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A composite quadric model (CQM) is an object modeled by piecewise linear or quadric
patches. We study the continuous collision detection (CCD) problem of a special type of
CQM objects which are commonly used in CAD/CAM, with their boundary surfaces inter-
sect only in straight line segments or conic curve segments. We derive algebraic formula-
tions and compute numerically the first contact time instants and the contact points of two
moving CQMs in R3. Since it is difficult to process CCD of two CQMs in a direct manner
because they are composed of semi-algebraic varieties, we break down the problem into
subproblems of solving CCD of pairs of boundary elements of the CQMs. We present pro-
cedures to solve CCD of different types of boundary element pairs in different dimensions.
Some CCD problems are reduced to their equivalents in a lower dimensional setting, where
they can be solved more efficiently.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Collision detection is important to many fields involv-
ing object interaction and simulation, e.g., computer ani-
mation, computational physics, virtual reality, robotics,
CAD/CAM and virtual manufacturing. Its primary purpose
is to determine possible contacts or intersections between
objects so that proper responses may be further carried out
accordingly. There has been considerable research in rela-
tion to collision detection, particularly in the field of robot-
ics and computer graphics, regarding the different issues
such as intersection tests, bounding volume computation,
and graphics hardware speedup [1,2]. Among these stud-
ies, continuous collision detection (CCD) is currently an
active research topic, in which collision status within a
continuous time span is determined.

Quadric surfaces form an important class of objects
used in practice. In CAD/CAM or industrial manufacturing,
objects are often designed and modeled using quadric sur-
faces because of their simple representations and ease of
handling. Quadric surfaces encompass all degree two sur-
faces, which include the commonly used spheres, ellip-
soids, cylinders and cones. Ellipsoids, truncated/capped
cylinders and cones are usually used as approximations
to complex geometry in graphics and robotics [3,4].
Furthermore, most mechanical parts can be modeled
accurately with quadric surfaces. Through composite rep-
resentation or CSG (constructive solid geometry) composi-
tion, an even wider class of complex objects are modeled
by quadric surfaces.

Most existing collision detection methods are intended
for piecewise linear objects such as triangles, boxes,
polyhedrons, or simple curved primitives such as spheres
[5–8]. Collision detection of objects containing quadric
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surfaces may be done by applying these methods to piece-
wise linear approximations of the objects. This, however,
introduces geometric error and entails large storage space.
As a result, exact collision detection of quadric surfaces is
important due to the extensive use of quadric surfaces as
modeling primitives in applications.

In this paper we present a framework for efficient and
exact continuous collision detection (CCD) of composite
quadric models, or CQMs for short. CQMs are modeled by
piecewise linear or quadric surface patches. The boundary
elements of a CQM may either be a face (a linear or quadric
surface patch), an edge (where two faces meet) or a vertex
(where three or more edges meet). A boundary edge of a
CQM is in general a degree four intersection curve of two
quadrics. However, there is a special class of CQMs whose
boundary edges are straight line or conic curve segments
only (Fig. 1). In this paper, we focus on CCD of this special
class of CQMs (which we shall also denote as ‘‘CQM’’ for
brevity), which is by itself an important problem due to
the popular use of the class in practice. This work also
represents a step towards tackling CCD of general CQMs,
which is difficult to be solved efficiently.

Our main contributions are as follows.

� We present a framework for exact and efficient contin-
uous collision detection (CCD) of two moving composite
quadric models (CQMs). Given two moving CQMs which
are separate initially, our method computes their first
contact time and contact point. The CQMs may undergo
both the Euclidean and affine motions, which means
that the objects may either be rigid or change their
shapes under affine transformations.
� Our framework comprises a collection of algebraic

methods for CCD of different types of boundary compo-
nents of a CQM. In particular,
1. we devise an algorithm for CCD of two moving

quadrics (Section 5.1), which is based on our recent
result of detecting morphological change of inter-
section curve for two moving quadrics [9]; and

2. we derive algebraic conditions for different configu-
rations of 1D conics in PR and further devise an
algorithm for CCD of two moving conics in 3D
(Section 5.7).
Fig. 1. Two CQMs in motion. The objects are typical examples of the
special class of CQMs whose boundary edges are straight line or conics
curve segments only.
2. Related work

2.1. Continuous collision detection

Different approaches have been proposed for solving
continuous collision detection (CCD) for various types of
moving objects. There are CCD methods by equation solv-
ing, which include [5,10] for polyhedra, [11] for elliptic
disks and [12] for ellipsoids.

Swept volumes (SV) are also commonly used: [13] pre-
sents a solution using a four-dimensional space–time SV;
[14,15] deal with CCD of articulated bodies by considering
SVs of line swept spheres (LSS); and [16] works on SVs of
triangles to solve CCD of deformable models with signifi-
cant speedup using GPU.

Efficiency and accuracy are the major concerns for CCD.
Ref. [17] uses the approach of conservative advancement
and achieve acceleration of CCD for articulated objects by
using the Taylor model which is a generalization of
interval arithmetic. For deforming triangle meshes, Ref.
[18] proposes conservative local advancement that signifi-
cantly improve CCD performance by computing motion
bounds for the bounding volumes of the primitives. A
recent work by [19] uses geometrically exact predicates
for efficient and accurate CCD of deforming triangle
meshes.

