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Abstract

Levin’s method produces a parameterization of the intersection curve of two quadrics in the form

p(u) = a(u) ± d(u)
√
s(u),

wherea(u) andd(u) are vector valued polynomials, ands(u) is a quartic polynomial. This method, however,
incapable of classifying the morphology of the intersection curve, in terms of reducibility, singularity, an
number of connected components, which is critical structural information required by solid modeling applic
We study the theoretical foundation of Levin’s method, as well as the parameterizationp(u) it produces. The
following contributions are presented in this paper: (1) It is shown how the roots ofs(u) can be used to classif
the morphology of an irreducible intersection curve of two quadric surfaces. (2) An enhanced version of
method is proposed that, besides classifying the morphology of the intersection curve of two quadrics, p
a rational parameterization of the curve if the curve is singular. (3) A simple geometric proof is given f
existence of a real ruled quadric in any quadric pencil, which is the key result on which Levin’s method is
These results enhance the capability of Levin’s method in processing the intersection curve of two general
within its own self-contained framework.
 2003 Published by Elsevier B.V.
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1. Introduction

Quadric surfaces are the simplest curved surfaces and are widely used in computer graphics a
modeling. Computing quadric surface intersection curves (QSIC) is an important operation in com
the boundary representation of a solid. The goal of this paper is to enhance Levin’s method for com
a QSIC so as to make it capable of computing the structural information of the QSIC. Specifica
show how the roots of a discriminant polynomials(u) computed by Levin’s method can be used
classify the morphology of an irreducible intersection curve of two quadric surfaces, in terms
reducibility, singularity, and the number of connected components. Based on this result, we
an enhanced version of Levin’s method that is capable of classifying the morphology of a QS
producing a rational parameterization if the QSIC is singular. Furthermore, we give a concise ge
proof for the existence of a real ruled quadric in any real quadric pencil, which is the key result on
Levin’s method is based.

The remainder of the paper is organized as follows. In the rest of this section we discuss th
properties of the QSIC and review Levin’s method as well as other related work. In Section 2, proc
are described for detecting and processing a reducible QSIC, focusing on a remedy to make
method capable of detecting and parameterizing properly a reducible but nonplanar QSIC, com
a line and a space cubic curve. In Section 3, with the aid of a stereographic projection, we
characterizations of different morphologies of irreducible QSIC’s in terms of the roots of a discrim
polynomial computed by Levin’s method. In Section 4, based on the preceding analysis, we
an enhanced version of Levin’s method for classifying and parameterizing a general QSIC. Th
concludes in Section 5 with a summary of our work. In Appendix A we give a concise geometric
for the existence of a real ruled quadric in any real quadric pencil.

1.1. Morphologies of QSIC’s

Let CP3, RP3, andRA3 denote, respectively, 3D complex projective space, 3D real projective s
and 3D real affine space. Every quadric discussed in this paper is assumed to be defined by
set of a quadratic formXTAX in CP3, whereX is a 4D column vector consisting of the homogene
coordinates of a point andA is a 4× 4 real symmetric matrix. The intersection curve of two quad
XTAX = 0 andXTBX = 0 comprises all the points inCP3 that satisfy both of these equations.

The full classification of the morphology of a QSIC inCP3 can be found in classical texts on algebr
geometry and solid geometry (Baker, 1923; Sommerville, 1947; Semple and Kneebone, 195
intersection curve of two quadrics (QSIC) is a space quartic curve of the first species. A QSIC isreducible
if it contains some linear, quadratic (conic), or cubic components, whose degrees sum to 4; othe
is calledirreducible. The linear or conic components of a reducible QSIC can be real or imaginar
in the case where the QSIC consists of a line and a space cubic, the line and the space cubic
A QSIC is planar if its components lie on one or two planes. All planar QSIC’s are reducible. Non
QSIC’s include all irreducible QSIC’s and those reducible QSIC’s that comprise a line and a space

A QSIC is calledsingular if it has a singular point, i.e., a point at which the tangent line is not uniq
defined; otherwise it isnonsingular. A reducible QSIC is always singular, but an irreducible QSIC ca
singular or nonsingular. A singular but irreducible QSIC has exactly one double singular point o
possible types, i.e., acnode, crunode, or cusp, and is a rational curve of degree 4. Such a QSIC m
only one real acnode without any other real regular point. A nonsingular QSIC can have zero, one
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connected components inRP3. A nonsingular QSIC does not permit a rational parameterization, bu
be parameterized with a square root or an elliptic function (Farouki et al., 1989). The following di
shows a hierarchy of all QSIC’s with respect to their reducibility, planarity, and singularity:

QSIC




reducible QSIC

{
planar QSIC: comprising lines or conics;
reducible but nonplanar QSIC: a real line and a real space cubic;

irreducible QSIC

{
singular QSIC with a real acnode, crunode, or cusp;
nonsingular QSIC with zero, one, or two components inRP3.

1.2. Related work

The Segre characteristic provides a useful characterization of different morphologies of a QSICCP3

(Bromwich, 1906; Farouki et al., 1989). However, such classical results are often not sufficient b
CAD and graphics applications often require the classification and representation of the QSIC
place in real (projective, affine, or Euclidean) space. For instance, the single Segre characteristic
is assigned to a QSIC comprising two conics touching at two distinct points, but there are four di
morphologies inRP3 in this case, depending on whether the two conics are real or imaginary and w
the two common points are real or imaginary. Similarly, nonsingular QSIC’s with different numb
connected components inRP3 all correspond to the same Segre characteristic [1111]. Some recent
are reported in (Tu et al., 2002) that use the roots of the characteristic equation|λA−B| = 0 to distinguish
different types of nonsingular QSIC’s.

Computational requirements for QSIC’s vary from tracing the curve for graphics display to de
geometric and topological information for geometric processing. A variety of methods can be found
literature for computing QSIC’s. These methods provide different levels of information or have dif
assumptions on the kinds of quadrics or QSIC’s that can be handled. There are notably two d
approaches to computing the QSIC: the geometric approach and the algebraic approach. Metho
the geometric approach normally exploit special geometric properties of a special class of qua
yield robust procedures for computing the QSIC (Miller, 1987; Piegl, 1989; Shene and Johnstone
Miller and Goldman, 1995). Such a special class usually includes natural quadrics, i.e., spheres,
cones and cylinders, plus pairs of planes. The focus on natural quadrics is justified by their fr
occurrence in engineering applications. In the following we review only methods using the alg
approach, since these methods normally accept arbitrary quadrics.

