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Existing methods for surface quadrangulation cannot ensure accurate align-
ment with feature or boundary curves and tight control of local element size,
which are important requirements in many numerical applications (e.g.,
FEA). Some methods rely on a prescribed direction field to guide quad-
rangulation for feature alignment, but such a direction field may conflict
with a desired density field, thus making it difficult to control the element
size. We propose a new spectral method that achieves both accurate fea-
ture curve alignment and tight control of local element size according to a
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given density field. Specifically, the following three technical contributions
are made. First, to make the quadrangulation align accurately with feature
curves or surface boundary curves, we introduce novel boundary conditions
for wave-like functions that satisfy the Helmholtz equation approximately
in the least squares sense. Such functions, called quasi-eigenfunctions, are
computed efficiently as the solutions to a variational problem. Second, the
mesh element size is effectively controlled by locally modulating the Laplace
operator in the Helmholtz equation according to a given density field. Third,
to improve robustness, we propose a novel scheme to minimize the vibra-
tion difference of the quasi-eigenfunction in two orthogonal directions. It is
demonstrated by extensive experiments that our method outperforms previ-
ous methods in generating feature-aligned quadrilateral meshes with tight
control of local elememt size. We further present some preliminary results to
show that our method can be extended to generating hex-dominant volume
meshes.
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1. INTRODUCTION

Quadrilateral (quad) meshes are widely used in many applications,
such as texture mapping, parameterization, and finite element anal-
ysis (FEA) [Hormann et al. 2008]. In this article we study the
problem of computing a quad mesh (also called quadrangulation)
of a given surface that needs to satisfy various constraints, such as
feature alignment, element size, and orientation. Currently, there
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is a lack of effective methods for surface quadrangulation that en-
sure accurate alignment with feature or boundary curves and tight
control of local element size.

Feature alignment means that the resulting quadrilateral mesh
preserves significant shape features (e.g., sharp edges and boundary
curves), while element size control means that, locally, the size of
mesh elements follows closely a given density function to produce
an adaptive mesh. To achieve feature alignment, previous meth-
ods [Kalberer et al. 2007; Bommes et al. 2009; Zhang et al. 2010]
usually use a direction field to guide the orientation of mesh ele-
ments to align with feature curves. However, in this way, the size
element will be heavily dictated by the guiding direction field, rather
than following a prescribed density field. This incompatibility be-
tween the guiding directional field and the given density field is
often responsible for undesired singularities and low-quality mesh
elements in quadrangulation. Note that the control of element size
is often as important as the orientation control in quad meshing
for many numerical applications. In fact, commonly used meshing
tools for FEA, such as SolidWorks, ANSYS, and Abaqus, provide
the density control rather than the orientation control.

We present a new spectral method for quadranulation that
achieves both accurate feature curve alignment and tight control of
local element size. The first spectral method for surface quadragula-
tion [Dong et al. 2006] employs the Morse-Smale complex (MSC)
extracted from the solution functions of a Helmholtz equation on a
given surface. It works well for closed smooth surfaces but consid-
ers neither orientation alignment with boundary curves and sharp
feature curves nor the control of element size. The method was later
improved in Huang et al. [2008] to achieve approximate feature
alignment without emphasizing element size control. In our method
we propose new boundary conditions of the Helmholtz equation to
make the Morse-Smale Complex (MSC) associated with its solu-
tion (to be called quasi-eigenfunction, or QE for short) precisely
align with domain boundaries or feature curves, without the need
of a guiding direction field. Because these new boundary condi-
tions impose overconstraints, the quasi-eigenfunction is defined as
the minimizer of a variational problem and therefore satisfies the
Helmholtz equation only approximately in the least squares sense.
With this formulation, we are able to specify and enforce the de-
sired element size using an isotropic Riemannian metric to locally
modulate the Laplace operator in the Helmholtz equation. Over-
all, we formulate surface quadrangulation as a linearly constrained
quadratic optimization problem and compute its solution (i.e., the
resulting quasi-eigenfunction) by solving a sparse linear system.
In addition, to improve the distribution of the critical points of the
quasi-eigenfunction for robustly constructing its Morse-Smale com-
plex, we propose a novel nonlinear optimization scheme to make
the vibration amplitude of the quasi-eigenfunction similar in two
orthogonal directions.

2. RELATED WORKS

Many methods have been proposed on surface quadrangulation, or
quad mesh generation, in recent decades. Comprehensive surveys
are provided in Hormann et al. [2008] and Bommes et al. [2012].
Some of the methods [Tarini et al. 2011; Campen et al. 2012] aim
at generating a quad mesh with a simple coarse structure. We shall
only review those works related to our concern of generating a quad
meshes with tight control of element size and accurate feature curve
alignment.

The methods in Alliez et al. [2003] and Dong et al. [2005] trace
two orthogonal direction fields on a given surface and generate
a quad-dominant mesh. To get a pure quad mesh, a coarse quad

Fig. 1. Incompatibility between element size control and direction control
in Zhang et al. [2010]. (a) The density function (in color) and the direction
field (in arrows) on a square domain; (b) the generated scalar field and its
Morse-Smale complex; (c) the resulting quad mesh.