Our CCD method works on exact representations of
CQM models and is based on algebraic formulations. For
better efficiency, equation solving for obtaining contact
time instants and contact points is done numerically.

2.2. Intersection and collision of quadrics

Classifications and computations of the intersections of
two general quadrics are thoroughly studied in classical
algebraic geometry [20–22] and CAGD [23–29]. These
results, however, consider quadrics in the complex or real
projective space, and are not applicable to collision detec-
tion problems which concern only the real affine or Euclid-
ean space. There is nevertheless an obvious way to detect
intersection between stationary quadrics by computing
their real intersection curves. Various algorithms have also
been proposed (e.g., [30–34]), whose objectives are to clas-
sify the topological or geometric structure of the intersec-
tion curves and to derive their parametric representations.
However, these methods are difficult to extend for collision
detection of moving quadrics.

Our previous work in [11,12] presents algorithms for
exact CCD of elliptic disks and ellipsoids, based on an alge-
braic condition for the separation of two ellipsoids estab-
lished by [35]. Although quadrics are widely used in
many applications, CCD of general quadrics has not been
addressed in the literature. We propose recently an alge-
braic method for detecting the morphological change of
the intersection curves of two moving quadrics in 3D real
projective space [9]. In this paper, we further devise an
algorithm for CCD of moving quadrics which is a subprob-
lem of CCD of CQMs. We also develop a framework to solve
CCD of CQMs, the more general class of objects composed
of piecewise linear or quadric primitives.
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3. Outline of algorithm

Two moving CQMs QAðtÞ and QBðtÞ, where t is a time
parameter in the interval ½t0; t1�, are said to be collision-free,
if the intersection of QAðtÞ and QBðtÞ is empty for all
t 2 ½t0; t1�; otherwise, they are said to collide. Two CQMs
QAðt0Þ andQBðt0Þ at a particular time instant t0 are in contact
or touching, if their boundaries have nonempty intersection
while their interiors are disjoint. Given two initially
separate CQMs, our goal is to determine whether the CQMs
are collision-free or not; if they collide, their first contact
time instant in ½t0; t1� and the contact point will be
computed.

We assume that the CQMs undergo arbitrary affine
motions which are expressible as continuous functions of
the time parameter t, so that the special type of CQM is
preserved. Among the various motion types, rational
motions are easily handled by CAGD techniques that deal
with splines and polynomials. Our method involves root
finding, and in the case of rational motions, the functions
are polynomials whose roots can be efficiently solved for
by these techniques. Moreover, low-degree rational
motions are found to be sufficient for modeling smooth
motions in most applications and hence further enhance
efficiency. See [36] for a thorough discussion of rational
motion design. While rational motions are used in our
examples, our method is also applicable to other motions,
such as helical motions which are transcendental. Numer-
ical solver will then be needed for root finding of these
functions.

CQMs can be viewed as semi-algebraic varieties which
are defined by multiple polynomial inequalities. Their
boundary elements are often finite pieces on a quadric
or a conic and hence it is difficult to process CQMs
using algebraic methods in a direct manner. To tackle
CCD of CQMs, we consider pairwise CCD between the
extended boundary elements (Fig. 2) which are defined as
follows:
Fig. 2. A capped cylinder (in blue) and its extended boundary elements.
The cylinder (in green) and the two planes (in yellow) are the extended
boundary elements of the cylindrical surface and the two disks of the
capped ends, respectively. The circular edge (in orange) is the extended
boundary element of itself. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
� The complete planar or quadric surface containing a
boundary face of a CQM Q is called an extended bound-
ary face of Q.
� The complete straight line or conic curve containing a

boundary edge of a CQM Q is called the extended bound-
ary edge of Q.
� An extended boundary element of a CQM Q is either an

extended boundary face, an extended boundary edge,
or a vertex of Q.

It follows that CCD of CQMs entails solving CCD of different
element types. For example, to detect possible contact
between two moving capped elliptic cylinders (Fig. 7), one
should handle CCD of (a) cylinder vs. cylinder; (b) cylinder
vs. ellipse; (c) ellipse vs. plane; and (d) ellipse vs. ellipse.

Our main algorithm is given in Algorithm 1, and the
major steps are outlined as follows:

1. Given two CQMs, we first identify CCD subproblems
between all possible pairs of their extended boundary
elements (Section 4).

2. For each CCD subproblem, we use an algebraic method
to compute their first contact instant and point of con-
tact. We will present a classification of different types of
CCD problems that one may encounter in CCD of
CQMs and discuss the detailed solution to each case
(Section 5).

3. Once a contact is found between two extended bound-
ary elements, we will check if the contact is valid, that
is, if it lies on both CQMs (Section 6), since a contact
found in Step 2 may lie on a portion of an extended
boundary element that is not part of a CQM boundary
element. Two CQMs are in contact only if the contact
point between the extended elements lies on both
CQMs (see Fig. 3).