Levin’s method is one of the early methods for computing the general QSIC of two arbitrary qua
It produces a parameterization of the QSIC with a square-root function but does not yield inform
about the reducibility or singularity of the QSIC. Hence, this method is mainly a technique for tr
the intersection curve. Since the goal of the present paper is to improve Levin’s method, we will
Levin’s method in more detail in Section 1.3.

Levin’s method is implemented by Sarraga in GMSOLID for computing the intersection curv
natural quadrics (Sarraga, 1983). Sarraga also attempts to give a geometric interpretation of t
of a quartic discriminant polynomials(u) generated in Levin’s method for segmenting a QSIC but d
not provide a complete analysis regarding the reducibility, the singularity, and the number of con
components of a QSIC. Ocken, Schwartz, and Sharir (1987) propose to use a projective transfo
to reduce two input quadrics to simple canonical forms whose intersection curve can easily be
It is not clear whether a complete classification of a QSIC can be accomplished by their results
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their procedures are not thoroughly analyzed and some cases are missing; for instance, the ca
quadrics intersecting in a line and a space cubic is not accounted for.

Degenerate QSIC’s of arbitrary quadrics are studied in (Farouki et al., 1989). A degenerate Q
detected by the vanishing of the discriminant of the equation|λA + B| = 0 of two quadricsXTAX = 0
andXTBX = 0, and is further classified by projecting the QSIC to a planar quartic curve and ana
this quartic curve. Wilf and Manor use the Segre characteristic to assist with classifying a QSIC
invoking Levin’s method to yield a proper parameterization of the QSIC (Wilf and Manor, 1993). U
the Segre characteristic allows them to properly generate all linear components of a QSIC that m
missed by Levin’s method and to generate a rational parameterization for a singular QSIC. Howe
method still cannot count the number of connected components of a nonsingular QSIC.

More recently, Wang, Joe, and Goldman (2002) compute the QSIC by first obtaining and anal
planar cubic curve that is the image of the QSIC under a general stereographic projection. This
accepts arbitrary input quadrics, classifies the morphology of a general QSIC, and yields a
parameterization for a singular QSIC; however, an initial point on the QSIC needs to be comput
in order to invoke the method.

Other methods for computing the intersection curves of general parametric or algebraic surfa
also be applied to computing the QSIC; see, for example, (Abhyankar and Bajaj, 1989; Garr
Warren, 1989). However, since these methods are typically devised for more general classes of
they normally do not take into account the specific algebraic properties of quadric surfaces. Th
they provide an algebraic representation of a QSIC that is usually more complicated than the on
by Levin’s method.

1.3. Levin’s method

Levin’s method is a procedure for parameterizing an arbitrary QSIC with a square root in the fo

p(u) = a(u) ± d(u)
√
s(u),

wherea(u) andd(u) are vector valued polynomials ands(u) is a quartic polynomial. Levin publishe
two papers on this method (Levin 1976, 1978). The first paper presents the basic idea of usin
ruled quadric, called theparameterization surface, in the pencil of two quadrics to find the QSIC a
proves the existence of such a parameterization surface. The second paper discusses implem
issues and describes the procedure in detail. Levin’s method has inspired several subsequent p
its application and improvement (Sarraga, 1983; Wilf and Manor, 1993), as well as the present pa

Two distinct quadricsA: XTAX = 0 andB: XTBX = 0, i.e., their coefficient matrices are linear
independent, span a pencil of quadrics:XT(λA + B)X = 0. The intersection curve ofA andB is called
the base curve of the pencil. It is evident that any member of the pencil passes through the base
and any two distinct members of the pencil intersect at the base curve. Hence, the intersection
A andB can be computed by intersecting any two distinct quadrics in the pencilXT(λA +B)X = 0.

Levin’s method is based on the critical observation that there exists a real ruled quadricS: XTSX = 0
in the pencilXT(λA + B)X = 0. This surface is called aparameterization surface. The quadricS
can be a pair of planes, a singly ruled quadric (i.e., a cone or a cylinder), or a doubly ruled q
(i.e., a one-sheet hyperboloid or a hyperbolic paraboloid). There is only one family of straigh
on a singly ruled quadricS , all passing though the vertex ofS; the vertex is a point at infinity i
S is a cylinder. There are two reguli on a doubly ruled quadricS (Semple and Kneebone, 195
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Pottmann and Wallner, 2001); two distinct lines from the same regulus are skew and two line
different reguli intersect.

Recall that linear combinations of the homogeneous coordinates of two distinct pointsX0 andX1

generate all points on the line connectingX0 andX1. So a ruled quadricS can be parameterized by

q(u, v) = b(u)+ vd(u), (1)

whereq(u, v), b(u), andd(u) are vector valued polynomials in homogeneous coordinates. IfS is singly
ruled, b(u) is the vertex ofS and d(u) is a proper conic onS , i.e., b(u) has degree 0 andd(u) has
degree 2. (Note that whenS is a cylinder,b(u) is not a direction, but a 4D vector for the homogene
coordinates of the singular point ofS at infinity.) If S is doubly ruled,b(u) andd(u) are two skew lines
from the same regulus, so both are of degree 1. In general,b(u) andd(u) are called the generating curv
for parameterizing the ruled surfaceS through (1).

SinceA or B are distinct surfaces, we can assume, without loss of generality, that the ruled surS
is distinct fromA. To find the base curve of the pencilXT(λA + B)X = 0, we substituteq(u, v) for X

in XTAX = 0 and obtain

c2(u)v
2 + 2c1(u)v + c0(u) = 0, (2)

where

c2(u) = d(u)TAd(u), c1(u) = b(u)TAd(u), c0(u) = b(u)TAb(u).

This equation has the solution

v = −c1(u) ± √
s(u)

c2(u)
,

where

s(u) = c2
1(u) − c2(u)c0(u) (3)

is the discriminant of (2) and a quartic polynomial inu. Substituting the above solution forv in q(u, v)
yields the following homogeneous parameterization of the QSIC

p(u) = c2(u)b(u) + [−c1(u) ± √
s(u)

]
d(u) = a(u) ± √

s(u)d(u), (4)

where

a(u) = c2(u)b(u)− c1(u)d(u).

