed in Tables 1, 2 and 3. In the first column are the Segre characteristics with the
subscript indicating the number of real roots, not counting multiplicities. The index sequences and signature sequences are
given in the second column and the third column, respectively. Here, only one representative is given for each equivalence
class associated with the corresponding QSIC morphology; in several cases (cases 5, 10, and 16), there are two equivalence
classes of signature sequences associated with a common QSIC morphology. The numeral label for each case, from 1 to 35,
is given at the left upper corner of each entry in the second column.

Some explanations are needed for understanding the simple graphical illustration in the fourth column in Tables 1, 2
and 3. Here, a solid line or curve represents a real component and a dashed one represents an imaginary component.
A solid dot indicates a real singular point, which is either isolated or the intersection of two or more components of a QSIC.



C. Tu et al. / Computer Aided Geometric Design 26 (2009) 317-335 327
Table 1
Classification of QSIC that contain non-planar components in PR3
Case #]
[Segre],
r = the # Index Signature Sequence Illus- Representative
of real roots | Sequence tration | Quadric Pair
L]
1)2|1|2]3 1,(1,2),2,(1,2),1,(1,2),2,(2,1),3 OO A: 2?2 +9y2 422 —w?2 =0
(111 (W2110213) | (1,(1,2),2,(1,2),1,(1,2) 2,(2,1).3) A L
2]
1< | ™ 2 2 2 2
01112[3[4) | (0,(0,3),1,(1,2),2,(2,1),3,(3,0),4 A a® +y" 427 —w =0
(0[12[3]4) | (0,(0,3),1,(1,2),2,(2.1).3.(3,0).4) RIS
3]
— 2 2 _
1111], 1/2|3 1,(1,2),2,(2,1),3 O A 2zy+ 22 +w?=0
[1111] (1]2/3) (1,(1,2),2,(2,1).3) giyrdewi=0
4] \ z A: zy+2w=0
[1111]o (2) (2) B: —a2+y? — 222+ zwt
2w? =
5]
T (u-23(2) (2,((2,1)),2,(2,1),3,(2.1),2) (O | A 2?2 =y + 22+ dyw =0
(20, 2]3(2) (2,((1,2)),2,(2,1),3,(2,1),2) B: 3% 43’ +22=0
6]
— 2 2
1_1]23 1,((1,2)),1,(1,2),2,(2,1),3 o | A 2" — 2" +2yw =0
o1, ) | aqaniaeens | O |4 =
7]
- P 2 2 _
1, 1)2/3 1,((0,3)),1,(1,2),2,(2,1),3 (e A2 +2°+ 29w =0
(W 1203) | (L((0.3)).1,(1.2).2,(2,1).3) « IRt
8]
211 T (u 2 2,((2,1)),2 >< Arzytaw=0
211], (202) 2(21)2) AN S
EX . Q Ay 42224+ w? =
[31}2 <12U+2|3> (1a(((172)))727(271)’3) B: 2yz + w2 =0
0]
[22]> —(2u_2n_2) (2,((2,1)),2,((2,1)),2) X( A zy+2w=0
(20_21,2) (2,((2,1)),2,((1,2)),2) B: y?+ 22w+ w?=0
11]
2200 @) @ SN[ Arme =0
Lz —yw =
12] A: zw+yz=0
[4]1 (2un_2) (2,((((2,1)))),2) N B: 224+ 2yw=0

A null-homotopic component is drawn as a closed loop, and a non-null-homotopic component is shown as an open-ended

curve.

In addition to topological properties, we also take algebraic properties into consideration in defining different types of
QSICs. For example, a nonsingular QSIC may be vacuous in PR3, so is a QSIC consisting of two imaginary conics; these two
QSICs are defined to be different, since the former is irreducible algebraically but the latter is not.

To avoid ambiguity, in the following we will also provide verbal descriptions of the simple graphics illustrations in Tables

1, 2 and 3.

4.3.1. Table 1—QSICs that contain non-planar components

Shape descriptions of the QSICs in Table 1:

Case 1: two null-homotopic components (Fig. 3, left);
Case 2: vacuous in PR? (Fig. 3, right);

Case 3: one null-homotopic component (Fig. 3, middle);
Case 4: two non-null-homotopic components (Fig. 4);
Case 5: two null-homotopic components joining at a crunode (Fig. 5, left);
Case 6: one null-homotopic component and an acnode (Fig. 5, middle);
Case 7: one real point, which is an acnode (Fig. 5, right);
Case 8: two non-null-homotopic components intersecting at a crunode (Fig. 6);
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Fig. 3. Nonsingular QSICs. Left: two null-homotopic components (case 1); middle: one null-homotopic component (case 3); right: vacuous in PR> (case 2).