4. After the CCD subproblems are solved, the first valid
contact among all pairs of boundary elements is then
the first contact of the two CQMs.
Fig. 3. Contact validation. (a) The extended boundary elements (cylin-
ders) have a valid contact point that lie on both CQMs, so the capped
cylinders are in contact. (b) The contact point of the extended boundary
elements is an invalid contact of the CQMs since it does not lie on both
CQMs.
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Algorithm 1. The Main Algorithm

Input: Two moving CQMs QAðtÞ and QBðtÞ, t 2 ½t0; t1�,
and QAðt0Þ \ QBðt0Þ ¼ ;

Output: Whether QAðtÞ and QBðtÞ are collision-free or
colliding, and the first contact time and contact
point in case of collision

Identify all CCD subproblems between the extended
boundary elements of QAðtÞ and QBðtÞ.
for each CCD subproblem do

Find, if there is any, the first candidate contact
time ti with a valid contact point pi that lies on
both QAðtiÞ and QBðtiÞ.
S  S [ fðti;piÞg

if S ¼ ; then
returnQAðtÞ andQBðtÞ is collision-free for t2½t0;t1�

else
i�  arg minftijðti;piÞ 2 Sg
return ti� ;pi�ð Þ as the first contact time and
contact point of QAðtÞ and QBðtÞ

4. Identifying subproblems

A contact of two CQMs always happens between a pair
of boundary elements, one from each of the CQMs. In order
to detect contact between two CQMs, we define a CCD sub-
problem for each pair of their extended boundary elements.
Depending on the types of the boundary elements, we have
different types of contacts—ðF; FÞ; ðF; EÞ; ðF;VÞ, ðE; EÞ; ðE;VÞ
and ðV ;VÞ, where F; E and V stand for face, edge and vertex,
respectively. However, it suffices to consider only the CCD
subproblems of the four basic contact types—ðF; FÞ,
ðF; EÞ; ðF;VÞ and ðE; EÞ to solve CCD of two CQMs, as is shown
by the following proposition.
Proposition 1. A contact between two CQMs can be classified
into one of the four basic types: ðF; FÞ; ðF; EÞ; ðF;VÞ and ðE; EÞ.
Proof. A contact between two CQMs can be of more than
one contact type, since it may lie on two or more extended
boundary elements. Both the ðE;VÞ- and ðV ;VÞ-type
Table 1
Complete classification of different types of element pairs of two CQMs and the
planes and CCD between a plane and a line can be exempted and therefore are n

Type Case Element pairs

ðF; FÞ I Quadrics vs. Quadrics
II Quadrics vs. Planes

ðF; EÞ III Quadrics vs. Conics
IV Planes vs. Conics
V Quadrics vs. Lines

ðF;VÞ VI Quadrics/Planes vs. Vertices

ðE; EÞ VII Conics vs. Conics in R3

VIII Conics vs. Conics in R2

IX Conics vs. Lines in R3

X Conics vs. Lines in R2

XI Lines vs. Lines
contacts can be treated as ðF;VÞ-type. In particular, an
ðE;VÞ-type contact between a boundary edge E1 and a ver-
tex V2 is always also an ðF;VÞ-type contact between V2 and
a boundary face on which E1 lies. A ðV ;VÞ-type contact
between two vertices V1 and V2 is always also an ðF;VÞ-
type contact between V2 and a boundary face on which
V1 lies. h
5. Solving CCD subproblems

For a pair of extended boundary elements, each from
CQMs QAðtÞ and QBðtÞ, respectively, the next step is to
solve their CCD and compute the first contact time instant
with the corresponding contact point. There is a hierarchy
of extended boundary elements, from faces to vertices, in
different dimensions. Each element type also consists of
more than one kind of primitives; for instance, a face
may either be a quadric face or be a planar face. A complete
classification of the types of element pairs that should be
considered for CCD of two CQMs is listed in Table 1. In this
section, we shall present the techniques for resolving CCD
of these cases.

We note here that CCD between two planes can be
exempted since any planar face of a CQM must be delim-
ited by some boundary curves and any possible contact
of two planes can be found by CCD between one planar
face and a boundary curve of another. Similarly, CCD
between a plane and a line can also be exempted, since
any possible contact between a planar face and a straight
edge of two CQMs can be found by CCD between the
boundary curve of the face and the line, or CCD between
a boundary vertex of the line and the plane. Hence, CCD
for these two cases are not listed in Table 1.

5.1. Case I – quadrics vs. quadrics

In this section, we deal with CCD of two quadric sur-
faces in R3. We assume that the quadrics are irreducible
and hence they do not represent planes. CCD between a
quadric surface and a plane is discussed in Section 5.2.

Given two moving quadric surfaces in R3, our goal is to
compute the time instants at which there is a contact
technique for solving the corresponding CCD. Note that CCD between two
ot listed here.

Techniques Section

CCD of quadrics 5.1
CCD of quadrics/planes 5.2

Dimension reduction to Case VIII 5.3
Dimension reduction to Case X 5.4
Direct substitution 5.5

Direct substitution 5.6

Dimension reduction 5.7

CCD of conics in R2 5.8
Dimension reduction 5.9
Direct substitution 5.10
CCD of linear primitives 5.11



Fig. 5. (a) Two cylinders intersect locally at the neighborhood of the
tangent point. (b) There is no local intersection between two ellipsoids at
the isolated tangent point. Hence, the ellipsoids in (b) are in contact while
the cylinders in (a) are not.
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between the two quadrics. There are three different local
contact configurations between two quadrics: surface con-
tact, curve contact or point contact (Fig. 4). Two quadrics
have a surface contact if and only if they are identical. They
have a curve contact if and only if they are tangent at every
point along a line or conic curve. There is a point contact if
and only if they are tangent at an isolated common point. It
is also important that the quadrics do not intersect locally
at the neighborhood of all the tangent points. Fig. 5(a)
shows two cylinders that are tangent at a point but also
intersect locally at the neigborhood of the same point.
The tangent point therefore does not constitute a contact.