Levin’s method, as originally proposed, is mainly a technique for tracing a QSIC and is inca
of providing the structural information of the QSIC, such as reducibility, singularity, and the num
connected components. See also (Farouki et al., 1989; Wilf and Manor, 1993) for their remarks ab
difficulties with Levin’s method. Specifically, Levin’s method has the following problems:

(1) The reducibility of a QSIC is not detected properly. For example, as pointed out in (Wilf and M
1993), if a QSIC consists of a line�1 and a space cubic, the linear component�1 may be missed
by Levin’s method. We provide a detailed analysis of, as well as a remedy for, this probl
Section 2.2.

(2) The singularity of a QSIC is not detected and classified. As a consequence, Levin’s method m
to yield a rational parameterization for a singular QSIC, which is a rational curve.
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(3) The number of connected components of a nonsingular QSIC inRP3 is not computed. The
enumeration and identification of different connected components of a QSIC is useful topo
information; for instance, when combined with the points at infinity on the QSIC, this inform
can be used for segmenting the QSIC inAR3, the 3D real affine space, since only finite segments
curve are used in practice (Sarraga, 1983). Note that none of the existing methods for proces
QSIC has addressed the problem of counting or identifying the number of connected compon
a nonsingular QSIC.

In addition, the algebraic proof by Levin for the existence of a real ruled surface in any quadric
is lengthy and involved (Levin, 1976); it takes four lemmas and fills nearly two double-columned
We give a much shorter and more accessible geometric proof of this fact in Appendix A.

2. Reducible intersection curves

2.1. Planar QSIC’s

There exist well-studied solutions to the problem of computing planar QSIC’s (Levin, 1978; Sa
1983; Miller and Goldman, 1995); the problem is basically reduced to computing the inters
between a quadric and two planes. Hence, we turn our attention to the case of nonplanar reducible
for which, in general, Levin’s method is known to fail.

2.2. Nonplanar and reducible QSIC’s

A reducible but nonplanar QSIC consists a real space cubic curve and a real line. The lin
intersect the space cubic in two distinct real or complex conjugate points, or may be tangent to th
cubic. It is first pointed out in (Wilf and Manor, 1993) that Levin’s method cannot, in general, prod
proper parameterization of the QSIC in this case, and that the linear component may be missing
parameterization entirely.

Consider a QSIC consisting of a line�1 and a space cubic. Suppose thatS is doubly ruled. Let the
generating curveb(u) for parameterizingS by q(u, v) (1) be a liner0 in the regulusR on S . Suppose
further that the linear component�1 lies in the other regulusL on S . Then�1 is given byq(u0, v) for
some valueu0. Thus Eq. (2) is satisfied by allv, with u = u0. It follows that the three coefficientsci(u)
of Eq. (2) vanish simultaneously atu0. This means that, with the parameterizationp(u) of the QSIC
given by (4), the single pointp(u0) corresponds to the entire line�1; that is, the line�1 is not represente
properly by the parameterizationp(u).

A similar analysis shows that the same problem also arises whenS is singly ruled. Hence, instead o
attempting to analyze the parameterizationp(u) in this case, a QSIC consisting of a line and space c
should be detected beforep(u) is computed. And, if such a QSIC is detected, one should first extrac
linear component and then proceed to parameterize the residual cubic space curve.

A QSIC consisting of a space cubic and a line can be detected as follows. Suppose first
parameterization surfaceS is singly ruled. Form the quadratic equation (2). Then the QSIC has a l
component if and only if the three coefficientsci(u) of Eq. (2) vanish simultaneously for someu0.
Sincec0(u) = b(u)TAb(u) is a constant, one may check if it is zero. If it is nonzero, then the Q
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does not have a linear component; if it is zero, then the QSIC has a linear component if and on
other two coefficientsc1(u) andc2(u) have a common nonconstant factor. Note thatc1(u) andc2(u) are
polynomials of degree 2 and degree 4, respectively. They have a common nonconstant factor if a
if Res(c1(u), c2(u)) = 0, or equivalently, if and only if GCD(c1(u), c2(u)) is not constant.

WhenS is doubly ruled, one may first derive two parameterizations ofS , with the generating line
b(u) chosen from each of the two reguli onS . Then the QSIC contains a linear component if a
only if the three coefficientsc0(u), c1(u), andc2(u) of Eq. (2) have a common nonconstant factor
either of these two parameterizations ofS . Note that in this case theci(u) are quadratic polynomials
It is easy to show that theci(u), i = 0,1,2, have a common factor if and only if the three resulta
Res(c0(u), c2(u)), Res(c1(u), c2(u)), and Res(c0(u) + c1(u), c2(u)) are zero. Alternatively, one ma
compute GCD(GCD(c0(u), c1(u)), c2(u)) to detect if theci(u), i = 0,1,2, have a common nonconsta
factor.

3. Irreducible intersection curves

3.1. Stereographic projection

The main idea in the analysis of an irreducible QSIC is to use a stereographic projection to pro
QSIC to a planar cubic curve that has the same structure as the QSIC. To facilitate the constru
the stereographic projection, we first give two conditions that characterize a QSIC devoid of real
points. Note that an irreducible QSIC cannot have more than one singular point.

The following two results are obvious.

Theorem 1. If a QSIC is devoid of real points then s(u) < 0 for all u.

Theorem 2. If an irreducible QSIC has one real singular point but no other real points then s(u) < 0 for
all u except for one value u0 at which s(u0) = 0.

Since the case of an irreducible QSIC with no real regular points can be characterized by The
and 2, in the following we will consider only QSIC’s with real regular points. LetS denote a parame
terization surface used in Levin’s method, which is a ruled quadric in the pencil of two input quadA
andB. We define a stereographic projectionM from the ruled quadricS that maps the QSIC to a plan
cubic curveH on a planeP in RP3. (See (Sommerville, 1947; Wang et al., 1997) for a stereogra
projection on a general quadric surface and its properties.) We will see that this projection pres
number of algebraic and topological properties of the QSIC, i.e., the QSIC andH have the same re
ducibility, the same type of singularity, and the same number of connected components. In addit
projectionM maps a regulus onS to a pencil of lines centered at a point onH. These properties ofM
are critical in performing a rigorous analysis of the geometric meaning of the polynomials(u), since the
problem is translated to studying the intersection of a planar cubic curve with a pencil of lines.

