DeepSketch2Face: A Deep Learning Based Sketching System for

3D Face and Caricature Modeling

XIAOGUANG HAN, CHANG GAO, and YIZHOU YU, The University of Hong Kong

Fig. 1. Using our sketching system, an amateur user can create 3D face or caricature models with complicated shape and expression in a few minutes. Both

models shown here were created in less than 10 minutes by a user without any prior drawing and modeling experiences.

Face modeling has been paid much attention in the field of visual computing.

There exist many scenarios, including cartoon characters, avatars for social
media, 3D face caricatures as well as face-related art and design, where
low-cost interactive face modeling is a popular approach especially among
amateur users. In this paper, we propose a deep learning based sketching
system for 3D face and caricature modeling. This system has a labor-efficient
sketching interface, that allows the user to draw freehand imprecise yet
expressive 2D lines representing the contours of facial features. A novel
CNN based deep regression network is designed for inferring 3D face models
from 2D sketches. Our network fuses both CNN and shape based features
of the input sketch, and has two independent branches of fully connected
layers generating independent subsets of coefficients for a bilinear face
representation. Our system also supports gesture based interactions for users
to further manipulate initial face models. Both user studies and numerical
results indicate that our sketching system can help users create face models
quickly and effectively. A significantly expanded face database with diverse
identities, expressions and levels of exaggeration is constructed to promote
further research and evaluation of face modeling techniques.

CCS Concepts: « Computing methodologies — Graphics systems and
interfaces; Shape modeling;

Additional Key Words and Phrases: Face Modeling, Face Database, Deep
Learning, Face Caricatures, Gestures, Sketch-Based Modeling

ACM Reference format:
Xiaoguang Han, Chang Gao, and Yizhou Yu. 2017. DeepSketch2Face: A Deep

Learning Based Sketching System for 3D Face and Caricature Modeling.

ACM Trans. Graph. 36, 4, Article 126 (July 2017), 12 pages.
https://doi.org/10.1145/3072959.3073629

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

0730-0301/2017/7-ART126 $15.00

https://doi.org/10.1145/3072959.3073629

1 INTRODUCTION

Face modeling has been a popular research topic in the field of visual
computing, and different approaches, including real face digitization
and interactive face modeling, have been attempted in response to a
variety of application scenarios. While high-end applications, such
as virtual characters in feature films, demand high-fidelity face
models acquired from the real world, there exist many scenarios,
including cartoon characters, custom-made avatars for games and
social media, 3D face caricatures as well as face-related art and
design, where low-cost interactive modeling is still a mainstream
approach especially among amateur users. Nevertheless, faces have
rich geometric variations due to diverse identities and expressions,
and interactively creating a decent 3D face model is a labor-intensive
and time-consuming task even for a skilled artist with the help of
well-developed software such as MAYA or ZBrush. Thus creating
expressive face models with a minimal amount of labor is still a
major challenge in interactive face modeling.

Let us leave 3D faces for a moment and think about how we
draw a 2D face. It is a natural choice for us to quickly draw the
outermost silhouette first and then the contours of various facial
features including eyes, nose and mouth. Such a set of silhouettes
and contours already give a very good depiction of the underlying
face even though they are merely a sparse set of lines. Note that such
silhouettes and contours also exist on a 3D face except that they
have extra depth information and the silhouette is view-dependent.
However, even when the 3D silhouette and contours are fully speci-
fied, the shape of the facial regions in-between these sparse lines
are still unknown. Fortunately, the 3D shape of these regions might
be highly correlated with the 2D and 3D shape of the silhouette and
contours. For example, there exist strong correlations between the
nose contour and the overall shape of the nose, and also between the
mouth contour and the shape of the cheeks. Therefore, it is crucial to
learn such correlations from data and let them guide labor-efficient
face modeling.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.


https://doi.org/10.1145/3072959.3073629
https://doi.org/10.1145/3072959.3073629

126:2 « Han, X. et al

Inspired by the above observations, in this paper, we propose a
deep learning based sketching system for 3D face and caricature
modeling for amateur users. In our system, a user only needs to
draw or modify a sparse set of 2D silhouettes and facial feature
contours. Sketching allows the user to draw freehand imprecise yet
expressive 2D lines, giving rise to pleasant user experiences. Given
the 2D facial sketch, an underlying deep learning based regression
network automatically computes a corresponding 3D face model.
Our system supports two phases of sketching, initial sketching and
follow-up sketching. During initial sketching, the user draws a 2D
sketch from scratch and the generated initial 3D model may not
exactly match the sketch. At the beginning of follow-up sketching,
feature contours on the initial 3D model are projected onto the 2D
canvas to produce an updated sketch, and the user can redraw some
of the projected lines if they are not satisfactory. The redrawn lines
in this sketching phase become harder constraints that projected
contours should match more closely.

In our system, an underlying deep regression network is respon-
sible for converting a 2D face sketch to a 3D face model. Although
a face has a fixed number of main features (such as eyes, nose and
mouth), to maintain a flexible sketching interface, it is important
to allow the user to draw an unspecified number of lines. To this
end, we treat the 2D sketch as an image, and rely on a convolutional
neural network (CNN) running on the raw pixels to compute a fixed-
length description of all lines in the sketch. However, even a neuron
in the topmost convolutional layer has a limited receptive field and
cannot ‘see’ the entire sketch. To compensate for the lack of global
context, we also directly represent the overall shape of main facial
features using a dimension reduction model. The output from our
deep network is a set of coefficients for a bilinear face representa-
tion, which is able to reconstruct all 3D vertices of a face mesh. This
bilinear representation considers identities and expressions as two
independent modes with separate coefficients. To avoid interference
between these two modes, our deep network has two independent
branches with different numbers of fully connected layers following
the shared convolutional layers.

To support research and evaluation of face modeling techniques
including our deep learning based regression network, we prepare a
large database containing both 3D face models and their associated
2D sketches. Our database is a significantly expanded version of
the face database reported in (Cao et al. 2014). To model 3D face
caricatures, we use each original face model from (Cao et al. 2014) to
create three new face models with different levels of exaggeration.
14 new facial expressions are also designed and transferred to all
created models while similar facial expressions in the original data-
base were merged. The resulting new database has 15,000 registered
3D face models, which include 150 identities, 25 expressions and 4
levels of exaggeration. Handdrawn 2D sketches of a subset of 3D
face models are also included.

In summary, this paper has the following contributions.

o A novel sketching system is proposed for 3D face and cari-
cature modeling. This system has a labor-efficient sketching
interface, and initial 3D face models can be automatically
generated from 2D sketches through learned correlations
between them. Our system supports gesture based interac-
tions for users to further manipulate initial face models.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.

e A novel CNN based deep regression network is designed
for inferring 3D face models from 2D sketches. Our net-
work fuses both CNN and shape based features of the input
sketch, and also has two independent branches of fully
connected layers generating two independent subsets of
coefficients for a bilinear face representation.

e A significantly expanded face database with diverse iden-
tities, expressions and levels of exaggeration is also con-
structed for training and testing. This database will be pub-
licly released to benefit other researchers working on face
modeling.