Let X ¼ ðx; y; z;wÞT 2 PR3 and let two moving quadrics
be given by AðtÞ : XT AðtÞX ¼ 0 and BðtÞ : XT BðtÞX ¼ 0,
where AðtÞ; BðtÞ are 4� 4 matrices with elements as func-
tions in t. The two quadrics define a moving pencil
Qðk; tÞ : XTðkAðtÞ � BðtÞÞX ¼ 0, with characteristic polyno-
mial f ðk; tÞ ¼ detðkAðtÞ � BðtÞÞ. We shall differentiate the
cases in which the pencil QðtÞ is (1) in general nondegen-
erate (i.e., f ðk; tÞX 0 for some t), or (2) always degenerate
(i.e., f ðk; tÞ � 0 for all t), and handle these two cases in dif-
ferent manners to be described in Sections 5.1.1 and 5.1.2,
respectively.

5.1.1. For AðtÞ and BðtÞ whose pencil is in general
nondegenerate

In this section, we consider two moving quadrics AðtÞ
and BðtÞ whose pencil is in general nondegenerate, that
is, their characteristic polynomial f ðkÞ ¼ det kAðtÞ � BðtÞð Þ
is not always identically zero over the time domain.

The morphologies of the intersection curves of two
quadric surfaces (QSICs) in PR3 have been completely clas-
sified in [29]. For two moving quadrics, the morphologies
of their QSIC may change over time, and only some QSICs
may correspond to a contact between the quadrics. There-
fore, our strategy is to first detect the time instants (which
we called the candidate time instants) at which two moving
quadric surfaces have a change in their QSIC. Our next step
is then to identify whether a QSIC corresponds to a real
contact (face, line or point contact) in R3 at each of the can-
didate time instants and to compute the contact between
the two quadrics.

5.1.1.1. Determining candidate contact time instants. The
candidate time instants are the moments at which the QSIC
of two moving quadrics change its morphological type. To
determine the candidate time instants, we make use of our
recent result in detecting the variations of the QSIC of two
moving quadrics in PR3. Here, we give a brief idea of how
Fig. 4. The three different local contact configurations between two
quadrics: (a) surface contact; (b) curve contact; and (c) point contact.
this can be done and refer the reader to [9] for the details.
The classification by [29] distinguishes the QSIC types of
two quadrics in PR3 from both algebraic and topological
points of view (including singularities, number of compo-
nents, and the degree of each irreducible component). A
QSIC type can be identified by the signature sequence
and the Segre characteristics [20] of the quadric pencil
Qðk; tÞ ¼ kAðtÞ � BðtÞ, which characterize the algebraic
properties of the roots of characteristic polynomial of
Qðk; tÞ, such as the number of real roots, the multiplicity
of each root, and the type of the Jordan blocks associated
with each root. We proved that to detect all the time
instants at which the QSIC changes is equivalent to
detecting the time instants when the Segre characteristic
of Qðk; tÞ changes. This leads to an algebraic method
using the techniques of resultants and Jordan forms to
compute all the required time instants, which, in our
case, will serve as the candidate time instants for the next
step.

Remark 2. With the aforementioned algebraic method, we
obtain univariate equations defining the candidate time
instants. The positive real solutions of such univariate
equations can be computed efficiently by real root isola-
tion solvers. Checking the sign of a polynomial expression
at such a root can be done exactly by algebraic methods
(see for example [37]).
5.1.1.2. Identifying real contact. For each of the candidate
contact time instants ti, the next step is to determine
whether the QSIC corresponds to any real contact between
the quadrics AðtiÞ and BðtiÞ. Table 2 is adapted from the
three classification tables in [29] by showing only those
cases1 in which the QSIC of two distinct quadrics corre-
sponds to a point or a curve contact in PR3. It therefore
encompasses all possible contact configurations of two
quadrics. The case of a face contact, that is, the two quadrics
being identical, can be trivially identified and is skipped
here. Now, for each candidate time instant ti, we compute
the signature sequence of AðtiÞ and BðtiÞ which involves
determining the multiplicity of a real root and the signature
of a quadric pencil at the root, and can be done
1 We keep the original case numbers for ease of reference.



Table 2
QSIC corresponding to a point contact or curve contact between two distinct quadrics in PR3 [29]. In the illustrations, a solid line or curve represents a real
component while a dashed one represents an imaginary component. A solid dot indicates a real singular point. A null-homotopic component is drawn as a
closed loop, and a non-null-homotopic component is shown as an open-ended curve. A line or curve that is counted twice is thickened.