Fig. 4. A nonsingular QSIC with two non-null-homotopic components (case 4).

WYY

Fig. 5. Left: two null-homotopic components joining at a crunode (case 5); middle: one null-homotopic component and an acnode (case 6); right: an acnode
(case 7).

Fig. 6. Two non-null-homotopic components intersecting at a crunode (case 8).

Case 9: one null-homotopic component having a cusp (Fig. 7);

Case 10: one real line and one space cubic curve, intersecting at two distinct real points (Fig. 8, left);

Case 11: one real line and one space cubic, intersecting at two complex conjugate points (Fig. 8, middle);

Case 12: one real line and one real space cubic curve; the line is tangent to the cubic at a real point (Fig. 8, right).
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Fig. 7. One null-homotopic component having a cusp (case 9).

v Y2 a -—

Fig. 8. QSICs consisting of a cubic and a real line. Left: the cubic and the line intersecting at two distinct real points (case 10); middle: the cubic and the
line do not intersect at any real point (case 11); right: the cubic and the line are tangent at a real point (case 12).

4.3.2. Table 2—QSICs with only planar components—Part |

Shape descriptions of the QSICs in Table 2:

Case 13: two real conics intersecting at two distinct real points;

Case 14: two real conics intersecting at two complex conjugate points;

Case 15: two imaginary conics intersecting at two distinct real points;

Case 16: two imaginary conics intersecting at two complex conjugate points;

Case 17: one real conic and one imaginary conic; they intersect at two complex conjugate points;
Case 18: two real conics intersecting at two distinct real points. The two conics cannot both be ellipses simultaneously
in any affine realization of PR>. In other words, the QSIC is intersected by every plane in PR3;
Case 19: one real conic counted twice;

Case 20: one imaginary conic counted twice;

Case 21: two real conics tangent to each other at one real point;

Case 22: two imaginary conics tangent to each other at one real point.

4.3.3. Table 3—QSICs with only planar components—Part I

Shape descriptions of the QSICs in Table 3:

e Case 23: one real conic and two real lines; they intersect pairwise at three distinct real points;
e Case 24: one real conic and a pair of complex conjugate lines. The conic and the pair of lines intersect at two complex

conjugate points;

Case 25: one imaginary conic and a pair of complex conjugate lines. The conic and the pair of lines intersect at two
complex conjugate points;

Case 26: one real conic and two real lines; these three components intersect at a common real point;

Case 27: one real conic and a pair of complex conjugate lines; these three components intersect at a common real point;
Case 28: four real lines which form a quadrangle in PR3;

Case 29: four imaginary lines which form an imaginary quadrangle; each of the four lines intersects two of the other
three at imaginary points;

e Case 30: two pairs of complex conjugate lines; one pair intersects the other pair at two complex conjugate points;
e Case 31: one pair of skew real lines and one pair of two skew imaginary lines. The two pairs of lines intersect at two

pairs of complex conjugate points;

Case 32: one pair of intersecting real lines, counted twice;

Case 33: one pair of complex conjugate lines, counted twice;

Case 34: one real double line and one pair of skew imaginary lines;

Case 35: one real double line and two other skew real lines; each of the latter two lines intersects the real double line.
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Table 2
Classification of QSIC with only planar components in PR3 —Part
Case #‘
[Segre],
r = the # Index Signature Sequence Illus- Representative
of real roots | Sequence tration | Quadric Pair
13]
2 2 2 2
2|[2|1]2 2,((1,1)),2,(1,2),1,(1,2),2 A: 22 —y?2+22 —w?2 =0
@l21112) | (2,((1,1)),2,(1,2),1,(1,2).2) @D B a2 9 -0
14]
2 2 2 2 _
1/3|2|3 1,((1,1)),3,(2,1),2,(2,1),3 Pt tyt 2 Fwt =0
AB213) | (1,((1,1)),3,(2,1),2,(2,1),3) o= 0
[(11)11]3 3]
L2 2 2 2 _
1)]1]2]3 1,((0,2)),1,(1,2),2,(2,1),3 ity 2t —wt =0
(U[1[203) | (1,000.2)).1,(1,2)2,(2,1).3) R et
16]
<0H2|3‘4> (07((072))2'(271)737(370)4) 22 + y2 —22—w?2=0
(1]]3]4/3) (1,((1,1)),3,(3,0),4,(3,0),3) s x2 4292 =0
17]
(1/13) (1,((1,1)),3) Fa? 4y 2w =0
=22 4w 422w =0
L2 2 _
2[12) (2,((1,1)),2) Pt oyt — 22w =0
=22 4wl 4+ 22w =0
19]
(1]][213) (L,(((0,1))):2,(2,1),3) Py (zf —w?=0
Dzt =
[(111)1]2 20|
Y
(oll1314) (0,(((0,1))),3,(3,0).4) Lo | A2 =0
\\ 7 B: .’172 =0
21]
(f23) | (L(((11))2,(2.1).,3) Az y? — 2 4220 =0
B: —22+22=0
[(21)1}2 22|
VAR 2 2
(aef23) | (L02)).2,21)3) || ¢ 1| Ay —2+2w=0
+ AN | B 2 4+22=0