2 RELATED WORK

Data-Driven Modeling by Sketching. When there is a database
of 3D models, a sketch can be used as a query to search for the
most similar shapes (Eitz et al. 2012; Li et al. 2016). Fan et al. (2013)
developed a system where retrieved models are shown along with
the sketch as shadows to provide guidance to amateur users in
creative modeling. Sketches can also help retrieve part candidates
for assembling a man-made object (Xie et al. 2013)) or an entire
indoor scene (Xu et al. 2013). While traditional machine learning
algorithms often have a hard time robustly handling rough and
noisy sketches created by amateur users, deep convolutional neural
networks (CNNs) (Krizhevsky et al. 2012) have been applied suc-
cessfully to sketch understanding in image retrieval (Sangkloy et al.
2016) and 3D shape retrieval (Wang et al. 2015).

Recently, CNNs have also been used to learn a regression model
mapping sketches to parameters for procedural modeling of man-
made objects (Huang et al. 2016) or buildings (Nishida et al. 2016).
Incorporating CNN based parameter inference, Nishida et al. (2016)
also developed a user interface for real-time urban modeling. Major
differences exist between our work and the work in (Huang et al.
2016) other than they deal with different types of objects. First,
this paper presents a labor-efficient user interface that incorpo-
rates real-time sketching for interactive modeling and deep learning
based gesture recognition for shape refinement while the modeling
process adopted in (Huang et al. 2016) is not interactive and their
proposed algorithm simply generates a 3D model from a complete
drawing. Second, our network architecture has crucial novel com-
ponents with respect to the architecture used in (Huang et al. 2016).
For example, our network has two independent branches of fully
connected layers, and it also has a vertex loss layer which directly
calculates vertex position errors. Both components effectively re-
duce model prediction errors. Third, this paper publicly releases a
dataset while (Huang et al. 2016) did not. The dataset used in this
paper has better connections with the real world because part of
the 3D face models were originally digitized from real people and
part of the sketches are real drawings collected from artists while
the dataset used in (Huang et al. 2016) was entirely generated from
3D virtual models.

Morphable Face Models. Blanz and Vetter (1999) applied a PCA
based representation learned from a dataset of 200 face models to
single-view 3D face reconstruction. Multi-linear tensor decompo-
sition is performed in (Vlasic et al. 2005) to decouple variations



DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling « 126:3

900

0
-—-.
(tﬂ

(m) \

\‘&‘WTJ

Initial Sketching Mode Follow-up Sketching Mode

Final Result

Gesture-based Refinement

Fig. 2. Our sketching system has three interaction modes: the initial sketching mode, follow-up sketching model and gesture-based refinement mode. In the
initial sketching mode, the 3D face is updated immediately after each operation. The follow-up sketching mode gets started when an output model (a) in the

initial sketching model is rendered to a sketch (b). A sequence of operations in this model are shown from (b) to (h). Users can switch in real time from 2D

sketching to 3D model viewing (e.g. (d) to (i), (g) to (j) and (h) to (

(k)). The created shape (k) can be refined in the gesture-based refinement mode. (I) and (m)

show the gestures used for depth depressing and bulging, and the corresponding results after each operation are shown in (n) and (0). A red solid arrow
indicates a single operation while a dashed one means several operations, and a blue arrow stands for model updating.

of expression, identity and viseme into separate modes and en-
code a face model with subsets of independent coefficients. Tena
et al. (2011) proposed a linear piecewise face modeling technique
based on PCA sub-models that are independently trained but share
boundaries. Recently, Cao et al. (2014) built a large face database
with 150 identities and 20 expressions using an RGBD sensor and
further trained a bilinear face representation. These morphable face
representations have been widely used in applications such as 3D
face reconstruction for image or video editing (Dale et al. 2011; Yang
et al. 2011) and real-time performance capture from RGB input (Cao
etal. 2013, 2016; Saito et al. 2016) or RGBD input (Bouaziz et al. 2013;
Weise et al. 2011). In addition, there exist interactive face modeling
systems (Feng et al. 2008; Gunnarsson and Maddock 2007; Lau et al.
2009), which consider both the intention of users and statistical rules
learned from an underlying database. In our proposed system, other
than the overall shape information provided by sketched lines, we
also extract deep CNN features from 2D sketch images. Such deep
features significantly improve the accuracy of morphable model
inference. To train our deep regression network, we significantly ex-
panded the database reported in (Cao et al. 2014) to include multiple
levels of exaggeration in both identity and expression.

3D Face Caricatures. A face caricature shows facial features in
an exaggerated manner. Creating 3D face models in this style is
also a popular topic in computer graphics. A common approach
exaggerates an input 3D model by magnifying the differences be-
tween the input model and a reference model ( (Lewiner et al. 2011;
Vieira et al. 2013)) through deformation. Sela et al. (2015) considered
gradients as a measure of characteristics and proposed a method
to perform exaggeration by scaling the gradients at mesh vertices.
Liu et al. (2009) proposed a machine learning method to map 2D
feature points detected in natural images to the coefficients of a
PCA model learned from a dataset of 200 3D caricature models. An
interactive technique is proposed in (Xie et al. 2009), where each
mouse operation on vertices triggers an inference of coefficients for

PCA subspaces representing individual face components. Given an
input face photo and its caricature drawing, the method proposed in
(Clarke et al. 2011) captures the deformation style of the caricature
and apply the style to other photos. To our knowledge, the system
in this paper is the first one that creates 3D face caricatures from
2D sketches.

Sketch-Based Freeform Modeling. Creating freeform 3D models
from handdrawings has been paid much attention for two decades
in both the industry and research community (Olsen et al. 2009).
Humans typically rely on silhouettes or contours to depict objects
in drawings. Singh and Fiume (Singh and Fiume 1998) proposed to
use curves to control 3D object deformation. Igarashi et al. (1999)
presented a system for automatically generating a 3D shape from
2D silhouettes interactively drawn by the user. Fibermesh (Nealen
et al. 2007a) adds another feature that allows the user to modify
the geometry by moving selected curve handles on the surface. A
sketched line near a silhouette can be used to define a deformation
for shape refinement (Nealen et al. 2007b). Rivers et al. (2010) pro-
posed a system to create 3D shapes from multi-view silhouettes. The
sketches in all these methods are used to constrain vertex positions
on a 3D model. Recent work (Pan et al. 2015; Shao et al. 2012; Xu et al.
2014)) also studies the relationship between surface normals and
2D cross lines, and automatically generates surfaces from concept
sketches. In our system, sketched lines not only serve as position
constraints for silhouettes and contours but also help determine the
3D coordinates of other vertices according to complex correlations
learned by our deep regression network.

3 USER INTERFACE

We introduce our system from the perspective of users in this sec-
tion. The input device can be either a mouse or a pen tablet, and a
pen tablet is recommended. Our system supports the following three
interaction modes for coarse-to-fine face modeling: initial sketch-
ing mode, follow-up sketching mode and gesture-based refinement

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.