[Segre]r r: # real roots Case #: Index sequence/signature sequence Illustration Representative quadric pair

½211�3 6: h1 o o�1j2j3i/(1, ((1,2)),1, (1,2),2, (2,1),3) �x2 � z2 þ 2yw ¼ 0
�3x2 þ y2 � z2 ¼ 0

7: h1 o oþ1j2j3i (1, ((0,3)),1, (1,2),2, (2,1),3) x2 þ z2 þ 2yw ¼ 0
3x2 þ y2 þ z2 ¼ 0

½ð11Þ11�3 15: h1jj1j2j3i (1, ((0,2)),1, (1,2),2, (2,1),3) x2 þ y2 þ z2 �w2 ¼ 0
x2 þ 2y2 ¼ 0

½ð111Þ1�2 19: h1jjj2j3i (1, (((0,1))),2, (2,1),3) y2 þ z2 �w2 ¼ 0
x2 ¼ 0

½ð21Þ1�2 22: h1 o oþj2j3i (1, (((0,2))),2, (2,1),3) y2 � z2 þ 2zw ¼ 0
x2 þ z2 ¼ 0

½2ð11Þ�2 24: h1 o o�1jj3i (1, ((1,2)),1, ((1,1)),3) 2xy� y2 ¼ 0
y2 � z2 �w2 ¼ 0

25: h1 o oþ1jj3i (1, ((0,3)),1, ((1,1)),3) 2xy� y2 ¼ 0
y2 þ z2 þw2 ¼ 0

½ð11Þð11Þ�2 30: h1jj1jj3i (1, ((0,2)),1, ((1,1)),3) x2 þ y2 ¼ 0
z2 �w2 ¼ 0

½ð211Þ�1 32: h2 o o�jj2i (2, ((((1,0)))),2) x2 � y2 þ 2zw ¼ 0
z2 ¼ 0

33: h1 o o�jj3i (1, ((((1,0)))),3) x2 þ y2 þ 2zw ¼ 0
z2 ¼ 0

½ð22Þ�1 34: h2 boo� boo�2i (2, ((((2,0)))),2) xyþ zw ¼ 0
y2 þw2 ¼ 0

35: h2 boo� booþ2i (2, ((((1,1)))),2) xy� zw ¼ 0
y2 �w2 ¼ 0
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using rational arithmetic.2 The quadrics have a contact in
PR3 if and only if the sequence matches one of the 12 cases
listed in Table 2. The following example shows how we may
identify if two quadrics have a contact at a particular time
instant by checking their Segre characteristics and signature
sequence against Table 2.

Example 3. Consider two cylinders, A : x2 þ z2 ¼ 1 and
B : y2 þ z2 ¼ 1, which have two singular intersection points
as shown in Fig. 5(a). The characteristic equation is
f ðkÞ ¼ kðk� 1Þ2 ¼ 0. The Segre characteristics and the
signature sequence are found to be ½ð11Þ11�3 and
ð2; ðð1;1ÞÞ;2; ð1;2Þ;1; ð1;2Þ;2Þ, respectively, which corre-
sponds to case 13 of [29] in which the QSIC has two conics
intersecting at two distinct non-isolated singular points.
This case does not correspond to a contact configuration
2 The library realroot (http://www-sop.inria.fr/galaad/software/realroot/)
provides efficient implementation of algorithms for computing the
sequences. Please refer to Section 3.4 of [29] for details.
and is not listed in Table 2. The two cylinders are therefore
not in contact.
5.1.1.3. Computing contact. We can proceed to compute a
contact once it is identified. The following lemma provides
a means to computing the contact points of two quadrics at
a particular time instant:

Lemma 4. Let A : XT AX ¼ 0 and B : XT BX ¼ 0 be two dis-
tinct, irreducible quadric surfaces whose pencil is nondegen-
erate. Suppose that A and B are in contact (i.e., whose QSIC is
listed in Table 2), and let k0 be a multiple root of
f ðkÞ ¼ detðkA� BÞ ¼ 0, the characteristic equation of A and
B. Then, we have the following cases:

1. If rankðk0A� BÞ ¼ 3; k0 corresponds to one singular inter-
section point p of A and B in PR3. If k0 – 0;A and B are
tangential at p; otherwise, B is a cone with p as its apex
which lies also on A.

2. If rankðk0A� BÞ ¼ 2; k0 corresponds to singular intersec-
tion between A and B that happens at either one point,
two distinct points, or along a straight line in PC3, where
A and B are tangential to each other.

http://www-sop.inria.fr/galaad/software/realroot/


Fig. 6. The three possible scenarios of two moving quadrics in R3 whose
pencil is always degenerate. (a) Two moving cones whose vertices always
lie on a common generator; (b) two moving cylinders whose axes are
always parallel; and (c) a moving cone and a moving cylinder which
always share a common generator. Note that a cylinder may either be an
elliptic, a hyperbolic or a parabolic cylinder. Also, only one nappe of a
cone is shown.
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3. If rankðk0A� BÞ ¼ 1; k0 corresponds to singular intersec-
tion between A and B along a conic curve (which can be
a reducible one) in PC3, where A and B are tangential
to each other.

The proof can be found in [38].
Note that when f ðkÞ ¼ 0 has more than one multiple

root, we should consider all its multiple roots in order to
obtain all contact points between the two quadrics.
According to Lemma 4, given two touching quadric sur-
faces at time ti, the contact points are in general the solu-
tions of ðkjAðtiÞ � BðtiÞÞX ¼ 0 for each multiple root kj of
f ðk; tiÞ ¼ 0. We also need to differentiate between real
and imaginary contacts. For example in both cases 24
and 25 of Table 2, the characteristic equation has two mul-
tiple roots k0 and k1, with rankðk0A� BÞ ¼ 3 and
rankðk1A� BÞ ¼ 2; k0 corresponds to a real contact point
while k1 corresponds to two distinct imaginary contacts
which should be discarded.