First suppose thatS is a doubly ruled quadric. See Fig. 1. LetR andL denote the two reguli onS . Let
N0 be a real regular point on the QSIC. Letr0 ∈ R andl0 ∈L be the two lines passing through the po
N0, and letr0 be the lineq(u,0) = b(u) used in the parameterization (1) ofS . TakeN0 as the center o
a stereographic projectionM from S to a planeP in RP3 not passing throughN0. Suppose that the lin
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Fig. 1. A stereographic projection onS .

r0 is projected byM to a pointR̃0 in the planeP . Then, since the centerN0 of M is a regular point of
the QSIC, the QSIC is mapped byM to a planar cubic curveH passing through̃R0 onP (Baker, 1923;
Sommerville, 1947). ThatH is a cubic curve can easily be seen as follows. LetP ′ be a generic plan
passing through the pointN0; thus the intersection betweenP ′ andP is a generic line, denoted by�′,
onP . Since the QSIC is a space quartic curve,P ′ intersects the QSIC atN0 and three other free point
Clearly, the three free intersection points are in one-to-one correspondence with intersections
the line �′ and the curveH. Hence,H is a planar cubic curve since it is intersected three times
generic line�′ in the plane. Furthermore, all the lines inL are mapped to a pencil of lines̃L centered a
the pointR̃0 ∈H in the planeP (see Fig. 1).

WhenS is singly ruled, in a similar manner we may also define a stereographic projectionM onS . In
this case, the base curved(u) in (1) for parameterizingS is a conic, andb(u) is a constant vector for th
vertex ofS (see Section 1.3). Suppose that the conicd(u) passes through a real regular pointN0 on the
QSIC. TakeN0 as the center of a stereographic projectionM from S to a planeP in RP 3 not passing
throughN0. Let the vertexb(u) of S be projected throughN0 to a pointR̃0 onP . Then the QSIC is agai
projected byM to a planar cubic curveH passing through̃R0 and all the lines onS , denoted as a grou
by L, are projected to a pencil of lines̃L centered at the point̃R0 in the planeP . Hence, we have define
a stereographic projection on the parameterization surfaceS whenS is doubly ruled or singly ruled.

Assumption. (a) When the parameterization surfaceS is doubly ruled, the lineb(u) in the parameter
ization ofS given by (1) passes through the centerN0 of the stereographic projectionM; or (b) when
the parameterization surfaceS is singly ruled, the conicd(u) in the parameterization ofS given by (1)
passes through the centerN0 of the stereographic projectionM.
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Remark. The above assumption facilitates the subsequent discussion in this subsection. B
assumption will be dropped as a consequence of Lemma 3 in Section 3.2, since it is not ess
the validity of the final results listed in Theorem 11 in Section 3.4.

To recap, the projectionM preserves the following algebraic and topological properties of the QS

(1) The QSIC is nonsingular if and only if the cubicH is nonsingular;
(2) When they are nonsingular, the QSIC and the cubicH have the same number of connec

components;
(3) When they are singular but irreducible, the QSIC and the cubicH both have one double poin

furthermore, their double points have the same type, i.e., either an acnode, a crunode, or a c

The parameterization (4) of the QSIC is mapped byM to the following parameterization of the plan
cubicH:

p̃(u) ≡ M
(
p(u)

) = c2(u)M
(
b(u)

) + [−c1(u)± √
s(u)

]
M

(
d(u)

) = ã(u)± √
s(u)d̃(u), (5)

where

ã(u) = c2(u)M
(
b(u)

) − c1(u)M
(
d(u)

)
and d̃(u) = M

(
d(u)

)
.

When the parameterization surfaceS is doubly ruled,M(b(u)), which is the projection of the liner0 ∈ R,
is the fixed pointR̃0, andM(d(u)), which is the projection of another liner1 ∈ R, is a line not passing
throughR̃0 in the planeP , sincer0 andr1 are two skew lines in the same regulusR; that is,M(b(u)) has
degree 0 andM(d(u)) has degree 1. WhenS is singly ruled,M(b(u)) is also a fixed point, since it is th
projection of the vertex ofS , andM(d(u)) is also a line, since it is the projection of the conicd(u) with
the projection centerN0 located ond(u); hence, again,M(b(u)) has degree 0 andM(d(u)) has degree 1

The above parameterizatioñp(u) (5) of the cubicH is actually the same parameterization ofH that
can be obtained by intersectingH with the pencil of the lines̃L: R̃0 +vM(d(u)) centered at the point̃R0.
Let �̃ ∈ L̃ denote a line that is the image of a line� ∈L under the projectionM. Then the two intersectio
points I0 and I1 between a line in� ∈ L and the QSIC correspond under the projectionM to the two
intersection points̃I0 and Ĩ1 between�̃ and the cubic curveH. Moreover, (i)I0 andI1 are two distinct
real points if and only ifĨ0 and Ĩ1 are two distinct real points; and (ii)I0 andI1 collapse into a double
real point if and only ifĨ0 and Ĩ1 collapse into a double real point. Further, from (5) we see tha
sign of s(u) determines whether the two intersection pointsĨ0 and Ĩ1 of a line �̃ ∈ L̃ and the cubicH
are two distinct real points or two complex conjugate points. In particular, the vanishing ofs(u), as the
discriminant of (2), signals that the pointsĨ0 andĨ1 form a double real point, a case that occurs when
line �̃ is tangent to the cubicH at a point other thañR0 or when the line�̃ passes through a double po
of a singular planar cubicH.

Since planar cubic curves are well understood (Salmon, 1934; Bix, 1998), the intersection con
tions between a planar cubic and a pencil of lines centered on the cubic can be studied in an ex
and rigorous manner. This investigation can then lead to a thorough analysis of the geometric i
tation of the zeros ofs(u) in connection with the planar cubicH , and hence also in connection with t
QSIC through the stereographic projectionM that relates the cubicH to the QSIC.