126:4 « Han, X. et al

mode. A complete interactive modeling session in our system only
requires drawing, erasing and clicking.

We separate lines in a face sketch into three categories, silhouette
line, feature lines and wrinkle lines. As illustrated in Figure 3 (a), a
silhouette line (highlighted in red) refers to the outermost contour
of a face, feature lines (highlighted in blue) include left and right
eyebrows, the upper and lower contours of left and right eyes, the
upper and lower contours of mouth, the silhouettes of left and right
ears and the nose contour. All other lines are classified as wrinkle
lines (highlighted in black).

(b) (d)

Fig. 3. (a) The lines in a face sketch are separated into the silhouette line(red),
feature lines(blue) and wrinkle lines (black). (b) The silhouette line and feature
lines are manually mapped to sequences of vertices on a template mesh,
which can be used as curve handles during deformation. Suggestive contours
in the region marked by dark gray are treated as wrinkle lines. As suggested
by artists, the outer contour of the lips (green) is also treated as a wrinkle
line (e.g. the one shown in (d)). (c) and (d) show the lines on two models
with different shape and expression.

3.1 Initial Sketching Mode

In the initial sketching mode, a user can create a freehand face draw-
ing on a blank canvas. The user can apply an arbitrary sequence of
drawing and erasing operations as in a standard sketching interface.
After every drawing or erasing operation, an updated 3D face cor-
responding to the latest sketch (no matter whether it is a complete
face sketch or not) is automatically generated and displayed. The
initial sketching mode promotes completely unconstrained hand-
drawing, which might be preferred by certain users. In this mode, a
user completely new to our system can immediately start drawing
without spending any time to know the components of our inter-
face. Note that the 2D projection of the feature contours on the 3D
face generated in this mode is similar to the freehand drawing in
both shape and expression, but they do not precisely match. The
follow-up sketching mode in our system integrates deformation
with model inference to achieve a better matching between the two.

3.2 Follow-up Sketching Mode

An important component of our user interface is a front-view sketch-
ing mode starting from a drawing consisting of 2D silhouette and
feature lines projected from a 3D face model generated in the initial
sketching mode. To revise this initial face model, the user can re-
fine the drawing by editing or adding lines. Within this sketching
mode, the user can switch in real time between 2D sketching and
3D model viewing. The face shown during 3D model viewing is
generated from the latest 2D sketch on the fly. Note that a user can

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.

skip the initial sketching mode and directly start from the follow-up
sketching mode by using a template face as the initial model.

The types of user interactions supported in this sketching model
include drawing, erasing and auto-snapping. We describe our design
of user interactions below and illustrate the process in Figure 2 from
(b) to (h).

Each feature or wrinkle line is represented as several neighboring
but disconnected curve segments, and each segment is represented
as a sequence of points. Each erasing operation removes one single
segment or has no effect if there are no segments left. However,
there are no predefined segments on a silhouette line, which is
represented as a single closed sequence of points. An arbitrary part
of this sequence can be erased as long as the erased part is connected.
If multiple disconnected parts have been erased, our system locates
intermediate points connecting the parts and remove them as well.

After an erasing operation has been performed on any silhou-
ette or feature line, a drawing operation is required to replace the
erased segment with a new one (the reason for this design is given
in Section 5.1). An erased segment exposes a gap with two open
endpoints on a silhouette or feature line, the latest drawn segment
will be automatically snapped to fill the gap. For all other cases, the
drawn strokes are saved as wrinkle lines.

As the lower and upper contours of mouth or eyes are always con-
nected at the two corners, when one of the two contours is redrawn,
a similar transformation is applied to the other to automatically
snap it to the redrawn one.

3.3 Gesture-Based 3D Face Refinement

Once a 3D face model has been generated using 2D sketching, shape
refinement can be further performed directly on the 3D model. Our
shape refinement is built upon traditional handle-based deforma-
tion (Sorkine et al. 2004). We provide the same tool as in (Nealen et al.
2007b) for manipulating pre-defined silhouettes in left and right side
view of a face model. Meanwhile, to make interactive refinement in
an arbitrary view more intuitive and convenient, we define pen ges-
tures and map them to specific operations in the model refinement
mode. This is inspired by (Bae et al. 2008). As shown in Figure 4, we
design 10 different pen gestures named line, region, left arrow, right
arrow, and three levels of up roll and down roll. left arrow and right
arrow are mapped to undo and redo respectively, and the meanings
of other gestures will be elaborated below.

2 o=t <

up roll 1 up roll 2 up roll 3 line left arrow

A oh & (7 >

downrolll downroll2 downroll3  region  right arrow

Fig. 4. Gesture types in our refinement mode.



level of exaggeration

Fig. 5. For the neutral face in the upper left corner, a subset of models with
different expressions and levels of exaggeration in our dataset are shown.
The corresponding neutral face with the highest level of exaggeration is
shown in the lower right corner.

Handle-based deformation has a selection step and a deformation
step. In the selection step, the user can mark handle vertices by
brushing and erasing. The deformation mode supports ROI selection,
deformation in the XY-plane, deformation along the Z-axis and
silhouette-driven deformation. First of all, a region of interest (ROI)
needs to be defined prior to any deformation. Vertices outside this
region are fixed. The region gesture shown in Figure 4 is naturally
used to define the ROL If ROI selection has never been performed,
the entire mesh is set as the ROL

Deformation in the XY-plane is triggered by a line gesture in the
deformation step. This gesture defines a 2D translation within the
canvas (XY-plane), which is applied to the handle vertices. Trans-
lated handle vertices are set as position constraints in the deforma-
tion. When there are no handles marked, a line gesture is interpreted
as traditional silhouette-based shape editing (Nealen et al. 2007b).
In this case, a silhouette is first identified on the mesh and a defor-
mation is performed by dragging the silhouette towards the drawn
line.

When a user wishes to modify the depth of handles with respect
to the current view plane, traditionally, he or she needs to perform
2D deformation within another view plane perpendicular to the
current one. However, in face modeling, the handle vertices are
often occluded in such a perpendicular view. Our system relies on
gestures to manipulate the depth of handle vertices directly. We
map 3 levels of up roll to 3 levels of bulging and 3 levels of down roll
to 3 levels of depression.

4 3D FACE INFERENCE FROM SKETCHES

In this section, we present our method for performing 3D model
inference from sketches. In essence, we use a deep neural network
to approximate the function V = ¢(I) that maps a binary sketch
image I to the vertices of its corresponding 3D face model.

DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling « 126:5

Fig. 6. Each row shows three rendered sketches generated with our data
augmentation schemes and a real sketch drawn by a user (highlighted in
the red box).

4.1 Database Construction

Let us first introduce our 3D face database and its construction
process. Our database has 15,000 meshes, which include 150 identi-
ties, 25 expressions and 4 levels of exaggeration. It is a significantly
expanded version of the public face database reported in (Cao et al.
2014). Each mesh in the database has 11500 vertices. All meshes are
well registered with exactly the same topology.