4.4, Classification algorithm

It follows from the classification theorems by Tu et al. (2005) or Tu et al. (2008) that all the conditions (i.e., signature
sequences plus Segre characteristics) are necessary and sufficient for the corresponding QSIC morphologies. Hence, we can
use these conditions to classify the QSIC of a given pair of quadrics in PR3, by computing their signature sequence derived
from their index sequence (see Section 3.2).

Note that not all the signature sequences of the 35 different types of QSICs are distinct: the three different QSICs with the
Segre characteristics [1111]p, [22]o and [(11)(11)] in cases 4, 11 and 31 share the same index sequence (2), thus leading to
the same signature sequence (2). Furthermore, the two different index sequences (2::_|2) and (22_2u, 2) in cases 26 and 35
correspond to the same signature sequence (2((((1, 1))))2). Thus, in total, there are only 32 distinct signature sequences. In
the following we explain how to distinguish these cases with identical signature sequences using their minimal polynomials.
Recall that the minimal polynomial of a squared matrix A is the polynomial p(x) of the lowest degree such that p(A) =0
(Horn and Johnson, 1985).

Suppose that the signature sequence of an input quadric pencil has been found to be (2). We need to find out to which
of cases 4, 11, and 31 the pencil belongs. In this case f(A) =0 has no real root. Case 4 with the Segre characteristics [1111]g
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Table 3

Classification of QSIC with only planar components in PR3 —Part II
Case #
[Segre],
r = the # Index Signature Sequence | Illus- Representative
of real roots | Sequence tration | Quadric Pair
23]
A: 2zy—y2 =0
(2u_2||2) (2,((2,1)),2,((1,1)),2) é B: 422 —w2=0
124] y
X A: 2ey—42=0
202 (o 1l3) | (L(2)1,((1,1).3) By 2w =0
125]
s 22y —y? =0
<1U+1||3> (17((073))717((171))73) : y2 + Z2 + 1112 =0
26]
2 42z —w? =0
(2w_|2) (2,((((1,1)))),2) D yz=0
(3D 127]
s y? 42z +w? =0
<lzn+|3> (1((((11))))73) Yz = 0
28]
cx?— y2 =0
(2[12[12) (2,((1,1)),2,((1,1)),2) D22 —w?2=0
129]
22492 =0
[(11)(11)]2 (Ol12[]4) (0,((0,2)),2,((2,0)),4) c 224w =0
50
22 4y? =0
(1]11]13) (1,((0,2)),1,((1,1)),3) i 22 —w?2=0
131]
rxy+zw=0
[(A1)(11)]o (2) (2) 2?4y - 22+ w? =0
32|
22 —y? +2z2w =0
2_|[2) (2.((((1.0))):2) hIy T
(e [
224y + 22w =0
(_|i3) (L(((L0).3) 2
134]
~ o~ xzy + zw =0
(2u_n_2) (2,((((2,0)))),2) v +w2=0
(22)]1 135]
~ ~ Y — zw =
@0, | @) v w? —

can be identified by the fact that f(A) =0 has no multiple roots. This can be detected by whether the discriminant of f())
vanishes, i.e., whether Disc(f) =Res; (f, 9, f) =0.

Then case 11 with [22]gp and case 31 with [(11)(11)] are distinguished by that they have different minimal polynomials.
Suppose that the input quadrics are given in the real symmetric matrices A and B; and, without loss of generality, assume
that A is nonsingular. Since f(1) is a squared polynomial in the case of [22]g or [(11)(11)]p, we write

f) = @?+br+c)?,
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whose square-free part is
g =ar> +br+c,

where a, b, c € R and b% — 4ac < 0. Then, by Theorem 1 and the Cauchy-Cayley Theorem, the case of [(11)(11)]g occurs if
g() annihilates A~1B, i.e., g(A~'B) = 0; otherwise, the case of [22]o occurs. Note that g() can be obtained as the GCD of
fG) and f'(3).