Because the intersection properties we are concerned with here are not affected by pr
transformations in the planeP , we may simplify our discussion by considering only thenormal form
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of an irreducible planar cubic under projective transformations. The normal form of an irreducible
cubic curve under projective transformation isy2 = x3 +px +q (Bix, 1998). There are five topologicall
different species of an irreducible planar cubic in the normal form. Figs. 2–7 show singular but irred
cubics with three different types of double singular points. Figs. 8–10 show two kinds of nonsi
cubics with one and two connected components, respectively. In the next two subsections we c
the intersection between the pencilL̃ and the planar cubicH, assuming in turn thatH is of each of these
five types.

3.2. Singular and irreducible intersection curves

In this section we consider a singular and irreducible QSIC. Since the center of the projectioM is
chosen to be at a regular point of a QSIC, a singular QSIC is projected to a planar cubic curve w
double point, which is an acnode, a crunode, or a cusp.

Lemma 3. Given two quadrics A and B, suppose the parameterization surface S in Levin’s method has
two parameterizations

q(u, v) = b(u)+ vd(u)

and

q̄(u, v) = (γ v + µ)b(u) + (αv + β)d(u),

where α, β, γ , and µ are real constants with δ ≡ αµ − βγ �= 0. Let s(u) and s̄(u) be the discriminant
polynomials resulting from using q(u, v) and q̄(u, v), respectively (see Section 1.3). Then s(u) = δ2s̄(u).

Proof. Substituting the two parameterizationsq(u, v) and q̄(u, v) of S into XTAX = 0 yields the
following two different quadratic equations, in place of (2):

c2(u)v
2 + 2c1(u)v + c0(u) = 0,

and

c2(u)(αv + β)2 + 2c1(u)(αv + β)(γ v + µ) + c0(u)(γ v + µ)2 = 0. (6)

Then s(u) = c2
1(u) − c0(u)c2(u) and s̄(u) is the discriminant of the quadratic equation (6) inv. It is

straightforward to verify thats(u) = δ2s̄(u). This completes the proof.✷
Theorem 4. If the QSIC is singular with an acnode plus a connected component, then either (a) s(u)
has a double root u0 with s′′(u0) < 0 and two simple real roots; or (b) s(u) = c2

1(u) where c1(u) is a
quadratic polynomial with two complex conjugate roots. Furthermore, the parameterization p(u) of the
QSIC given by (4) is rational if and only if case (b) occurs.

Proof. We first show that, without loss of generality, it may be assumed that either (i) the generati
b(u) of S passes through a real regular pointN0 of the QSIC when the parameterization surfaceS is
doubly ruled; or (ii) the generating conicd(u) of S passes through a real regular pointN0 of the QSIC
when the parameterization surfaceS is singly ruled. For otherwise, ifS is doubly ruled, we may choos
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an appropriatev0 such that the linēb(u) = b(u) + v0d(u) passes through a real regular pointN0 of the
QSIC, and then use the following parameterization forS (see Fig. 1):

q̄(u, v) = b̄(u) + vd(u) = b(u)+ (v + v0)d(u).

By Lemma 3, the sames(u) will result from usingq̄(u, v) or q(u, v). If S is singly ruled and the coni
d(u) does not pass through any real regular point of the QSIC, we may choose an appropriateγ0 such
that the conic̄d(u) = γ0b(u)+ d(u) passes through a real regular pointN0 of the QSIC, and then use th
following parameterization forS :

q̄(u, v) = b(u)+ vd̄(u) = (γ0v + 1)b(u) + vd(u).

By Lemma 3, again, the sames(u) will result from usingq̄(u, v) or q(u, v). Thus, in both cases whe
S is doubly ruled or singly ruled, the discriminant polynomials(u) remains the same with or without th
assumption made at the start of this proof.

Consider the stereographic projectionM :S → P , centered atN0. Suppose that the QSIC is mapp
by M to the planar cubicH, its acnodeX0 mapped to the acnodẽX0 of H, and the lines inL on S
mapped to the pencil of lines centered at a pointR̃0 on the cubicH in the planeP .

There are two subcases: (a)R̃0 is a regular point ofH and thereforeR̃0 �= X̃0; and (b)R̃0 = X̃0. In
case (a), the linẽR0X̃0 has a double intersection withH at X̃0. (See Fig. 2.) Thuss(u) has a multiple
root u0 which gives rise to the linẽR0X̃0. SinceX̃0 is an isolated real point, we haves(u0 ± ε) < 0 for a
sufficiently smallε > 0. It follows thatu0 is a double root withs′′(u0) < 0. Moreover, since two tangen
can be drawn from the point̃R0 to the cubicH (Salmon, 1934),s(u) has two simple real roots.

In case (b), a linẽ� ∈ L̃ has two fixed intersection points with the cubicH at X̃0 and only one variable
intersection point withH, or equivalently, a line� ∈ L on the ruled quadricS has, in general, only on
variable intersection with the QSIC. This implies thatS is a singly ruled quadric with its vertex at th
double pointX0 of the QSIC; for otherwise, ifS was doubly ruled, then a line� ∈ L would have, in
general, two variable intersections with the QSIC (which is irreducible); this is a contradiction. R
that the two solutions forv of Eq. (2) give the two intersections of� with the QSIC, or equivalently, th
two intersections̃I0 andĨ1 of �̃ with the cubicH. Thus the last coefficientc0(u) ≡ 0, accounting for the

Fig. 2. A singular cubic with an acnodẽX0 and
R̃0 �= X̃0.

Fig. 3. A singular cubic with an acnodẽX0 and
R̃0 = X̃0.
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fact thatv = 0 is always a solution of Eq. (2), i.e., one ofĨ0 and Ĩ1 is always atR̃0 and the other is a
variable intersection given byv = −2c1(u)/c2(u). So

s(u) = c2
1(u) − 4c0(u)c2(u) = c2

1(u).

Furthermore, sincẽR0 = X̃0 is an isolated singular point, the only variable intersection point betw
the pencilL̃ and the cubicH cannot be atR̃0 for any real value ofu. (See Fig. 3.) It follows tha
v = −2c1(u)/c2(u) does not vanish for any real value ofu. Hence,c1(u) has two complex conjugat
roots. In this case no real tangent can be drawn fromR̃0 = X̃0 toH and the parameterization (4) becom
rational, given byp(u) = c2(u)b(u)− 2c1d(u). This completes the proof.✷
Remark. When counting the tangents that can be drawn fromR̃0 to H, we are concerned only wit
whether or not the two variable intersection pointsĨ0 and Ĩ1 between a line�̃ ∈ L̃ andH coincide.
Therefore, unless̃R0 is an inflection point ofH, the tangent ofH at R̃0 is not counted, since in this ca
Ĩ0 and Ĩ1 are distinct and only one of them coincides withR̃0. This convention on counting the numb
of tangents fromR̃0 to H is followed throughout this section.