Fig. 2. Eigenfunctions with Dirichlet boundary condition (left) and Neu-
mann boundary condition (right), respectively.

domain is required in some works [Tong et al. 2006; Marinov and
Kobbelt 2006]. In other works [Ray et al. 2006; Kalberer et al.
2007; Bommes et al. 2009], a direction field is used to extract a
topological structure for parameterization. The direction field is
often constructed based on sharp feature curves or curvature di-
rections, without taking size control into consideration. Recently,
Kovacs et al. [2011] proposed a method to improve approximation
error of quadrangulations by introducing a curvature-dependent sur-
face anisotropy metric. This method still relies on a direction field
for feature alignment. As pointed out in Zhang et al. [2010], there
is often a conflict between applying the element size control and
defining a direction field for feature alignment.

As shown in Figure 1, a uniform direction field is derived from the
boundaries of a square. This direction field is not compatible with
the desired density field shown in pseudocolor in Figure 1, which
leads to many unwanted singularities. Curl minimization proposed
in Zhang et al. [2010] could be used to adjust the size control accord-
ing to the direction field. However, such an adjustment according to
the uniform direction field will lead to a mesh with nearly uniform
element size, instead of the desired result (Figure 9).

Different from the previous methods, the spectral approach by
Dong et al. [2006] uses the Morse-Smale complex from an eigen-
value function of the Helmholtz equation over a given surface to
generate a quad mesh. The method is proposed for quandrangulation
of closed surfaces and thus cannot handle surfaces with boundaries
or feature lines. This difficulty is illustrated by the examples of two
eigenfunctions in a planar domain (that has a boundary) in Figure 2.
Here, neither the Dirichlet boundary condition nor the Neumann
boundary condition can make the Morse-Smale complex align with
the domain boundary. Hence, the resulting quad elements do not
conform with the boundary.

Huang et al. [2008] extended the method in Dong et al. [2006] by
adding orientation and alignment control of quads using a guiding
direction field within an optimization framework. The improved
method attempts to handle the boundary and feature curves with
a set of symmetric constraints, but is effective only for surfaces
with simple boundary curves and feature lines. The method pro-
posed in Zhang et al. [2010] for improving boundary and feature
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Fig. 3. (a) Perspective view of the function f (u, v) = 0.075 sin(6πu)
sin(6πv); (b) top view of f (u, v).

alignment adopts the same framework of Morse-Smale complex. It
uses a feature-dependent direction field and thus also restricts the
ability of element size control. Recently, a method [Pellenard et al.
2011] has been proposed for controlling the size and orientation of
isotropic 2D quadrangulation that addresses the requirement of size
control before orientation alignment. Because the method relies on
labeling the triangles of the background triangulation through local
information, it is difficult to reduce mesh singularities; furthermore,
it produces results that are sensitive to the initial tessellation. For
example, the quad mesh has many singularities even in the case of a
simple quad domain with a constant cross-field and uniform sizing.

3. BOUNDARY-ALIGNED QUASI-EIGENFUNCTION

Like the previous spectral approach (e.g., Dong et al. [2006]), our
method also uses the Morse-Smale complex to build a quad mesh.
An MSC of a function f on a two-manifold is a complex connecting
the critical points (minimum/saddle/maximum) of f through the
integral curves of the gradient field ∇f . The MSC is composed of
a set of quad cells and therefore yields the structure of a pure quad
mesh [Edelsbrunner et al. 2003; Ni et al. 2004]. Note that mesh
orientation and element size of the resulting quad mesh are largely
determined by the geometry of the MSC.

We first discuss how to achieve the alignment of boundary curves
and feature curves by introducing some new boundary conditions,
without resorting to a direction field. For simplicity, we will only
discuss boundary curves since the method can be applied to feature
curve alignment as well in a straightforward manner.

3.1 Boundary Conditions

Consider a function f (u, v) with its critical points (i.e., maxima,
minima, and saddles) as illustrated in Figure 3. A minimal integral
curve is defined to be the integral curve of the gradient field ∇f
that starts at a minimum and ends at a saddle. An extended minimal
integral curve, denoted �, is defined to be a sequence of connected
minimal integral curves (see the thick red curve in Figure 3). Clearly,
an extended minimal integral curve represents locally the orientation
of the quad mesh represented by the Morse-Smale complex. Let n
be the unit normal vector of the curve �. Because � is an integral
curve of the gradient field ∇f , we have ∂f/∂n = 0. Furthermore,
because � only goes from a minimum to a saddle, it can be shown
that ∂2f/∂n2 > 0 (except for high-order saddles). In fact, these two
conditions characterize an extended minimal integral curve.