New Expressions. The database reported in (Cao et al. 2014) pro-
vides 20 facial expressions for each individual identity. However,
many expressions only have minor differences from each other,
which make their 2D sketches indistinguishable. To increase the
diversity of expressions, we chose 11 expressions with relatively
noticeable mutual differences from the original 20 expressions. In ad-
dition, we asked an artist to create 14 new expressions in caricature
styles on a neutral face. These new expressions are associated with
different moods, including “happy", “sad", and “fearful”. A subset
of these 25 expressions are shown in Figure 5 and all of them can
be found in the supplemental materials. The 14 new expressions
are further transferred to all other identities using the deformation
transfer technique from (Sumner and Popovi¢ 2004).

Shape Exaggeration. Shape exaggeration is based on the method
in (Sela et al. 2015). Given a mesh, it first applies a scaling factor to
the gradients at vertices, and then reconstructs the 3D shape from
these new gradients using the method in (Yu et al. 2004). Due to
unstable gradients around eyes and mouth, we fix those few places
and exaggerate other parts including cheeks, chin, forehead, nose
and ears. A shape with level 1 exaggeration is actually the original
shape. We apply three different scaling factors to shapes at level 1
to obtain shapes at higher levels of exaggeration. Sample results are
shown in Figure 5.

Sketch Rendering. Another important part of our database is the
set of 2D sketches corresponding to all 3D faces. On a template
mesh, we predefine 3D curves representing the face silhouette and
contours of facial features including eyes, nose and mouth. Each

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.



126:6 « Han, X. et al

curve on the template mesh is a vertex sequence. A rendered sketch
of each 3D face consists of a silhouette line, feature lines and wrinkle
lines. We render the silhouette and feature lines directly from the
predefined 3D curves, and render wrinkle lines using suggestive
contours (DeCarlo et al. 2003). Sample results are shown in Figure 6.

Hand-drawn Sketches. To make the sketches in our database closer
to real hand drawings, we also collected real sketches drawn by
users. 20 users with diverse drawing skills contributed to our hand-
drawn data. Each user was given 200 rendered images of 100 3D
faces, two images per face. These two images are respectively the
frontal view and side view of the corresponding 3D face. The user
was asked to draw a sketch to represent the shape and expression
of each given 3D face. All 2000 3D faces used in this stage were
randomly chosen from 15,000 models.

4.2 Bilinear Morphable Representation

For the task of 3D face inference from sketches, we learn a bilinear
morphable model for parametrically representing the subspace of
shape and expression variations defined by our new database, as in
(Cao et al. 2014). We first construct a 3-mode tensor T with 11,500
vertices X 600 identities X 25 expressions. Here, faces at different
levels of exaggeration are viewed as different identities because an
exaggerated face indeed has a different shape in comparison to the
original face it was generated from and such differences in shape are
independent of expression changes. After N-mode singular value
decomposition and tensor truncation, a reduced core tensor C is
obtained. Then, any face mesh in our database with a vertex set
V can be approximated using an identity weight vector u and an
expression weight vector v as follows.

V=Cxy ul X3 o, (1)

where the dimensions of u and v are set to 50 and 16 respectively in
our experiments. In this representation, 3D face inference can be
viewed as a regression function that maps a sketch image to the u
and v vectors of its corresponding 3D face.

4.3 Network Architecture

The architecture of our deep regression network for 3D face infer-
ence is illustrated in Figure 7. It includes multiple convolutional
layers to extract features from an input sketch image. These convo-
lutional layers are set up in the same way as in AlexNet (Krizhevsky
et al. 2012).

Bilinear Output. The output from our deep regression network
is a set of coefficients for the bilinear face representation, which
eventually reconstructs all 3D vertices of a face mesh. As discussed
earlier, this bilinear representation considers identities and expres-
sions as two independent modes with separate weight vectors u
and v. To avoid interference between these two modes, our deep
network has two independent branches with different numbers of
fully connected layers for generating the u and v vectors. However,
we still keep the fully connected layer immediately following the
convolutional layers in AlexNet. The branch for generating the u
vector has three new fully connected layers while the branch for
the v vector only has one new fully connected layer as the com-
plexity of the identity mode (600 shapes) is much higher than the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.

complexity of the expression mode (25 types). Each fully connected
layer in both branches has 1024 neurons, which was set empirically
to achieve the optimal performance.

Pixel-Level Input. The first input to our deep regression network
is a 256x256 binary sketch image with all silhouette, feature and
wrinkle lines. This sketch image is fed to the convolutional layers
in our network.

Shape-Level Input. Since even a neuron in the topmost convolu-
tional layer has a limited receptive field and cannot ‘see’ the entire
sketch, the convolutional layers in our deep network might not be
able to grasp global contextual information in the input sketch. To
make full use of the information from the sketch, we directly sample
a fixed number of points on the silhouette and feature lines and
represent the 2D position of these sample points via another bilinear
model, where the dimensions for the identity and expression modes
are still set to 50 and 16. These 66 coefficients form our shape-level in-
put vector. In each of the two branches, this shape-level input vector
is followed by a new fully connected layer with 512 neurons, whose
output is concatenated with the previous feature vector before the
output layer. We have tried another alternative to concatenate the
shape-level input vector directly with the feature vector from the
remaining fully connected layer in the AlexNet block before they
are fed into the two branches. This alternative scheme negatively
affected the final performance.

Vertex Loss Layer. Our deep regression network is directly trained
to minimize vertex approximation errors. For this purpose, we set up
a vertex loss layer estimating the L error between groundtruth ver-
tices and vertices reconstructed from the predicted u and v vectors.
This Ly vertex approximation error is formulated as follows:

1
E=- g willCi xz u” x5 0T — g%, @
n i

where C; is the 2D slice of the core tensor C corresponding to
the i-th vertex, g; stands for the position of the i-th vertex on the
groundtruth mesh, w; means the weight for the i-th vertex, and
n is the total number of vertices. This layer directly follows the
layer predicting the u and v vectors. w;’s are set according to the
relative importance of vertices as certain vertices such as those on
3D silhouette and feature lines have higher importance.

4.4 Network Training

In the training stage, all the weights in our entire deep network are
randomly initialized. To make the training process converge stably,
we divide it into three steps: classifier training, u — v regression, and
final tuning. We first perform multi-task training for a randomly
initialized classification network, which uses softmax layers as its
output layers in the two branches. The task is to classify an input
sketch into its corresponding identity and expression categories.
Therefore, the softmax layer for the identity branch has 600 neurons
and that for the expression branch has 25 neurons. In the second
step, we fix the weights in the convolutional layers and perform
u—v regression by making the two branches predict u and v vectors,
respectively. This requires replacing the softmax output layers with
u and v regression layers. The number of neurons in these regression



Input AlexNet Block

DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling « 126:7

Bilinear Output

convl conv2 conv3d conv4d conv5s

Pixel-level Input
11x11  5x5 3x3 3x3 3x3

1

50

Vertex loss

16

512

66 |

N DD

Shape-level Input

Fig. 7. Our network architecture.