We can also prove the following results regarding a QSIC with a crunode or a cusp. The pro
similar to the proof of Theorem 4, so are omitted.

Theorem 5. If the QSIC is singular with a crunode, then either (a) s(u) has a double root u0 with
s′′(u0) > 0 plus two simple real roots; or (b) s(u) = c2

1(u) where c1(u) has two distinct real roots.
Furthermore, the parameterization p(u) of the QSIC given by (4) is rational if and only if case (b)
occurs.

Remark. In case (a) the double root ofs(u) is generated by a line drawn from a regular pointR̃0 onH
to its crunodeX̃0, and the other two simple roots correspond to two real tangents that can be draw
R̃0 to H (Salmon, 1934). (See Fig. 4.) In case (b), the two simple roots ofc1(u) correspond to the two
tangents ofH at its crunode. (See Fig. 5.)

Fig. 4. A singular cubic with a crunodẽX0 and
R̃0 �= X̃0.

Fig. 5. A singular cubic with a crunodẽX0 and
R̃0 = X̃0.
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Fig. 6. A singular cubic with a cusp̃X0 and
R̃0 �= X̃0.

Fig. 7. A singular cubic with a cusp̃X0 and
R̃0 = X̃0.

Theorem 6. If the QSIC is singular with a cusp, then either (a) s(u) has a triple root u0 plus
another simple real root; or (b) s(u) = c2

1(u), where c1(u) has a real double root. Furthermore, the
parameterization p(u) of the QSIC given by (4) is rational if and only if case (b) occurs.

Remark. In case (a) the triple root ofs(u) is generated by a line drawn from a regular pointR̃0 on H
to its cusp, and the simple root ofs(u) corresponds to a real tangent that can be drawn fromR̃0 to H
(Salmon, 1934). (See Fig. 6.) In case (b), the double root ofc1(u) corresponds to the unique tangent
H at its cusp. (See Fig. 7.)

By Theorems 4–6, in particular the argument in the proof for case (b) of Theorem 4, we obta
following theorem.

Theorem 7. For a QSIC with one singular point X0, the parameterization p(u) by (4) is rational if and
only if the parameterization surface S used in Levin’s method is a singly ruled quadric with its vertex
at X0. Furthermore, when such a parameterization surface is used, a rational parameterization of the
QSIC is given by

p(u) = c2(u)b(u) − 2c1d(u).

Theorem 8. Let A: XTAX = 0 and B: XTBX = 0 be two quadrics whose intersection curve is singular
but nonplanar. Then there exists a singly ruled quadric in the pencil of A and B whose vertex is at a
singular point of the intersection curve of A and B.

Proof. Let X0 be a singular point of the QSIC ofA andB. Suppose that neitherA norB is singly ruled
with its vertex atX0, for otherwise we are done. Then the respective tangent planesXT

0AX = 0 and
XT

0BX = 0 ofA andB atX0 are well-defined and identical, i.e.,XT
0A = ρXT

0B for some real constantρ.
Hence, the quadricS0: XT(A−ρB)X = 0 in the pencil ofA orB is a singly ruled quadric with its verte
atX0, sinceXT

0(A− ρB) = 0. Note thatS0 cannot be a pair of planes, since the QSIC is nonplanar.
completes the proof. ✷
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Fig. 8. A nonsingular cubic with one component.

Note that Theorem 8 also covers the case where a QSIC consists of a line and a space cubic.

Corollary 9. Any singular QSIC is rational.

3.3. Nonsingular intersection curves

Theorem 10. If the QSIC is nonsingular with one connected component, then s(u) has two simple real
roots and two complex conjugate roots.

Proof. Similar to the proof of Theorem 4, with the aid of the stereographic projectionM, the argument is
reduced to counting the number of real tangents that can be drawn to a nonplanar cubicH from a regular
point R̃0 onH, since each of these tangents is accounted for by a simple real root ofs(u). SinceH has
one connected component, we know that exactly two tangents can be drawn fromR̃0 to H (Salmon,
1934). (See Fig. 8.) Hence,s(u) has two simple real roots and two other complex conjugate roots.
completes the proof. ✷
Theorem 11. If the QSIC is nonsingular with two connected components, then either (a) s(u) has four
simple real roots; or (b) s(u) has no real roots and s(u) > 0 for all u.

The proof of Theorem 11 is similar to that of Theorem 10, so is omitted. The two cases in Theo
correspond to whether the pencil centerR̃0 is on the infinite branch or the oval branch of the cubicH.
WhenR̃0 is on the infinite branch, four tangents can be drawn fromR̃0 to H (see Fig. 9); wheñR0 is on
the oval branch, no tangent can be drawn fromR̃0 to H (Salmon, 1934) (see Fig. 10).

3.4. Complete characterization of irreducible QSIC’s

In Sections 3.2 and 3.3 we obtained necessary conditions in terms of the roots ofs(u) for all
morphologies of irreducible QSIC’s. Because these necessary conditions are distinct from eac
they are therefore also sufficient for the respective morphologies. We summarize these neces
sufficient conditions for different cases in the following theorem.
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Fig. 9. A nonsingular cubic with two components
andR̃0 on the infinite branch.

Fig. 10. A nonsingular cubic with two components
andR̃0 on the oval branch.

Theorem 12. Let Q be an irreducible QSIC.

(1) Q has one real singular point but no other real points if and only if s(u) < 0 for all u except for one
value u0 at which s(u0) = 0.

(2) Q is singular with an acnode plus a connected component if and only if either (a) s(u) has a double
root u0 with s′′(u0) < 0 and two simple real roots; or (b) s(u) = c2

1(u) where c1(u) has two complex
conjugate roots. The parameterization p(u) of Q given by (4) is rational in case (b).