Given a 2D domain �, our idea for achieving boundary align-
ment is to construct a function f on � such that the domain bound-
ary curves ∂� become extended minimal integral curves of f . To
this end, we introduce two boundary conditions ∂f/∂n = 0 and
∂2f/∂n2 > 0 on the domain boundary ∂�. The sufficiency of

these conditions can be seen as follows: Because ∂f/∂n|∂� = 0, the
boundary curve must be an integral curve. Because ∂2f/∂n2|∂� > 0,
no maximum can appear on the boundary. Therefore there are only
saddle points and minimum points, occurring alternatively, on the
boundary ∂�. Hence, the boundary curve ∂� is an extended mini-
mal integral curve of f . For definiteness in computation, we replace
∂2f/∂n2 > 0 by the condition ∂2f/∂n2 = ξ for some constant
ξ > 0, that is, we will use in our computation the boundary condi-
tions ∂f/∂n|∂� = 0 and ∂2f/∂n2|∂� = ξ > 0.

The preceding boundary conditions are sufficient but not neces-
sary for feature alignment, since it is possible that a boundary curve
is aligned with a maximal integral curve (that connects a saddle
to a maximum) rather than with a minimal integral curve, and the
second-order directional derivative can be different. In other words,
a more general formulation of this boundary condition could be
σ� · ∂2f/∂n2|∂� ≥ ξ > 0, where σ� ∈ {1, −1} for each connected
boundary curve � ∈ ∂�. However, using the previous equation
leads to a complex problem involving binary integer programming
about σ� and inequality constraints about ξ . Our assumption that
all the boundary curves or feature curves are aligned with only
minimal integral curves imposes the restriction that the number of
columns of mesh elements between two “parallel” feature lines is
even. In practice, this does not lead to any problem because we
are primarily interested in quadrangulation with sufficiently small
element size. Furthermore, setting ξ to a positive constant leads to
a simple linearly constrained quadratic optimization problem that,
favors efficiency and still yields high-quality results. Different spe-
cific values of the constant ξ > 0 scale f globally and therefore do
not affect the distribution of the critical points of f , as well as its
Morse-Smale complex. Hence, we set to ξ = 1 in our computation,
that is, the condition ∂2f/∂n2|∂� = 1 is used.

In a related note, Huang et al. [2008] also introduced a bound-
ary condition for feature alignment within the spectral framework.
Their condition is that the directional derivative of f in the normal
direction of the domain boundary vanishes. This tends to reduce the
variance of the resulting scalar function near the feature rather than
explicitly enforcing mesh nodes to align with the boundary curve.
Therefore, the method cannot ensure satisfactory conformation of
the resulting quad mesh with boundary curves and feature curves.

3.2 Definition of Quasi-Eigenfunction

If a function f satisfies the Helmholtz equation

∇2f = λf, (1)

where λ ≤ 0, then f is called an eigenfunction of the Laplace
operator. Due to the relatively even distribution of the critical points
of f , the Morse-Smale complex of f has been used to construct
quad meshes [Dong et al. 2006; Huang et al. 2008].

For a 2D domain with boundary curves, the Dirichlet boundary
condition or the Neumann boundary condition are often used in the
eigenfunction problem in Eq. (1). However, as shown in Figure 2
neither ensures boundary curve alignment as required for quadran-
gulation.

If we apply our new boundary conditions proposed in Section 3.1
for boundary alignment, the eigenfunction problem in Eq. (1) be-
comes overconstrained and therefore cannot be solved. We circum-
vent this difficulty by introducing the quasi-eigenfunction via a
variational formulation as follows.

To better illustrate this variational formulation, let us start by con-
sidering the 1D case, that is, smooth functions defined on [−1, 1].
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Fig. 4. Quasi-eigenfunctions in [−1, 1] with: (a) λ = −400; (b) λ = −750;
(c) λ = −1000.

Let f denote the function that minimizes the energy

EL(f ) =
∫ 1

−1
‖∇2f − λf ‖2, (2)

subject to the boundary conditions

df

du

∣∣∣
u=±1

= 0,
d2f

du2

∣∣∣
u=±1

= 1, (3)

where ∇2 = d2/du2 is the Laplace operator, and λ a negative
constant. The solution to this constrained optimization problem
will be called a quasi-eigenfunction (QE).

Eq. (2) and Eq. (3) define a typical problem in variational calculus.
Its Euler-Lagrange equation is

(∇2)2f − 2λ∇2f + λ2f = 0. (4)

When f is an eigenfunction, the energy in Eq. (2) is 0, and it also sat-
isfies Eq. (4). A quasi-eigenfunction approximates an eigenfunction
in the least squares sense while respecting the boundary conditions
in Eq. (3). Note that here λ does not have to be an eigenvalue of
Eq. (1); indeed, a nontrivial solution to Eq. (4) subject to Eq. (3) is
well defined for any λ < 0. Given a λ, the analytical form of the
QE in [−1, 1] can be shown to be

f ∗
1 (u) = c1 sin(u

√−λ) + c2 cos(u
√−λ)

+ c3u sin(u
√−λ) + c4u cos(u

√−λ),
(5)

where c1, c2, c3, c4 are constants. Figure 4 shows the graphs of
several QEs.