\‘ "
' E

Fig. 8. Input sketches are shown side by side with the face models generated
by our deep regression network. The first two examples in the first row come
from our testing data, which is rendered from 3D models, and all others are
freehand drawings.

layers are set to the number of u and v coefficients we wish to predict.
The summed Ly errors of the u and v vectors is used as the loss
function during u — v regression. In the final tuning step, we add
the vertex loss layer on top of the u — v regression layers, and
train the entire network (including all convolutional layers) until
convergence.

In addition to the 3D faces in the expanded database, we generate
10,000 extra models by randomly interpolating the u — v param-
eters of randomly chosen face pairs. These extra models are also
rendered into sketches. Such extra data and the original data in the
expanded database together form our final data for training and
testing. 10% randomly chosen face models in our final data and their
corresponding sketches are used as our testing data.

To perform data augmentation on the rendered sketches, which
serve as a large portion of the input images during network training,
we first add random noise to the viewing parameters, and then
perform random line removal and deformation as in (Yu et al. 2016)
during rendering.

5 IMPLEMENTATION
5.1 Face Modeling from Sketches

In the initial sketching mode, our system only updates the 3D face
model using our deep regression network and does not perform

handle-based shape deformation. The deep network generates the
u and v vectors for the bilinear face representation, which further
reconstructs all vertex positions for the 3D face mesh. The goal
here is creating an initial 3D face that approximately matches the
silhouette and feature lines in the freehand drawing sketched by
the user. Figure 8 shows sample sketches and their corresponding
3D models inferred by our deep regression network.

In the follow-up sketching mode, the user can improve the 3D
face created in the initial sketching mode and make it match user-
sketched silhouette and feature lines more precisely. To achieve this
goal, our system relies on our deep regression network as well as
an existing handle-based shape deformation technique based on
the Laplacian (Sorkine et al. 2004). To make our setup compatible
with handle-based shape deformation, as mentioned earlier, we
predefine 3D curve handles on a template face mesh representing
its silhouette in the frontal view and the contours of facial features.
Each curve handle is a vertex sequence on the template mesh. As
shown in Figure 3 (b), these 3D curves correspond to the silhouette
and feature lines in 2D face sketches. Since all the face meshes in our
database share the same topology, the predefined curve handles on
the template mesh can be transferred to any face mesh reconstructed
from the bilinear face representation.

Fig. 9. (a) Input sketch, (b) our deformation result with automatic model
inference, (c) Laplacian deformation applied to the template model in Fig-
ure 3(b).

At the beginning of a follow-up sketching session, an initial 2D
sketch is automatically drawn by projecting the 3D curve handles on
the face model created in the initial sketching mode. As each erasing
operation performed on silhouette and feature lines must be fol-
lowed by a drawing operation, point-wise correspondences between

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.



126:8 « Han, X. et al

the erased line and the newly drawn line can be defined naturally.
After each drawing operation, our system still updates the 3D face
model using our deep regression network. In addition, it performs a
handle-based deformation so that projected curve handles on the
latest face model closely match the silhouette and feature lines in
the latest sketch. In this handle-based deformation, the target x-y co-
ordinates of the handle vertices are defined by their corresponding
points in the latest sketch while existing z-coordinates of the handle
vertices are preserved. In another word, handle-based deformation
in the follow-up sketching mode does not change the depth informa-
tion, which is exclusively updated by our deep regression network.
In Figure 9, we show the differences between results obtained with
and without performing model inference using our deep network.

The reason we render contours by projecting pre-defined vertex
sequences on the 3D face model is that true rendered contours are
sensitive to minor geometric variations. A continuous contour could
be broken up into multiple segments on a slightly different model,
and relatively large gaps might also occur in-between segments.
Such sensitivity negatively affects the performance of 3D model
inference.

Handle-based Laplacian deformation is achieved by solving a
linear system A7 Ax = AT b. As curve handles are pre-defined, matrix
A s fixed and vector b is updated after each editing operation. Thus,
we can perform matrix decomposition on ATAina pre-processing
step, and a solution to the linear system with an updated b can
be obtained very efficiently using the precomputed decomposition.
These strategies ensure real-time performance of our system.

5.2 Gesture-Based 3D Face Refinement

To ensure fluency of user interaction, the key issue in gesture-based
3D face refinement is achieving high accuracy in gesture classifica-
tion.

Gesture Classification. Unlike existing solutions, convolutional
neural networks are chosen for gesture classification. A total of
10 types of gestures have been designed. We first collected the
training data from five users, each of whom was asked to supply
200 samples for every type of gestures. The layer composition of
our convolutional neural network is organized as follows: 11x11x32
convolution, ReLU, 3x3 max pooling, 5x5x64 convolution, ReLU, 3x3
max pooling, 3x3x16 convolution, ReLU, 3x3 max pooling, 256-d
fully connected, 9-d fully connected. These layers are followed by a
softmax layer for final classification. The input to the network is a
256x256 binary gesture image. We randomly separated the collected
data (10000 images) into 9000 training images and 1000 testing
images. Our network achieves 96% accuracy on the testing images.

Local Deformation. Once handle vertices and an ROI have been se-
lected, handle-based Laplacian deformation (Sorkine et al. 2004) can
be performed. In our implementation, we only apply deformation
to the surface region enclosed by the ROL

6 RESULTS AND USER STUDY

Our face sketching system has been fully implemented on a PC
supporting both mouse and tablet input. We rely on the Caffe deep
learning library (Jia et al. 2014) to train and test our deep regres-
sion network for 3D face model inference on GPUs. As the training

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.

process of our deep network consists of three steps, i.e. classifier
training, u-v regression and final tuning, the number of iterations in
these three steps are set to 500,000, 800,000 and 500,000, respectively.
The learning rate is set to 0.001 for the classifier training step and
0.00001 for the other steps. The mini-batch size, momentum param-
eter and weight decay are set to 50, 0.9 and 0.0005, respectively, for
all steps. In both initial and follow-up sketching modes, each face
model inference based on our deep regression network takes 50
ms on average on a 3.4GHz Intel processor with a GeForce Titan X
GPU. And each handle-based deformation operation takes 41 ms on
average.

Figure 10 shows a gallery of 3D face models with varying shape
and expression. They were created using our system. The interactive
process took 8 minutes on average for each model. This includes
around 2 minutes on average in the gesture-based refinement mode.
Intermediate steps for the creation of two models ((a) and (i) in
Figure 10) are reported in Figure 11 and Table 1. In Figure 11, we
show for each example the sketch and model after initial sketching
as well as those after follow-up sketching. The timings for every
step are reported in Table 1. In addition, we show for each example
the difference map between two models generated without and with
wrinkle lines (denoted as My and M, respectively) in the follow-up
sketching mode. The difference between a vertex pair p € M; and
q € M3 is measured by a signed distance, where the value is |[p — g||
and the sign is defined by sign(pq - 1) (7i is the normal at vertex p).
These difference maps shows how wrinkle lines influence vertex
displacements. More results from first-time users can be seen in
Section 6.1.