(3) Q is singular with a crunode if and only if either (a) s(u) has a double root u0 with s′′(u0) > 0
plus two simple real roots; or (b) s(u) = c2

1(u) where c1(u) has two distinct real roots. The
parameterization p(u) of Q given by (4) is rational in case (b).

(4) Q is singular with a cusp if and only if either (a) s(u) has a triple root u0 plus another simple real
root; or (b) s(u) = c2

1(u) where c1(u) has a real double root. The parameterization p(u) of Q given
by (4) is rational in case (b).

(5) Q is devoid of real points if and only if s(u) < 0 for all u.
(6) Q is nonsingular with one connected component if and only if s(u) has two simple real roots and

two complex conjugate roots.
(7) Q is nonsingular with two connected components if and only if either (a) s(u) has four simple real

roots; or (b) s(u) has no real roots and s(u) > 0 for all u.

4. Enhanced Levin’s method

Based on the procedure in Section 2 and the results summarized in Section 3.4, we a
able to present an enhanced Levin’s method, to be referred to as ELM, that is capable of d
reducibility and singularity, as well as counting the connected components of a QSIC. In additio
method produces a rational parameterization for a singular QSIC through a special selection
parameterization surface.
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Procedure ELM
Input: Two quadricsA: XTAX = 0 andB: XTBX = 0.
Output: A parameterizationp(u) given by (4) of the QSIC ofA andB, together with its reducibility, the
type of singularity, or the number of connected components.p(u) is rational if the QSIC is singular.

Begin

(1) (For a planar QSIC.) Detect if there is a pair of planes in the pencil ofA andB. If yes, compute the
planar QSIC, and quit; otherwise go to step (2).

(2) (For a QSIC consisting of a line �1 and a space cubic C.) Find a real ruled quadricS in the pencil of
A andB. Use the resultant-based procedure in Section 2.2 to detect whether the QSIC has
component. If not, go to step (3). If yes, extract the linear component�1, and then go to step (3) t
compute a rational parameterization of the remaining cubic component of the QSIC.

(3) (For a singular QSIC with one real singular point or the cubic component of a nonplanar reducible
QSIC.) Find all singly ruled quadricsS in the pencil ofA andB. If there is no such surface, go
step (4). For each singly ruled surface in the pencil, compute its vertex and check whether
the vertex is onA. If any of the singly ruled quadrics, sayS0, has its vertexX0 on A, thenX0 is a
singular point of the QSIC, and the parameterizationp(u) of the QSIC constructed withS0 as the
parameterization surface is rational (by Theorem 7). If none of the singly ruled quadrics in the
has its vertex onA, go to step (4).

(4) (For a nonsingular QSIC.) Use any real ruled quadricS in the pencil ofA andB to generate a
parameterizationp(u) of the QSIC by (4). Use the conditions in Theorem 12 to compute the nu
of connected components of the QSIC.

End

Finding a pair of planes or a parameterization surfaceS in a quadric pencilXT(λA +B)X = 0
entails solving for the roots of the quartic equation|λA + B| = 0, as well as determining th
multiplicities of these roots. The need for solving or analyzing a quartic equation also arises
analyzing the discriminant polynomials(u) (3), as required in ELM. We will not discuss here in det
techniques for solving quartic equations, but instead refer the interested reader to (Dickson
Uspensky, 1948).

The following three examples of computing QSIC’s using ELM verify some of the conditions
in Theorem 12.

Example 1. (Reducible intersection of two cones, comprising a line and a space cubic. See Fig. 11.) The
matrices of the input quadrics are

A =



1.0 0.0 0.0 −0.5
0.0 0.75 −0.5 −0.5
0.0 −0.5 0.0 0.0

−0.5 −0.5 0.0 0.25


 , B =




0.75 0.0 −0.5 0.125
0.0 1.0 0.0 0.0

−0.5 0.0 0.0 0.25
0.125 0.0 0.25 −0.3125


 .

Using ELM, the parameterization surfaceS is a cone (see Fig. 12), and

s(u) = (
u2 − 1

)2
.
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Fig. 11. The reducible intersection of two cones. Fig. 12. The same intersection curve as in Fig. 11 with
parameterization surfaceS derived by ELM.

The roots ofs(u) are:u1 = 1.0, u2 = 1.0, u3 = −1.0, u4 = −1.0. The linear component is

(0.5,0,−1,1)T + v(0,0,3.46,0)T.

A rational parameterization of the cubic component is

p(u) =



0.09u3 − 2.76u2 − 4.49u + 1.82
−6.92u3 + 6.92u2 − 6.92u + 2.3
0.36u3 + 4.97u2 + 1.53u + 3.81

−3.82u3 − 1.51u2 − 4.99u − 0.34


 .

Example 2. (Singular intersection with a cusp of a sphere and a cone. See Fig. 13.) The matrices of th
input quadrics are

A =



1 0 0 0
0 1 0 −1
0 0 1 0
0 −1 0 0


 , B =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 .

Using ELM, the parameterization surfaceS is a cone (see Fig. 14), and

s(u) = (u − 1)4.

The roots ofs(u) are: u1 = 1.0, u2 = 1.0, u3 = 1.0, u4 = 1.0 (ref. condition 4(b) in Theorem 12
A rational parameterization of the QSIC is

p(u) =



−1.414u4 + 2.828u3 − 2.828u + 1.414
−u4 + 4.0u3 − 6.0u2 + 4.0u − 1.0

u4 − 2u2 + 1
−2u4 − 4u2 − 2


 .
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Fig. 13. The singular intersection of a sphere and a cone with a cusp.

Fig. 14. The same intersection curve as in Fig. 13 with the parameterization surfaceS derived by ELM.

Example 3. (Nonsingular intersection of an ellipsoid and a two-sheeted hyperboloid with two compo-
nents. See Figures 15 and 16.) The matrices of the input quadrics are

A =



3.993 −0.448 −2.606 0.0
−0.448 −3.381 −3.356 0.0
−2.606 −3.356 4.177 0.0

0 0 0 1


 , B =




2.778 0.008 0.050 0.528
0.008 2.662 0.047 −0.764
0.050 0.047 2.847 0.972
0.528 −0.764 0.972 −0.845


 .
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Fig. 15. The nonsingular intersection of an ellipsoid and
a two-sheeted hyperboloid with two components.