Now we consider the QE on an open two-manifold �. The bound-
ary conditions in Eq. (3) become

∂f

∂n

∣∣∣
∂�

= 0,
∂2f

∂n2

∣∣∣
∂�

= 1, (6)

where n is the outward unit normal vector of the boundary curve. It
can be shown that the QE on the domain [−1, 1]2 is

f ∗
2 (u, v) = f ∗

1 (u) + f ∗
1 (v). (7)

So far we have shown how to use two new boundary conditions to
ensure boundary alignment without using any direction field. Now,
the element size can easily be controlled by integrating an isotropic
Riemannian metric into the Laplace operator in the Helmholtz equa-
tion, that is, ∇2

r : (∂2/∂u2 + ∂2/∂v2)/r, r > 0, where the desired
quad edge length is almost linearly proportional to 1√

r
. This treat-

ment is similar to that in Huang et al. [2008], but, instead of us-
ing mass density, we adopt the metric description in Kovacs et al.
[2011]. Note that the metric-related parameter r does not have to be
continuous, because we are solving a least square problem, namely,
Eq. (2). However, in practice, a smooth r is preferred for generating
smoothly varying meshes.

3.3 Discrete Quasi-Eigenfunction (QE)

Now we show how to compute quasi-eigenfunctions efficiently on
2D triangulated domains.

A well–known discretization of the Laplace operator on a tri-
angulated surfaces is the cotangent formula [Pinkall and Polthier
1993; Meyer et al. 2002]. Let f be the vector of all function values
defined on the vertices of a triangular mesh M. The cotangent for-
mula for computing the Laplacian on vertex i with respect to the
density distribution r is

∇2
r fi = 3

2Areai · ri

∑
j∈N(i)

(cot(αij ) + cot(βij ))(fj − fi), (8)

where N (i) is the set of vertices incident to vertex i, Areai the total
area of triangles incident to vertex i, and αij , βij the angles opposite
to edge ij .

The boundary conditions in Eq. (6) involve the first-order and
second-order derivatives of f. We adopt the strategy in Huang
et al. [2008] to locally approximate f using a second-order poly-
nomial, and thus represent it as a linear combination of the values
on its neighboring vertices. Specifically, the neighborhood N (i)
of vertex i is locally parameterized into a plane by the exponen-
tial map [Schmidt et al. 2006] (see Figure 5(a)), and each vertex
j ∈ N (i) gets assigned some coordinates (uj , vj ). Then the co-
efficients ak , k ∈ {uu, uv, vv, u, v, c}, of a quadratic polynomial
f̃ (u, v) = 1

2 (auuu
2 + 2auvuv + avvv

2) + auu + avv + ac are solved
for from the least squares problem

min
j∈N(i)

‖f̃ (uj , vj ) − fj‖2. (9)

It can be shown that the coefficients ak obtained from Eq. (9) can
be represented as a linear combination of f, namely, ak = aT

k f.
Note that the ak are independent of f and depend only on the dis-
cretization of the domain. Hence, given a triangulation, all entries
of the gradient vector and the Hessian matrix on a boundary vertex
can be represented as a linear combination of f with precomputed
coefficients. For a boundary vertex with normal direction (nu, nv)
in the local 2D frame of the tangent plane of the underlying surface
domain, the directional derivatives in Eq. (6) are approximated by

∂f

∂n
≈ (nuau + nvav)T f

∂2f

∂n2
≈ (

n2
uauu + 2nunvauv + n2

vavv

)T
f.

(10)

Then, all the boundary conditions can be represented in a matrix
form

Bf =
[

Y
Z

]
f =

[
0
1

]
= C. (11)

Note that using a two-ring neighborhood for all the vertices will
make the ak contain too many nonzero entries, thus leading to high
computational cost. Therefore, we adopt a “diameter-2” neighbor-
hood, that is, a two-ring neighborhood for open boundary vertices

ACM Transactions on Graphics, Vol. 34, No. 1, Article 11, Publication date: November 2014.



Spectral Quadrangulation with Feature Curve Alignment and Element Size Control • 11:5

Fig. 5. (a) A boundary node and its exponential map; (b) a node on a
feature line and its exponential map.

and a one-ring neighborhood for interior vertices when solving for
the coefficients ak via fitting.

Clearly, the boundary conditions in Eq. (6) introduced for bound-
ary curve alignment can be applied directly to feature curve align-
ment. The discretization of these conditions at a vertex on a feature
line is similar to that at a boundary vertex, as shown in Figure 5(b).