Example 5. Consider the unit sphere A : x2 þ y2 þ z2 ¼ 1
and a cylinder B : x2 þ y2 ¼ 1. The characteristic equation
of A and B is f ðkÞ ¼ �kðk� 1Þ3 which has a triple root
k0 ¼ 1. Also, rankðk0A� BÞ ¼ 1 and by Lemma 4, k0 corre-
sponds to a contact along a conic curve between A and B.
Now, ðk0A� BÞX ¼ 0 has three linearly independent solu-
tions X0 ¼ ð0;0;0;1ÞT ;X1 ¼ ð1;0;0;0ÞT and X2 ¼ ð0;1;0;0ÞT
which span the plane z ¼ 0. Intersecting the plane z ¼ 0
with A yields the circle x2 þ y2 ¼ 1; z ¼ 0, which is the
contact between A and B.

Cases 6, 24 and 35 are situations in which the quadrics
are tangent at some regions but at the same time having
local real intersection at the others. Since we assume that
the CQMs are separate initially and we seek their first con-
tact, it can be assured that a local real intersection must
take place after a proper contact is found. The real intersec-
tions in these cases can therefore be ignored.

The contact points computed so far are between the
quadric surfaces but not necessarily between the CQMs,
therefore all contact points are further subject to validation
to see if they are on both CQMs. Contact points at infinity
are thus discarded. Validation details will be discussed in
Section 6.

5.1.2. For AðtÞ and BðtÞ whose pencil is always degenerate
We now consider the case of two moving quadrics

which always define a degenerate pencil, that is,
f ðk; tÞ � 0 for all t. Here, all members of the pencils are pro-
jective cones for all t [39], which means that the vertices of
the projective cones always lie on a common generator of
the cones and the cones are always tangential along this
generator in PC3. Considering any affine realization of
the projective space, Fig. 6 depicts the three situations of
this kind that are only possible in R3: (a) Two moving
cones whose apexes slide along the common generator,
(b) two moving cylinders whose axes are always parallel
(with their ‘‘apexes’’ at infinity), and (c) a moving cone
and a moving cylinder which always share a common gen-
erator. Note that a cylinder can either be an elliptic, a
hyperbolic or a parabolic cylinder. For case (a), we need
only to consider the contact of the vertices, since the cones
are initially separate and any other contact configurations
can be detected by CCD of other boundary elements of the
CQMs. Hence, the candidate contact time instants are the
contact time instants of the vertices of the cones. For (b),
the CCD problem is transformed to a two-dimensional
CCD of two moving conics on a plane P orthogonal to the
cylinder axes, with the conics being the cross-sections of
the cylinders on P. CCD of moving conics in R2 will be dis-
cussed in Section 5.8. We may disregard case (c) for a mov-
ing cone and a moving cylinder, since a cylinder must be
delimited by a boundary curve on a CQM and any possible
first contact can be captured by CCD of other boundary ele-
ments of the CQMs.

5.2. Case II – quadrics vs. planes

We first note that the singular case where a plane is in
contact with a cone only at its apex is not considered here,
as the contact can be determined directly by an ðF;VÞ-type
CCD of the apex and the plane.

Now, consider an irreducible quadric surface
AðtÞ : XT AðtÞX ¼ 0 and a plane NðtÞ : NðtÞT X ¼ 0 in R3. A
necessary and sufficient condition for NðtÞ to be a tangent
plane to AðtÞ at some point X0 2 R3 is that

aNðtÞ ¼ AðtÞX0 for some nonzero a 2 R; and

NðtÞT X0 ¼ 0:

(

These two equations can be written as

AðtÞ NðtÞ
NðtÞT 0

 !
X0

�a

� �
¼ 0;

which has a nonzero solution ðX0 aÞT if

AðtÞ NðtÞ
NðtÞT 0

�����
����� ¼ 0: ð1Þ

Therefore, the roots of Eq. (1) corresponding to a solution
ðX0 aÞT with a – 0 yield the candidate time instants of
the quadric AðtÞ and the plane NðtÞ.

5.3. Case III – quadrics vs. conics

We adopt a dimension reduction technique to reduce CCD
of extended boundary elements to CCD of primitives of
lower dimensions. By doing so, we also simplify the



Fig. 7. Contact configurations of two capped cylinders determined by CCDs of four different types of element pair. (a) ðF; FÞ-type; (b & c) ðF; EÞ-type; and (d)
ðE; EÞ-type. CCDs of (b)–(d) are solved using the dimension reduction technique.
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algebraic formulations. Fig. 7 illustrates CCD of two moving
capped elliptic cylinders. In this example, there are three
cases to which the dimension reduction technique can be
applied, namely, quadrics vs. conics (Fig. 7(b)), planes
vs. conics (Fig. 7) and conics vs. conics (Fig. 7(d)). The
reduction for the latter two cases will be discussed in
subsequent sections.