Table 1. Timings for intermediate steps during the creation of models (a)
and (i) in Figure 10.

Initial Sketching | Follow-up Sketching | Refinement

model (a) 30 seconds 3 minutes 1 minute

model (i) 40 seconds 7 minutes 3 minutes

6.1 User Studies on the Interface

Stage I: User Experience. We invited 12 amateur users, 8 men
and 4 women, to evaluate our system. All participants are graduate
students aged 22 to 29. 9 of them have very limited or no experiences
about 3D modeling and 2 of them know a little. Only one of them
is familiar with 3D modeling. Two of them have more than five
years of drawing experiences and all others reported very limited
knowledge about drawing. A 15-minute tutorial on how to use our
system was given to every participant prior to the modeling session.

Each participant was given a 2D portrait or caricature face as
reference, and asked to create a 3D model with a similar shape and
expression using our system. Note that the created 3D model was
not required to strictly follow the reference image and differences
were allowed. We also created another deformation-only user in-
terface supporting face modeling using handle-based interactive
mesh deformation only (Nealen et al. 2007a,b; Sorkine et al. 2004).
The follow-up sketching mode and gesture-based refinement mode
are still available in this deformation-only interface. The user can
perform the same set of interactive operations in these two modes



(©)

@e
e

(2

Ree

63 00
8899

DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling « 126:9

(h) @)

Fig. 10. A gallery of results created using our sketching system. On average, each model was created in around 8 minutes.

Fig. 11. Intermediate results during the creation of model (a) (top) and
model (i) (bottom) in Figure 10. (a) Sketch and model after initial sketching,
(b) sketch and model after follow-up sketching, (c) difference map between
models obtained with and without wrinkle lines.

as in the corresponding modes of our proposed interface. While
Laplacian deformation using predefined handles is still supported,
the main difference is that deep networks are not used for 3D model
inference. To validate the effectiveness of deep learning based model
inference, each participant was asked to repeat the same task twice
independently using our system and the deformation-only interface.
The initial sketching mode of our interface was skipped for fair
comparison. In the follow-up sketching mode of our system, all par-
ticipants start modeling from an initial sketch, which was rendered
from a template face model. During this modeling session, partici-
pants can choose to perform gesture-based 3D model refinement
after sketching. This modeling session terminates after 15 minutes
or the participant becomes satisfied with the face model displayed
on the screen, whichever is earlier.

90 @
089
089
o

Fig. 12. The first three rows show three pairs of models created by users

(b)

’
(a)

1 .

©

with two different systems in the first stage of our user study. Each row
shows the model generated using the deformation-only system and the one
using our system. The last row with a red box shows final sketches in the
follow-up sketching mode. Within each group, the left and right sketches
were drawn in the deformation-only system and our system, respectively.

We asked participants of the above user experience study to
complete a short questionnaire that has two questions: 1) Which
interface helps users create better face models? 2) Are the wrinkle

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.



126:10 « Han, X. et al

B Our System

o P — 74

87%

0 200 400
Number of Votes

(© (d (e)

Fig. 13. (a) and (b) are two sample questions in the evaluation stage of our
user study that correspond to (a) and (b) in Figure 12 respectively. (c) and
(d) are voting results corresponding to (a) and (b), respectively. The right
model in (a) and the left model in (b) were generated from our system. (e)
shows the overall voting result from 38 participants over 12 questions.

lines helpful in producing better results? In addition to these ques-
tions, we also recorded the amount of time every participant spent
in every possible interaction mode of each interface. In summary, all
participants have agreed that our system enables users to generate
better results. 9 of them agree that wrinkle lines are very helpful
and 3 of them feel they are helpful to a certain extent. When using
the deformation-only interface, none of the participants managed to
finish early, and around 80% of the time was spent on model refine-
ment. In contrast, a participant on average only spent 10 minutes to
complete the task within our system, and around 10% of the time
was spent in the refinement mode. Figure 12 shows a subset of the
results, and all the remaining results are given in the supplemental
materials.

SR oR

Fig. 14. The right model in Figure 1 and model (i) in Figure 10 were used as
reference models by a skilled artist. Shown here are corresponding results
created by the same artist in 10 minutes using ZBrush.

Stage II: Evaluation. To further verify that deep learning based
3D model inference can help create better results, we carried out a

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.

second stage of the user study. In this stage, we invited 38 additional
subjects, who had not participated in the modeling stage, to compare
the results created using two different interfaces in Stage I. Every
participant needs to look at corresponding models (shown in random
order) created in the two interfaces and their associated sketch
drawn in Stage I, and was asked to choose the model that looks
more natural and better resembles the sketch. The final result is
reported in Figure 13, where two sample questions from the user
study are also shown. As reported, among all 456 votes (38 users
x 12 questions), our system received 374 votes. All the remaining
questions are shown in the supplemental materials.

Though participants in Stage I had been asked to sketch lines in
the same way when using the two interfaces, corresponding models
still have minor differences in silhouettes and feature lines caused
by differences in the sketched lines. To focus our evaluation on the
differences in modeling capability, we removed differences caused
by freehand sketching by aligning the 3D silhouettes and feature
lines on every pair of corresponding models. This was achieved by
performing deformation using curve handles defined in Section 5.1.

6.2 Comparison with ZBrush

ZBrush is a general-purpose commercial software for creating de-
tailed 3D models. It is a powerful modeling software with a steep
learning curve. An informal comparison between our system and
ZBrush was conducted on face modeling. We recruited a skilled
artist, who had two years of modeling experiences using Zbrush
and eight years of drawing experiences. He was asked to use ZBrush
to create a 3D model in 10 minutes from each reference model he
received. The model on the right in Figure 1 and model (i) in Fig-
ure 10 were used as references. Both of them were created within 10
minutes by a user familiar with our system but without any prior
drawing experiences. Figure 14 shows the two models created in
ZBrush.

6.3 Comparisons on 3D Model Inference

Our deep regression network was designed for inferring the coeffi-
cients for a bilinear face representation, which in turn reconstructs
3D coordinates of a face mesh. However, there exist many choices
on how to infer these bilinear coefficients. We therefore perform a
comparison among multiple choices to validate our design.