Now the minimization problem in Eq. (2) subject to Eq. (6) is
formulated discretely: we minimize the energy ELr

ELr
(f) = ||Lrf − λf||2, (12)

subject to the constraints in Eq. (11), where Lr is the Laplacian ma-
trix defined by Eq. (8). Unlike the optimization problem with non-
linear constraints in Huang et al. [2008], our boundary conditions
lead to a quadratic minimization problem with linear constraint,
therefore they can be solved directly using its KKT matrix [Boyd
and Vandenberghe 2004] with the solver UMFPACK [Davis 2004][

HLr
BT

B 0

] [
f
ν

]
=

[
0
C

]
, (13)

where ν is the Lagrange multiplier, and

HLr
= Lr

T Lr − λ(Lr + LT
r ) + λ2I. (14)

After solving the QE from the preceding sparse linear system, its
MSC can be extracted for quad mesh generation. The methods
in Edelsbrunner et al. [2003] and Ni et al. [2004] can be used
to construct the MSC of a function f on a closed triangular mesh
surface. We adopt the mirrored boundary condition in Gyulassy et al.
[2011] to extract the MSC on a surface with open boundary. Then
the positions of the MSC vertices are further refined by solving a
global smooth parameterization problem [Dong et al. 2006]. Finally,
as postprocessing, the Catmull-Clark subdivision can be used to
refine the mesh.

While our method does not restrict λ to be an eigenvalue, not
all choices of λ lead to high-quality results because of the possi-
ble incompatibility between the alignment constraints and the quad
sizing, especially when using small |λ| for coarse quadrangulation.
When a large |λ| is used, to make sure the critical points in the
resulting QE are kept sufficiently apart from each other (desirably,
about the distance of the average edge length of the underlying
triangle mesh), the input triangular mesh should be dense enough
with respect to the desired quad density. To address this issue, after
extracting the critical points, we locally estimate the average dis-
tance d between the neighboring critical points and then subdivide
the triangular mesh to make the edge length shorter than μd . Then
we resolve the problem with the refined mesh as input to obtain a
properly discretized QE. We set μ to 0.25 experimentally. Such a
strategy works well in most cases, as long as the Hessian matrix
HLr

is well conditioned.

3.4 Vibration Enhancement

Like all the other spectral methods [Dong et al. 2006; Huang et al.
2008], our method also assumes the existence of periodically dis-
tributed significant critical points of the scalar function. But, in
some cases, either an eigenfunction or a quasi-eigenfunction may
not have its critical point distributed in a desirable manner. Thus,
such methods (including ours) may suffer lack of “vibration”, as
illustrated inset.

For example, for a disk-like region with a strong rotational sym-
metry, the QE tends to vibrate only along the radial direction while
not varying much along the direction perpendicular to the radial
direction. Consequently, the critical points are not easy to detect or
are not uniformly distributed, an issue also pointed out in Dong et al.
[2006] and Huang et al. [2008]. In the following we will introduce
a technique called vibration enhancement to address this issue.

As shown in Huang et al. [2008], the principal directions of
the Hessian matrix of the QE are locally aligned with the edges
of the Morse-Smale complex. Using these directions as the local
coordinate system, we locally approximate the QE by f (u, v) ≈
Au cos(u

√−λ + θ ) + Av cos(v
√−λ + φ). It follows that

∇f ∇f T + H 2
f

−λ
≈ −λ

[
A2

u Au · Av · susv

Au · Av · susv A2
v

]
, (15)

where su = sin(u
√−λ+ θ ), sv = sin(v

√−λ+φ). Again, applying
the discretization techniques in Section 3.3 to compute the gradient
∇f and the Hessian matrix Hf , we have

A2
u = fT Wuf, and A2

v = fT Wvf, (16)

where

Wu = 1

−λ
auaT

u + 1

λ2

(
auuaT

uu + auvaT
uv

)
Wv = 1

−λ
avaT

v + 1

λ2

(
avvaT

vv + auvaT
uv

)
.

(17)

From Eq. (15), we can estimate the vibration amplitude Au,i , Av,i

for the vertex i, and measure the amplitude difference as

Ea,i(f) = (
fT Wu

i f/Ā2
i − 1

)2 + (
fT Wv

i f/Ā2
i − 1

)2
, (18)

where Āi =
√

(A2
u,i + A2

v,i)/2. The graph plots the relationship of

the energy and the amplitude difference.
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Fig. 6. BUTTERFLY (λ = −1700): (a) QE without vibration enhance-
ment; (b) QE with vibration enhancement; (c) quad mesh from (b).

The penalty terms are applied to all the vertices V to make local
vibration amplitudes in the two orthogonal directions as similar as
possible.

Using the solution of Eq. (13) as the initial value, we optimize
the following energy

E(f) = ELr
(f) + ω

(∑
i∈V

Ea,i(f)

)
+ ξ‖Bf − C‖2

2, (19)

where the weights ω = 0.1, ξ = 100 are used in all our experiments.
In the phase of vibration enhancement, Eq. (19) is optimized by the
Gauss-Newton method, and CHOLMOD [Chen et al. 2008] is used
in each iteration. The cost of each iteration is less than solving the
KKT system in Eq. (13), and ten iterations are performed in our
experiments unless otherwise stated.