We first consider CCD of a quadric surface
SðtÞ : XT SðtÞX ¼ 0 and a conic curve CðtÞ defined in the
plane PCðtÞ in R3. Let SPðtÞ be the intersection of SðtÞ with
PCðtÞ. We thereby reduce CCD of SðtÞ and CðtÞ to CCD of
SPðtÞ and CðtÞ, which are two conics, in the plane PCðtÞ.
CCD of two conics in R2 is handled in Case VIII
(Section 5.8).
5.4. Case IV – planes vs. conics

Consider CCD of a plane PðtÞ and a conic curve CðtÞ
defined in a plane PCðtÞ in R3. The case of PðtÞ and PCðtÞ
being identical for all t can be disregarded, as any possible
first contact of the CQMs due to PðtÞ and CðtÞ can then be
detected by CCD of CðtÞ and other boundary elements on
PðtÞ. If PðtÞ and PCðtÞ are parallel for all t, then there is
no contact between PðtÞ and CðtÞ. Otherwise, with dimen-
sion reduction, CCD of a plane PðtÞ and a conic curve CðtÞ is
reduced to CCD of CðtÞ and a moving line which is the inter-
section between PðtÞ and PCðtÞ in R2, and the latter is han-
dled by Case X (Section 5.10) for CCD between conics and
lines in R2. For the candidate time instants thus found,
we will verify and discard those ti at which PðtiÞ and
PCðtiÞ are parallel.
5.5. Case V – quadrics vs. lines

Suppose SðtÞ : XT SðtÞX ¼ 0 is a quadric surface and
Lðu; tÞ is a line in R3. We simply substitute Lðu; tÞ into
SðtÞ and obtain gðu; tÞ ¼ Lðu; tÞT SðtÞLðu; tÞ which is qua-
dratic in u. The line Lðu; tiÞ touches SðtiÞ at a particular
time ti if gðu; tiÞ has a double root u0. Hence, the candi-
date contact time instants of SðtÞ and Lðu; tÞ are given
by the roots of the discriminant DgðtÞ of gðu; tÞ. For each
candidate contact time instant ti, the contact point is
Lðu0; tiÞ where u0 is the double root of gðu; tiÞ. If
gðu; tiÞ is identically zero, we have Lðu; tiÞ lying entirely
on SðtiÞ.
5.6. Case VI – quadrics/planes vs. vertices

Let SðtÞ : XT SðtÞX ¼ 0 be a quadric surface and pðtÞ be a
vertex in R3. By direct substitution, we obtain the equation
pTðtÞSðtÞpðtÞ ¼ 0 whose roots give the candidate
contact time instants. Similarly, for CCD of a plane
HðtÞ : HðtÞT X ¼ 0 and a vertex pðtÞ, the candidate contact
time instants are the roots of the equation HðtÞT pðtÞ ¼ 0.
5.7. Case VII – conics vs. conics in R3

We transform the problem of CCD of two conics in R3

into CCD of one dimension in the line where the containing
planes of the conics intersect. Let a moving conic AðtÞ be
defined as the intersection between a quadriceAðtÞ : XT AðtÞX ¼ 0 and a plane PAðtÞ in R3. Similarly, BðtÞ
is a moving conic which is the intersection between a
quadric eBðtÞ : XT BðtÞX ¼ 0 and a plane PBðtÞ in R3. We first
assume that PAðtÞX PBðtÞ and let Lðu; tÞ be a parameteri-
zation of the line of intersection between PAðtÞ and PBðtÞ.

Substituting Lðu; tÞ into the conic equations, we have:

hðu; tÞ : LTðu; tÞAðtÞLðu; tÞ ¼ 0; ð2Þ
gðu; tÞ : LTðu; tÞBðtÞLðu; tÞ ¼ 0:

The solution of hðu; tÞ ¼ 0 gives the intersection
between Lðu; tÞ and AðtÞ. Likewise, the solution of
gðu; tÞ ¼ 0 gives the intersection between Lðu; tÞ and BðtÞ.
Since hðu; tÞ and gðu; tÞ are quadratic in u, we may write
hðu; tÞ ¼ UT bAðtÞU and gðu; tÞ ¼ UT bBðtÞU where U ¼ ðu;1ÞT

and bAðtÞ and bBðtÞ are 2� 2 coefficient matrices. It means
that hðu; tÞ and gðu; tÞ can be considered as two moving
‘‘1D projective conics’’ (i.e., intervals or line segments),
denoted by bAðtÞ and bBðtÞ, which can be either real or imag-
inary. Now, AðtÞ and BðtÞ have real tangency in PR3 if and
only if there is real tangency between bAðtÞ and bBðtÞ in PR3,
that is, an end-point of bAðtÞ overlap with an end-point
of bBðtÞ. Hence, we have essentially reduced a 3D
problem (namely, CCD of two moving conics in the space)
to a 1D problem (namely, CCD of two moving intervals in a
line).

Let f ðkÞ ¼ detðkbA � bBÞ be the characteristic polynomial
of two static 1D conics bA : XT bAX ¼ 0 and bB : XT bBX ¼ 0 in
PR. The intersection of bA and bB can be characterized by
the roots of f ðkÞ, as summarized in Table 3 (the derivation
follows similarly as in [40] for the characterization of the
intersection of two 1D ellipses in R). Hence, we have the



Table 3
Configuration of two 1D conics bA & bB in PR and the roots of their
characteristic equation f ðkÞ ¼ 0. Each 1D conic is represented in pairs of
brackets of the same style. Degenerate conic of one point is represented by
either a dot or a cross.