Fig. 16. The same intersection curve as in Fig. 15 with the
parameterization surfaceS .

Using ELM, the parameterization surfaceS is a hyperbolic paraboloid, and

s(u) = −2.39u4 − 2.41u3 + 3.48u2 + 3.17u − 0.14.

The roots ofs(u) are:

u1 = −1.324, u2 = −0.897, u3 = 0.043, u4 = 1.169

(ref. condition 7(a) in Theorem 12). A parameterization of the QSIC is

p(u) =



0.84u3 + 0.19u2 − 0.62u − 0.09
1.11u3 + 2.11u2 + 1.72u + 0.39

−0.53u3 − 1.15u2 + 0.09u + 0.35
2.51u2 + 2.54u + 0.88


 ± √

s(u)




−0.74u − 0.49
0.34u + 0.29

−0.48u
0


 .

5. Conclusions

We have presented an analysis of Levin’s method for computing the intersection curve
quadric surfaces (QSIC). We have introduced additional tests in order to make this method cap
computing geometric and structural information—irreducibility, singularity, and the number of conn
components—for the QSIC. We have also provided an enhanced version of Levin’s method that ge
a rational parameterization for any singular QSIC. Further research is still required to exam
numerical accuracy of Levin’s method in order to insure that this method is numerically robust.
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Appendix A

Levin’ method is based on the existence of a real ruled quadric in any quadric pencil. The proo
by Levin (1976) for this result is involved and lengthy, filling nearly two double-columned pages. I
appendix we present a geometric proof, which is not only shorter, but also provides useful insig
this geometric fact.

Theorem A.1. There exists a real ruled quadric in the pencil of any two distinct real quadrics.

Proof. Let A: XTAX = 0 andB: XTBX = 0 be two distinct quadrics, withreal coefficient matricesA
andB. LetX0 andX1 be two distinct real points on the QSIC ofA andB, then the line passing throug
X0 andX1, denoted byX0X1, is a real line. If there do not exist two real points on the QSIC, then
chooseX0 andX1 to be two complex conjugate points on the QSIC. We now show that the lineX0X1 is
also real. LetX0 = U + iV andX1 = U − iV , whereU andV are two linear independent real 4D vecto
(i.e., two distinct real points). ThenU = (X0 + X1)/2 andV = (X0 − X1)/(2i), as linear combination
of X0 andX1, are two distinct real points on the lineX0X1. Hence,X0X1 is a real line.

Next we choose a real pointX∗ on the lineX0X1 such thatX∗ is distinct fromX0 or X1. Obviously
there existsλ0 such thatX∗ is on the quadricS: XTSX ≡ XT(λ0A+B)X = 0; note that, ifX∗ is also on
the QSIC, i.e.,X∗ is on bothA andB, thenX∗ is onXT(λA + B)X = 0 for anyλ. Hence, by Bézout’s
theorem,S contains the real lineX0X1 since it contains three distinct pointsX0, X1, andX∗ on the line.
It follows thatS is a real ruled quadric, for otherwiseS would be an ellipsoid, an elliptic paraboloid,
a two-sheet hyperboloid, which could not contain any real line. This completes the proof.✷

Although Levin’s method works as long as there exists a real ruled quadric in the pencil of two
quadrics, one might prefer to use some special ruled quadrics for the parameterization surfacS that
have relatively simple parameterizations in affine space; this viewpoint is espoused in Levin’s
(1976). For this reason, the ruled quadricS that is allowed as the parameterization surface in Lev
original method can only be a pair of planes, a hyperbolic paraboloid, or a cylinder (Levin, 1976, p
(Incidentally, Levin adds the cone into the list of allowable parameterization surfaces in his othe
(Levin, 1978, Table 1, p. 75).) The next theorem is the specific result stated and proved by Le
which we now give a more concise proof.

Theorem A.2 (Levin, 1976, p. 561).The intersection curve of two quadric surfaces lies in a plane, pair
of planes, hyperbolic or parabolic cylinder, or a hyperbolic paraboloid.

Proof. Let A: XTAX = 0 andB: XTBX = 0 be two distinct quadrics, whereX = (x, y, z,w)T are
homogeneous coordinates withw = 0 representing the plane at infinity. Let the upper 3× 3 submatrices
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of A andB be denoted byAu andBu, respectively. The intersection of the pencil ofXT(λA + B)X = 0
with the plane at infinityw = 0 is the pencil of conics̄XT(λAu + Bu)X̄ = 0, whereX̄ = (x, y, z). We
may assume that the conics̄A: X̄TAuX̄ = 0 andB̄: X̄TBuX̄ = 0 are distinct, for otherwise the QSIC ofA
andB is planar and the proof is done. Clearly, all the special quadricsXTSX = 0 listed in Theorem A.2
are characterized by the fact that their intersection with the planew = 0 is a degenerate conic containi
a real line.

Now the proof proceeds with much the same idea as the proof of Theorem A.1; we need to
conic in the pencilX̄T(λAu + Bu)X̄ = 0 that contains a real line. First choose two pointsX̄0 and X̄1

to be either (1) two distinct real intersection points ofĀ and B̄; or (2) two distinct complex conjugat
intersection points ofĀ and B̄; or (3) both at the only intersection point̄I0 of Ā and B̄ if Ā and B̄
intersect atĪ0 with multiplicity 4. In cases (1) and (2), we have a unique real lineX̄0X̄1 connectingX̄0

andX̄1. In case (3) there exists a line that has at least double contact with bothĀ andB̄ at Ī0 and thus
also has at least double contact atĪ0 with any conic in the pencil ofĀ andB̄; in this case the line is stil
denoted byX̄0X̄1 for notational uniformity. Now choose another real pointX̄∗ on the lineX̄0X̄1 that is
distinct fromX̄0 or X̄1. Then there existsλ0 such that the conic̄XT(λ0Au + Bu)X̄ = 0 containsX̄∗. It
follows, by Bézout’s theorem, that the conicX̄T(λ0Au + Bu)X̄ = 0 contains the real linēX0X̄1, since it
containsX̄∗ and two other points̄X0 andX̄1 (with multiplicity counted) on the line. Hence, the QS
of A andB lies on the corresponding quadricXT(λ0A + B)X = 0, which is one of the special quadri
listed in Theorem A.2. This completes the proof.✷
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