We use the penalty function with the boundary condition
Bf = C, because using the Lagrange multipliers would intro-
duce a large number of hard constraints, which prevents the
scalar field near the boundary from adjusting for desired vibration.
As shown in the inset, the
critical points on the bound-
ary are more prominent with
the penalty scheme (left) than
using the Lagrange multipliers
scheme (right).

Vibration enhancement also improves the robustness of our
method when the value of λ is away from an eigenvalue. For exam-
ple, for the quadrangulation of the domain [−1, 1]2 in Figure 7, to
generate quad meshes from the QEs with n = 4 and n = 5 periods
along each side, the ideal values of λ should be λ ≈ −158 and
λ ≈ −247, respectively (ideally, λ should be −(nπ )2). If we set
λ = −200, which lies between the two ideal values, the QE solved
from Eq. (13) does not possess prominent critical points (see the
region surrounded by the black rectangle in Figure 7). However,
the result improves significantly after applying a few iterations of
vibration enhancement.

4. EXTENSION TO HEX-DOMINANT REMESHING

Hexahedral meshing of a 3D domain is another important and chal-
lenging problem in mesh generation. Unlike a 2D manifold, that
can be closed without no boundary, a compact 3D volume always
has a boundary surface. That is, the boundary alignment issue is
inevitable in hex meshing of any 3D volume. Hence, due to their
lack of proper boundary treatment, the previous spectral remeshing
methods [Dong et al. 2006; Huang et al. 2008] for surface quad-
rangulation cannot be extended to hex meshing of 3D volumes. In
this section, we will briefly discuss how our spectral method with

Fig. 7. A fewer number of vibration enhancement iterations improves the
distribution of the critical points when λ is not an eigenvalue. The numbers in
parentheses indicate the value of λ and the number of iterations, respectively.

Fig. 8. 3D Morse-Smale complex: (a) A regular 3D Morse-Smale
cell (3 pairs of saddles); (b) a general 3D Morse-Smale cell; (c) eight
neighboring Morse-Smale cells in a 3D Morse-Smale complex.

new boundary conditions can extend Eq. (6) to hexahedral mesh
generation, and we present some preliminary results.

One major consideration in this extension is how to discrete a
3D domain and represent the Laplacian operator on it. We assume
the domain is represented by a sufficiently fine tetrahedral mesh.
If we use the 3D counterpart of the cotangent formula in Eq. (8)
for tetrahedral meshes [Wang et al. 2003], the obtuse angles in the
tetrahedral mesh will result in the negative values of the cotangent
formula, which in turn will cause numerical instability [Wardetzky
et al. 2007]. Because completely eliminating obtuse angles in a tet
mesh is still an open problem [Tournois et al. 2009], we compute
quasi-eigenfunctions on a tetrahedral mesh using a quadratic finite
element formulation that is an extension of the linear finite element
analysis on a triangular mesh [Vallet and Lévy 2008; Reuter et al.
2009].

We use the method in Gyulassy et al. [2007] to extract the 3D
Morse-Smale complex of a quasi-eigenfunction, and construct a
hex mesh topologically by subdividing the Morse-Smale complex
and geometrically smoothing it by iteratively updating its vertex
positions to the centroid of neighboring hex elements. Unlike a
2D Morse-Smale complex, a 3D Morse-Smale complex contains
two types of saddles, called 1-saddle and 2-saddle, respectively
[Gyulassy et al. 2007] (see Figure 8). An important point to note is
that 3D Morse-Smale complex cells are not necessarily hexahedra
(see Figure 8(b)). Therefore, a small portion of non-hex elements
will remain in each non-hex MSC cell after subdivision. Hence, in
general, our method generates a hex-dominant mesh instead of a
pure hex mesh.
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Fig. 9. SQUARE. Left: QE (λ = −1050, no vibration enhancement) and
its MSC. Middle: The density function. Right: The output quad mesh.

Fig. 10. BEETLE. Left: QE (λ = −8600) and its MSC. Right: The output
quad mesh. (Model with permission of David Bommes)

Fig. 11. SPIRAL: (a) QE (λ = −3600) and its MSC with feature lines
colored in red; (b) the output quad mesh; (c) the top view of (b).

5. RESULTS

We shall discuss experimental results in this section. To better
appreciate the effect of the parameter λ on computing a quasi-
eigenfunction, we scale all 2D (respectively, 3D) shapes to fit them
in the box [−1, 1]2 (respectively, [−1, 1]3). We also scale the den-
sity r so that its minimal value is 1. Note that our method does not
restrict the λ to be an eigenvalue, thus λ can be adjusted to cater for
desired overall density.

5.1 Quadrangular Results

As the first example, we apply our method to computing a quad
mesh of a square with the quad element size following the same
density function as shown in Figure 1. The quad mesh computed
by our method (shown in Figure 9) has a much better singularity
distribution than that produced by the method of Zhang et al. [2010]
(Figure 1). Note that the direction field implied by our quad mesh
in Figure 9 is compatible with the given density field, and it would
be difficult to compute such a direction field beforehand if it were
needed for guiding the computation of the quad mesh as in the
previous method [Zhang et al. 2010].