Ablation Study on Network Architecture. We first compare the
performance of model inference between our network architecture
and its variants. As illustrated in Figure 7, there are three straight-
forward variants: our final network based on both convolutional
layers and 2D bilinear shape encoding (denoted as PixelShapeCNN),
the network using features from convolutional layers only (denoted
as PixelCNN), and a regression network only taking 2D bilinear
shape encoding as input (denoted as ShapeNN). To check the effect
of wrinkle lines on model inference, we train another model which
has the same network structure as PixeICNN but takes pixel-level
sketches without wrinkle lines as training images. This model is
denoted as Pixel CNN-Wrinkle. In addition, we also report the per-
formance of a simplified PixelCNN which has a single stack of 3
fully connected layers to infer both u and v vectors. This network
is denoted as PixelCNNSingle. Specifically, the output layers for u



PN

- ‘ 0 mm
"z‘g 4 '

(a) Input Sketch (b) Ground Truth (c) PixelShapeCNN (d) Pixel CNN

098¢

(h) MMfitting

10 mm

(e) Pixel CNN-Wrikle (f) PixelCNNSingle — (g) ShapeNN

Fig. 15. Comparison of error maps among variants of our deep network or
algorithm.

network mean error (mm)
PixelShapeCNN 2.04
PixelCNN 2.22
Pixel CNN-Wrinkle 2.63
ShapeNN 3.36
PixelCNNSingle 7.83
MMfitting 6.06

Table 2. Ablation study on network architecture.

and v vectors in this network are simultaneously connected to the
last fully connected layer in the stack.

These five networks have been applied to our testing set inde-
pendently. Given two 3D models with exactly the same vertex con-
nectivity, we use the average distance between their corresponding
vertices to define the distance between these two models. Then, the
average distance between inferred models and their groundtruth
models is reported as the mean error in Table 2, where we assume an
average face is 200mm tall and the inference errors have been scaled
accordingly. It can be verified that our PixelShapeCNN achieves
the highest accuracy. The mean error attained by PixelCNNSingle
is significantly higher probably because the regression functions
for the identity and expression modes are highly incompatible and
sharing the same set of fully connected layers give rise to severe in-
terference between them. Meanwhile, using convolutional features
only without 2D bilinear shape encoding increases the mean error
by 8.8%, and skipping wrinkle lines in the input sketches increases
the mean error by 28.9%. On the other hand, using 2D bilinear shape
encoding only without convolutional features increases the mean
error by 64.7%, which indicates the importance of convolutional
features. We show an example of the face models obtained by all
these variants in Figure 15, where color maps are used to visualize
the error distribution across all vertices.

Morphable Model Fitting. As the silhouette and feature lines of
an input sketch correspond to a set of key vertices on the 3D mesh,
a direct solution for u — v inference performs a morphable model

DeepSketch2Face: A Deep Learning Based Sketching System for
3D Face and Caricature Modeling « 126:11

fitting as in (Cao et al. 2014) to minimize the errors between pro-
jections of the key vertices and their corresponding 2D positions
in the sketch. The result is denoted as MMfitting. In our context,
we assume an orthographic projection, and thus the camera projec-
tion matrix is known. The mean error across all testing sketches is
reported in Table 2, and Figure 15 also illustrates the error map of
an example obtained this way. Morphable model fitting finds the
optimal model by fitting points on the 2D sketch. It does not use
any depth constraints since such constraints are unavailable. As a
result, the accuracy of its depth estimation is much lower than that
of fitting 2D points. As shown in Table 2, the error introduced by
MMfitting is three times larger than the error of our method. As
shown in Figure 15(h), the visual quality of MMfitting is also less
than satisfactory (e.g. erroneous wrinkles on the forehead).

\(
(

Fig. 16. Limitations of our database and system. Our system generates

N\

unnatural results when given inconsistent exaggeration of face parts.

7 CONCLUSIONS AND DISCUSSION

In this paper, we have presented a deep learning based sketching
system for 3D face and caricature modeling. The sketching interface
in this system allows the user to draw freehand imprecise yet expres-
sive 2D lines representing the contours of facial features. A novel
CNN based deep regression network is designed for inferring 3D
face models from 2D sketches. Our network has two independent
branches of fully connected layers generating independent subsets
of coefficients for a bilinear face representation. Our system also
supports gesture based interactions for users to further manipulate
initial face models. Both user studies and numerical results indi-
cate that our sketching system can help users create face models
quickly and effectively. A significantly expanded face database with
diverse identities, expressions and levels of exaggeration has also
been constructed to promote further research and evaluation of face
modeling techniques.

Limitations and future work. As shape exaggeration was per-
formed on all face parts consistently when we built our database,
our system creates unnatural results when the level of exaggeration
in shape and expression is highly inconsistent across different parts.
Two such examples are shown in Figure 16. Alleviating this problem
by further expanding our database is one of the directions of our
future work. Moreover, as morphable models are not able to create
geometric details such as wrinkles at novel locations, inferring such
details from sketches is another future direction. To reach this goal,
it is important to move beyond morphable models and use a deep

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.



126:12 « Han, X. et al

network, such U-Nets (Ronneberger et al. 2015) and GAN (Goodfel-
low et al. 2014), well suited for pixel-to-pixel prediction.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their constructive
comments, and the participants of our user study for their precious
time.

REFERENCES

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: as-natural-
as-possible sketching system for creating 3d curve models. In Proceedings of the 21st
annual ACM symposium on User interface software and technology. ACM, 151-160.

Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D faces.
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co., 187-194.

Sofien Bouaziz, Yangang Wang, and Mark Pauly. 2013. Online modeling for realtime
facial animation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 40.

Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou. 2013. 3D shape regression for
real-time facial animation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 41.
Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. 2014. Faceware-
house: A 3d facial expression database for visual computing. IEEE Transactions on

Visualization and Computer Graphics 20, 3 (2014), 413-425.

Chen Cao, Hongzhi Wu, Yanlin Weng, Tianjia Shao, and Kun Zhou. 2016. Real-time
facial animation with image-based dynamic avatars. ACM Transactions on Graphics
(TOG) 35, 4 (2016), 126.

Lyndsey Clarke, Min Chen, and Benjamin Mora. 2011. Automatic generation of 3D
caricatures based on artistic deformation styles. IEEE transactions on visualization
and computer graphics 17, 6 (2011), 808-821.

Kevin Dale, Kalyan Sunkavalli, Micah K Johnson, Daniel Vlasic, Wojciech Matusik, and
Hanspeter Pfister. 2011. Video face replacement. ACM Transactions on Graphics
(TOG) 30, 6 (2011), 130.

Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. 2003.
Suggestive contours for conveying shape. ACM Transactions on Graphics (TOG) 22,
3 (2003), 848-855.

Mathias Eitz, Ronald Richter, Tamy Boubekeur, Kristian Hildebrand, and Marc Alexa.
2012. Sketch-based shape retrieval. ACM Trans. Graph. 31, 4 (2012), 31-1.

Lubin Fan, Ruimin Wang, Linlin Xu, Jiansong Deng, and Ligang Liu. 2013. Modeling by
drawing with shadow guidance. In Computer Graphics Forum, Vol. 32. Wiley Online
Library, 157-166.

Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. 2008. Real-time data driven deformation
using kernel canonical correlation analysis. In ACM Transactions on Graphics (TOG),
Vol. 27. ACM, 91.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
Advances in neural information processing systems. 2672-2680.

Orn Gunnarsson and Steve Maddock. 2007. A statistically-assisted sketch-based in-
terface for creating arbitrary 3-dimensional faces. In Proc. Theory and Practice of
Computer Graphics.