Next we consider how to distinguish case 26 and case 35, whose index sequences (2:2_|2) and (2@_x,2) are mapped to
the same signature sequence (2((((1, 1))))2). For either of the two cases, f(A) = (A — a)* for some a € R, but the minimal
polynomial is g(A) = (A —a)? in the case of (22_u,2), while the minimal polynomial is h(A) = (A — a)? in the case of
(2:_|2). Therefore, the case of (2n_w,2) occurs if A~1B is annihilated by g(%), i.e., g(A~!1B) = 0; otherwise, the case of
(2w_|2) occurs. Note that g(1) = (A —a)? can be obtained without solving for the root a.

Combining the preceding methods based on minimal polynomials with the methods described in Section 3.4 for exact
computation of the signature sequences, we have the following complete algorithm for exact classification of QSICs.

Algorithm 1 (Classification of a pair of quadrics).

INPUT: Q1, Q2 € Q[Xx, y, z] of degree 2.
OutpuT: The normal form of the shape of the intersection curve as listed in Tables 1, 2 and 3.

e Compute the 4 x 4 symmetric matrices A, B associated to the quadratic forms Q1, Q».
e Compute the coefficients co(A),...,c3(A) of the characteristic polynomial C(A, ) = det(AA — B — pld) = co(r) +
1M+ 200> + 3 (M + pt.

e If co(A) =0, then output “degenerate pencil”.

e [solate the real roots A1,...,Ar of f(X) =co(A) and compute their multiplicities.

e Deduce a sequence of rational numbers q1,...,qr—1 € Q such that A1 <q1 <Ay <2 <--- <qr_1 < Ar.

e Compute the number of sign changes of co(}),...,c3(X), 1 at A = —00,41, ..., qr—1 to get the value of the index function

at these points.
e Compute the sign of c1(4),...,c3(X),1 at A = Aq,..., A, using static Sturm Sequence (Emiris and Tsigaridas, 2003), in
order to get the value of the signature at these roots.
e Construct the corresponding signature sequence.
o If the signature sequence is (2), compute p = Res, (f, 9, f).
o If p #0, output case (4);
o else compute g(1) € Q[A] such that f = g% and C = g(A~!B).
If C #0, output case (11);
otherwise output case (31);
o If the signature sequence is (2, (((1, 1))), 2), compute g(1) € Q[A] such that f = g2 and C = g(A~'B).
o If C #0, output case (26);
o otherwise, output case (35);
e In the remaining cases, up to the equivalence class defined by cyclic permutation, inversion and complementary oper-
ations, the signature sequence is matched with exactly one of the signature sequences in Tables 1, 2 or 3. Look up in
Tables 1, 2, 3 and output the corresponding case.

In the following we will use a working example to illustrate how our classification algorithm works

Example 1. Consider two quadrics

A: 20x* — 12xy + 48xz + 76x + 16y> — 16yz — 12y + 427° + 72z + 58 = 0,
B: 28x* 4 16xy + 80xz + 56x + 2y° + 24yz + 20y + 562° + 72z + 14 =0.

The equation of the eigenvalue curve C is

u? + (—136A + 100)u> + (—1048 — 3612A + 29041%)u? + (—10000A> + 2261612 + 28416))u
— 17052812 4 17052823 — 852641* = 0.
Substituting u = 0 in this polynomial yields
—852641% + 1705283 — 17052812 =0,
whose only real root is the double root A = 0. Substituting A = —1 in the equation of C yields
u* +236u> + 5468u% + 4200u — 426320,

which has one sign change in its coefficients; therefore, by the Descartes rule, it has only one positive root. It follows that
the signature sequence is (1, ((1, 1)), 3), which matches case 17 in Table 2. Hence, this QSIC consists of a real conic and an
imaginary one.
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Fig. 9. Separation, one-point tangency and two-point tangency between two cones.

L.
-

5. Application to collision detection

In this section, as an application to collision detection, we present a method for determining if two cones XTAX =0 and
XTBX =0 are separated (that is, free of collision) in 3D affine space R3, using the classification results in this paper. Assume
that R3 is obtained by treating w = 0 as the ideal plane, where w is the last component in XT = (x, y, z, w). Without loss
of generality, suppose that the signature of both A and B is (o4,0_,00) = (2,1, 1), i.e., both have two positive eigenvalues,
one negative eigenvalue, and one zero eigenvalue. For brevity, denote their signature by (o, 0_) = (2, 1), omitting the zero
eigenvalue. Then, given the matrix pencil F(A) = AA — B, the signature of F(0) is (1,2) and that of F(4+o00) = (2, 1).