These figures shows a quasi-eigenfunction (λ = −1200, no vi-
bration enhancement) and the resulting quad mesh computed by our
method on the same star-shaped domain as Figure 2.

Fig. 12. FANDISK (top, λ = −2000), JOINT (middle, λ = −2400) and
David (bottom, λ = −4600) with feature lines colored in red: (a) QE and its
MSC; (b) the output quad mesh and the density function; (c) the output quad
mesh and the density function. The color coding of the density function
is shown on the right. (Fandisk model: AIM. SHADE; Joint model with
Permission of Dongming Yan; David model: Stanford Scanning Repository)

Fig. 13. All sharp edges of the Fandisk are marked as feature curves. On the
left is the quasi-eigenfunction and its MSC (λ = −1900) that we computed.
On the right is the resulting quad mesh and the density field that is defined
by the closed minimal distance of a point to the feature curves.

In comparison with the eigenfunctions shown Figure 2, the Morse-
Smale complex of this quasi-eigenfunction aligns well with the
domain boundary.

Figure 10 shows the QE and its MSC computed by our method on
an open surface with boundary curves. Figure 11 shows the QE and
its MSC computed by our method on the Spiral model with sharp
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Fig. 14. CARHOOD: (a) The quad mesh computed without using a guiding vector field; (b) the quasi-eigenfunction (λ = −1400) computed with the shown
guiding direction field for improving mesh orientation; (c) the Morse-Smale complex from (b); (d) the output quad mesh of (b); (e) a quad mesh computed
with the method in Huang et al. [2008] for the same surface.

Fig. 15. Our results (λ = −280 for (a) and (c) contain fewer singularities
than the results (b) and (d) from Pellenard et al. [2011].

feature curves. Figure 12 demonstrates quad meshes computed by
our method with adaptive element size control.

In the Fandisk model shown in Figure 13, our method naturally
introduces a valence-5 singularity at the meeting point of two feature
curves that intersect at a small angle.

Although a guiding direction field is not needed for feature curve
alignment, it can be integrated into our method to guide mesh orien-
tation in regions away from boundary curves or features. Following
the formulation of orientation energy EOrient in Huang et al. [2008],
we minimize the combined energy E(f) = ELr

(f) + γEOrient (f)
subject to Eq. (11). Figure 14 shows the QE and its associated mesh
with orientation control (γ = 102), which is clearly an improvement
over the result by the method in Huang et al. [2008] (Figure 14(d))
in terms of boundary conformation. Here the guiding direction field
is only applied to the back part of the CARHOOD model as shown
in Figure 14(a).

Figure 15 shows comparisons between our method and the
method in Pellenard et al. [2011]. For the uniform density field
on a quad domain, the quad mesh computed by our method con-
tains no singularity (Figure 15(a)), while their method produces
unjustified singular points (Figure 15(c)). With the same nonuni-
form density field, the quad mesh computed by our method has
much fewer singular points (Figure 15(b)) as compared to their
method (Figure 15(d)).

Table I shows the timing data of the preceding experiments on a
computer with an Intel Core i7-3770K CPU at 3.50 GHz CPU with
16GB RAM. The columns QE, MSC, and Mesh show the time (in
seconds), or computing the quasi-eigenfunctions, the Morse-Smale
complexes, and the final quad meshes, respectively, compared with
the cost of scalar field optimization in Huang et al. [2008]. Because
we need to solve a linear system based on the KKT condition and
use nonlinear optimization for vibration enhancement, our method
is slower than that in Huang et al. [2008].

5.2 Robustness

To test the robustness of our method, we apply it to the CARHOOD
model (with λ = −1500) with different density fields, as shown
in Figure 16. For the moderately varying density field in the first
row where the element size on the rear of the model is 10 times
larger than that on the front, our method works well. For the more

Table I. Quadrangular Remeshing Performance Statistics
(in seconds)

Model Vert# QE MSC Mesh
STAR (inset) 16k 2.4, NA 0.06 2.66
BUTTERFLY (Figure 6(b)) 15k 1.5, 2.6 0.06 2.35
SQUARE (Figure 9) 16k 3.0, NA 0.04 2.47
BEETLE (Figure 10) 119k 56.4, 41.5 0.39 24.6
SPIRAL (Figure 11) 26k 13.7, 6.6 0.12 3.11
FANDISK (Figure 12) 13k 6.5, 4.1 0.05 1.17
JOINT (Figure 12) 50k 31.7, 24.7 0.33 6.42
DAVID (Figure 12) 84k 13.3, 50.8 0.40 15.3
CARHOOD (Figure 14) 65k 11.7, 34.0 0.22 6.95

The column QE indicates the time for solving Eq. (13) for initial value and the time
used for vibration enhancement.