Haibin Huang, Evangelos Kalogerakis, ME Yumer, and Radomir Mech. 2016. Shape
synthesis from sketches via procedural models and convolutional networks. IEEE
Transactions on Visualization and Computer Graphics (2016).

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: A Sketching
Interface for 3D Freeform Design. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques (SSGGRAPH °99). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 409-416. https://doi.org/10.1145/311535.
311602

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional Archi-
tecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

Manfred Lau, Jinxiang Chai, Ying-Qing Xu, and Heung-Yeung Shum. 2009. Face poser:
Interactive modeling of 3D facial expressions using facial priors. ACM Transactions
on Graphics (TOG) 29, 1 (2009), 3.

Thomas Lewiner, Thales Vieira, Dimas Martinez, Adelailson Peixoto, Vinicius Mello, and
Luiz Velho. 2011. Interactive 3D caricature from harmonic exaggeration. Computers
& Graphics 35, 3 (2011), 586-595.

Bo Li, Yijuan Lu, Fuqing Duan, Shuilong Dong, Yachun Fan, Lu Qian, Hamid Laga,
Haisheng Li, Yuxiang Li, Peng Liu, and others. 2016. 3D Sketch-Based 3D Shape
Retrieval. (2016).

Junfa Liu, Yigiang Chen, Chunyan Miao, Jinjing Xie, Charles X Ling, Xingyu Gao, and
Wen Gao. 2009. Semi-Supervised Learning in Reconstructed Manifold Space for 3D

ACM Transactions on Graphics, Vol. 36, No. 4, Article 126. Publication date: July 2017.

Caricature Generation. In Computer Graphics Forum, Vol. 28. Wiley Online Library,
2104-2116.

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007a. FiberMesh:
designing freeform surfaces with 3D curves. ACM transactions on graphics (TOG)
26,3 (2007), 41.

Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. 2007b. A sketch-based
interface for detail-preserving mesh editing. In ACM SIGGRAPH 2007 courses. ACM,
42.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien
Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Trans.
Graph. 35, 4, Article 130 (July 2016), 11 pages.

Luke Olsen, Faramarz F Samavati, Mario Costa Sousa, and Joaquim A Jorge. 2009.
Sketch-based modeling: A survey. Computers & Graphics 33, 1 (2009), 85-103.

Hao Pan, Yang Liu, Alla Sheffer, Nicholas Vining, Chang-Jian Li, and Wenping Wang.
2015. Flow aligned surfacing of curve networks. ACM Transactions on Graphics
(TOG) 34, 4 (2015), 127.

Alec Rivers, Frédo Durand, and Takeo Igarashi. 2010. 3D modeling with silhouettes.
Vol. 29. ACM.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 234-241.

Shunsuke Saito, Tianye Li, and Hao Li. 2016. Real-Time Facial Segmentation and
Performance Capture from RGB Input. arXiv preprint arXiv:1604.02647 (2016).

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016. The sketchy
database: learning to retrieve badly drawn bunnies. ACM Transactions on Graphics
(TOG) 35, 4 (2016), 119.

Matan Sela, Yonathan Aflalo, and Ron Kimmel. 2015. Computational caricaturization
of surfaces. Computer Vision and Image Understanding 141 (2015), 1-17.

Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh. 2012. CrossShade: shading
concept sketches using cross-section curves. ACM Transactions on Graphics 31, 4
(2012).

Karan Singh and Eugene Fiume. 1998. Wires: a geometric deformation technique.
In Proceedings of the 25th annual conference on Computer graphics and interactive
techniques. ACM, 405-414.

Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Réssl, and H-P
Seidel. 2004. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing. ACM, 175-184.

Robert W Sumner and Jovan Popovi¢. 2004. Deformation transfer for triangle meshes.
ACM Transactions on Graphics (TOG) 23, 3 (2004), 399-405.

J. Rafael Tena, Fernando De la Torre, and Tain Matthews. 2011. Interactive Region-based
Linear 3D Face Models. ACM Trans. Graph. 30, 4 (July 2011), 76:1-76:10.

Roberto C Cavalcante Vieira, Creto A Vidal, and Joaquim Bento Cavalcante-Neto. 2013.
Three-Dimensional Face Caricaturing by Anthropometric Distortions. In 2013 XXVI
Conference on Graphics, Patterns and Images. IEEE, 163-170.

Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popovi¢. 2005. Face transfer
with multilinear models. In ACM Transactions on Graphics (TOG), Vol. 24. ACM,
426-433.

Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3d shape retrieval using convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 1875-1883.

Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. 2011. Realtime performance-
based facial animation. In ACM Transactions on Graphics (TOG), Vol. 30. ACM,
77.

Jinjing Xie, Yigiang Chen, Junfa Liu, Chunyan Miao, and Xingyu Gao. 2009. Interactive
3D caricature generation based on double sampling. In Proceedings of the 17th ACM
international conference on Multimedia. ACM, 745-748.

Xiaohua Xie, Kai Xu, Niloy J Mitra, Daniel Cohen-Or, Wenyong Gong, Qi Su, and
Baoquan Chen. 2013. Sketch-to-Design: Context-Based Part Assembly. In Computer
Graphics Forum, Vol. 32. Wiley Online Library, 233-245.

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan
Singh. 2014. True2Form: 3D curve networks from 2D sketches via selective regular-
ization. ACM Transactions on Graphics 33, 4 (2014).

Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. 2013. Sketch2Scene:
sketch-based co-retrieval and co-placement of 3D models. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 123.

Fei Yang, Jue Wang, Eli Shechtman, Lubomir Bourdev, and Dimitri Metaxas. 2011.
Expression flow for 3D-aware face component transfer. In ACM Transactions on
Graphics (TOG), Vol. 30. ACM, 60.

Qian Yu, Feng Liu, Yi-Zhe SonG, Tao Xiang, Timothy Hospedales, and Chen Change
Loy. 2016. Sketch Me That Shoe. In Computer Vision and Pattern Recognition.

Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. 2004. Mesh editing with poisson-based gradient field manipulation. In
ACM Transactions on Graphics (TOG), Vol. 23. ACM, 644-651.


https://doi.org/10.1145/311535.311602
https://doi.org/10.1145/311535.311602

	Abstract
	1 Introduction
	2 Related Work
	3 User Interface
	3.1 Initial Sketching Mode
	3.2 Follow-up Sketching Mode
	3.3 Gesture-Based 3D Face Refinement

	4 3D Face Inference from Sketches
	4.1 Database Construction
	4.2 Bilinear Morphable Representation
	4.3 Network Architecture
	4.4 Network Training

	5 Implementation
	5.1 Face Modeling from Sketches
	5.2 Gesture-Based 3D Face Refinement

	6 Results and User Study
	6.1 User Studies on the Interface
	6.2 Comparison with ZBrush
	6.3 Comparisons on 3D Model Inference

	7 Conclusions and Discussion
	Acknowledgments
	References