To obtain the separation condition, first we check if the pencil is degenerate. If so, then the two cones intersect in
a line containing the vertices of the two cones (see e.g. Lancaster and Rodman, 2005, p. 419). Next, if det(A — AB) # 0,
we look among the 35 cases in Tables 1-3 for those whose signature sequences contain the signatures (1,2) and (2, 1),
and the corresponding QSICs are vacuous in PR3, the 3D real projective space. Clearly, case 2 is the only match, with the
signature sequence (0, (0,3),1,(1,2),2,(2,1),3,(3,0),4). For normalization we need to assign the signature (2, 1) to the
root A = oo and assign the signature (1,2) to the root A = 0. Therefore, in the following we suppose that the rightmost
signature corresponds to A = +oo and the signature over-lined corresponds to A = 0. Then we have the following results.

Lemma 1. Two cones XT AX = 0 and XT BX = 0 do not intersect in PR3 if and only if their signature sequence is (1, (0, 3), 0, (0, 3),
1,(1,2),2, 2, ).

Two cones may be externally tangent to each other at one or two points. One-point tangency corresponds to case 7.
Therefore, by a similar argument, we have

Lemma 2. Two cones XT AX = 0 and XTBX = 0 are externally tangent at exactly one point in PR if and only if their signature
sequence is (1, ((0, 3)),1,(1,2),2, (2, 1)).

For two-point tangency, which corresponds to case 15, we have

Lemma 3. Two cones XT AX = 0 and XT BX = 0 are externally tangent at two points in PR> if and only if their signature sequence is
(1,((0,2)),1,(1,2), 2, (2, 1)).

The three cases of separation, one-point tangency and two-point tangency of two cones are illustrated in Fig. 9.

Based on Lemmas 1 through 3, we have the following procedure for determining if two input cones are separate in
the affine space R3. Given two cones A: XTAX =0 and B: XTBX =0, first compute its signature sequence following
Section 3.4. Then A and B are separated in R if (a) their signature sequence is the same as the one in Lemma 1; or (b) it
equals to either of the sequences in Lemmas 2 and 3, and all tangent points of A and B are at infinity, i.e., lying on the
plane w = 0. Here, for one-point tangency case, the tangent point is given by the eigenvector associated with the (rational)
double roots of f(A) =|LA — B| =0. In the two-point tangency case, there is a 2-dimensional eigenspace associated with
the double root of f(A) =0, representing a line passing though the two tangent points of the two cones. So the two tangent
points can be computed by intersecting this line with either of .A and B. These two cases can also be analyzed by taking
the homogeneous part of degree 2 of the two polynomials and check the intersection of the two plane conics at infinity,
using the 2D classification of pencil of conics.

6. Conclusions

To summarize, we have obtained the following result:



334 C. Tu et al. / Computer Aided Geometric Design 26 (2009) 317-335

Theorem 5. There are in total 35 different types of QSICs with non-degenerate pencils. Each type of QSIC of a pencil (A, B) is entirely
classified by the signature sequence and the degree of the minimal polynomial of the pencil, which can be computed using only rational
arithmetic.

Besides determining the QSIC morphology for enhancing robust computation of QSIC in surface boundary evaluation, our
results can also be applied to deriving simple algebraic conditions for interference analysis of quadrics. For arrangement
computation, it is an interesting problem to classify all possible partitions of R? that can be formed by two ellipsoids. It is
also possible to apply the results here to derive efficient algebraic conditions for collision detection between various types
of quadric surfaces, such as cones and cylinders, following the framework in Wang and Krasauskas (2004).

One could also use the idea developed here to study the classification of a pencil of conics in PR?, which facilitates
the classification of QSIC of degenerate pencils in PR3. A more challenging problem is to use the signature sequence to
classify the intersection of two quadrics in higher dimensions, PR* say. Here the difficult issue is to deduce the geometry
of the QSIC associated with each possible Quadric Pair Canonical Form, while it is should be straightforward to obtain the
signature sequence of each normal form.

Another direction of investigation is the classification of the net of three quadrics in PR". In this case, given three
quadratic forms A, B and C, the problem is how to use the invariants of the planar curve f(«, 8, y) =det(@A+ BB+ yC) =
0 to characterize the geometric properties of the net X' (a¢A + 8B + yC)X =0 or the intersection of the three quadrics
XTAX=0,XTBX=0and X"CX=0.
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