Fig. 16. From left to right: density fields, quasi-eigenfunctions, and quad
meshes. The elements on the rear of the model are 10× and 30× larger than
those on the front for the two density fields in the first and second rows,
respectively. In the third row, the quad mesh is generated with a random
density field with r ∈ [1, 5].

radically varying density field in the second row where the element
size on the rear of the model is 30 times larger than that on the front,
our method fails because of the lacking of degree of freedom that can
be provided by the relatively coarse input triangular mesh. In this
case, refining the input triangular mesh may alleviate the problem
but would also increase the condition number of the Laplace matrix,
making the computation numerically unstable. Finally, the random
density field on the third row leads to irregular distribution of the
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Fig. 17. Quad meshes of the sculpture model with different values of λ and the same nonuniform density field.

Fig. 18. By manually specifying feature lines (in red), one can control the
locations of some singular points explicitly (middle left, middle right). But
when feature curves get too complex, no reasonable results can be produced
due to the lack of DOF of the underlying input triangulation (the rightmost
picture).

Table II. Timing Data for Hexahedral Meshing
(in minutes)

Model Vert# QE MSC Mesh

TET 12k 21 0.4 0.1
TWISTED-CUBE 10k 15 0.3 0.1
DOUBLE-STAR 40k 179 1.2 0.8

nodes in the Morse-Smale complex, from which we still extract a
quad mesh robustly.

The global control of element size can be achieved by changing
the value of λ while fixing the density field. In Figure 17, we apply
different values λ to the sculpture model, with the same nonuniform
density field. Note that when the desired element size is too large
or too small, the quad meshes extracted from the QEs may contain
elements in bad shape.

Finally, we consider the limit of the complexity of feature curves
that our method can accommodate. As shown by the examples in
Figure 18, mesh singularities can be specified explicitly by manu-
ally introducing some feature curves (even in a smooth region of
the surface). However, when such feature curves get too complex
or cluttered, no reasonable results can be expected because the dis-
cretization of the underlying input triangular mesh has insufficient
degree of freedom (DOF) for the quasi-eigenfunctions to meet all
these constraints.

5.3 Results on Hex-Dominant Meshing

We now present some preliminary results of applying our spectral
method to computing hex-dominant meshes of 3D volumes, with
two examples shown in Figure 19 and Figure 20, respectively. For
comparison, the meshing results by the octree method [Hexotic

Fig. 19. TET: (a) QE (λ = −94) with its MSC; (b) interior view of the
QE; (c) boundary mesh; (d) interior mesh; (e)–(f): the results by the octree
method; (g)–(i): the results by the advancing front method.

Fig. 20. TWISTED-CUBE: (a) QE (λ = −140); (b) interior view of the
QE; (c) the Morse-Smale complex; (d) boundary mesh; (e) interior meshing;
(f)–(g): the results by the octree method; (h)–(j): the results by the advancing
front method.

2010] and the results by the advancing front method [Geompack++
2010] are shown as well. Our method outperforms the other two
methods in mesh quality in both examples. Here, the non-hex el-
ements are shown in red for visualization. Our method can also
process objects with genus larger than 0, as shown in Figure 21.
In all these examples, no sharp feature corner/lines are labeled a
priori in the input tetrahedral mesh to assist hex mesh generation.
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Fig. 21. DOUBLE-STAR: (a) QE (λ = −450); (b) interior view of the QE; (c) the Morse-Smale complex; (d) boundary mesh; (e) interior mesh; (f) non-hex
elements.

These results demonstrate the potential of our spectral method in
automatic hex meshing.

The major limitation of our spectral method for hex meshing is
its high computational cost. The timing data for the three models is
shown in Table II. The main cause for this inefficiency is that the
linear system obtained from Eq. (13) based on the quadratic FEM
formulation is much denser and larger than that constructed with
the cotangent formulation [Wang et al. 2003]. We used a 12-core
2.8 GHz Intel server with 128GB RAM to solve these linear systems.
Further research is needed to make the method more efficient so as
to be practical for hex meshing.

6. CONCLUSIONS

We have introduced a set of novel boundary conditions to ensure
boundary conformation in the spectral approach to surface quadran-
gulation. Our boundary conditions eliminate the requirement of a
guiding direction field, and thus provide more flexibility in design-
ing mesh density functions for more effective element size control.
Experiments showed that the quad meshes computed by our method
capture domain boundaries and feature curves accurately and follow
the given density field closely. Preliminary results are presented on
extending our method to hex meshing.

A major limitation of our method is its lack of explicit control of
mesh singularities, which are implicitly determined by the quasi-
eigenfunction. To properly capture the critical points in the quasi-
eigenfunction, the element size of the input triangular mesh has to be
smaller than the expected quad element size. This leads to the need
for a highly refined input triangular mesh when a fine quad mesh
is to be computed, or when there is a set of complex feature curves
to accommodate. This is also the main cause of inefficiency when
applying our method to hex meshing of 3D volumes. Future work is
needed to improve this efficiency issue so the method can be used to
compute quadrangulations of highly complex surface models and
become practical for hexahedral meshing of 3D volumes.
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