Roots of f ðkÞ ¼ 0 Configuration

(1) Distinct positive

or both bA & bB are imaginary andbA – bB
(2) Distinct negative

(3) One zero, one positive

(4) One zero, one negative

(5) One negative, one
positive with another conic being imaginary

(6) Positive double

or both bA & bB are imaginary andbA ¼ bB
(7) Negative double

(8) Double zero

(9) Complex conjugate

(10) f ðkÞ is linear with
roots ¼ 0

(11) f ðkÞ � 0
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following theorem stating the conditions for two conics to
have contact in PR3:

Theorem 6. Given two conics A (on plane PA) and B (on
plane PB) in R3, suppose that PA and PB intersect at some
line L 2 R3. Let bA : XT bAX ¼ 0 and bB : XT bBX ¼ 0 be the ‘‘1D
conics’’ characterizing the intersections of L with A and B,
respectively. Furthermore, let f ðkÞ ¼ detðkbA � bBÞ be the
characteristic polynomial of bA and bB. Then, the conics A
and B are in contact in PR3 if and only if
1. f ðkÞ has a double root (Fig. 8(a-c)); or
2. f ðkÞ � 0 (Fig. 8(d)).

Algorithm 2 gives the procedure for solving CCD of two
moving conics in R3. First of all, if two moving conics are
found to be contained in the same plane (i.e.,
PAðtÞ � PBðtÞ) for all t, we may apply a continuous transfor-
mation MðtÞ to both conics that maps PAðtÞ to R2 and the
problem is reduced to a two dimensional CCD of two moving
conics in R2. Otherwise, we reduce the problem to a one
dimensional CCD of two 1D conics using the above formula-
tion and capture the time instants at which the conditions in
Theorem 6 are satisfied. This is done by computing the zer-
oes of the discriminant Df ðtÞ of f ðk; tÞwhich give the instants
ti when f ðk; tiÞ has a double root (condition 1) or f ðk; tiÞ � 0
(condition 2). The for loop in the algorithm handles the spe-
cial case in which a zero ti of Df ðtÞ corresponds to when
f ðk; tiÞ � 0. This may happen when the containing planes
of both conics AðtiÞ and BðtiÞ are parallel so that Lðu; tiÞ is a
line at infinity, and the conics are not in contact. The function
f ðk; tiÞmay also be identically zero whenAðtiÞandBðtiÞ lie on
the same plane so that Lðu; tiÞ becomes undefined. The two
conics may or may not have a contact in this case and there-
fore we need to further carry out a 2D static collision detec-
tion of A0ðtiÞ and B0ðtiÞ, the image of AðtiÞ and BðtiÞ under a
rigid transformation to R2. The conics AðtiÞ and BðtiÞ are in
contact if and only if the characteristic equation of A0ðtiÞ
andB0ðtiÞhas a multiple root. In any case, a candidate contact
time instant that corresponds to a contact point at infinity is
discarded.

Algorithm 2. Computing the candidate time instants for
two moving conics in R3
Input: Two moving conics AðtÞ and BðtÞ defined in the
planes PAðtÞ and PBðtÞ in R3; t 2 ½t0; t1�,
respectively.
if PAðtÞ � PBðtÞ for t 2 ½t0; t1� then

Reduce CCD of AðtÞ and BðtÞ to that of two moving
conics in a plane which is handled by Case VIII
(Section 5.8)
else

Compute the intersection line Lðu; tÞ between
PAðtÞ and PBðtÞ

Compute hðu; tÞ and gðu; tÞ as in Eq. (2) and obtainbAðtÞ & bBðtÞ by rewriting hðu; tÞ ¼ UT bAðtÞU and

gðu; tÞ ¼ UT bBðtÞU where U ¼ ðu;1ÞT

Compute f ðk; tÞ ¼ detðkbAðtÞ � bBðtÞÞ and the
discriminant Df ðtÞ of f ðk; tÞ

for all ti 2 ftjDf ðtÞ ¼ 0g do
if PAðtiÞ ¼ PBðtiÞ then

TransformAðtiÞ andBðtiÞ toA0ðtiÞ andB0ðtiÞ inR2

if the characteristic equation of A0ðtiÞ and
B0ðtiÞ has a multiple root then

T  T [ ftig
else if PAðtiÞ and PBðtiÞ are not parallel then
T  T [ ftig

return T as the candidate contact time instants
5.8. Case VIII – conics vs. conics in R2

CCD of two conics in a plane is handled using the same
algebraic approach as in [11] for CCD of two ellipses in R2.
Given two moving conics AðtÞ : XT AðtÞX ¼ 0 and
BðtÞ : XT BðtÞX ¼ 0 in R2, where X ¼ ðx; y;wÞT and t 2 ½t0; t1�,
the characteristic equation f ðk; tÞ ¼ det kAðtÞ � BðtÞð Þ ¼ 0 is
cubic in k. The equation f ðk; t0Þ ¼ 0 has a multiple root k0 if
and only if Aðt0Þ and Bðt0Þ have tangential contact at time
t0. Hence, we compute the discriminant Df ðtÞ of f ðk; tÞ, and
the zeroes of Df ðtÞ would be the candidate contact
time instants of AðtÞ and BðtÞ. For each contact time
instant ti, the contact point is given by the solution of
ðk0AðtÞ � BðtÞÞX ¼ 0 where k0 is a multiple root of f ðk; tÞ ¼ 0.



(a) (b) (c) (d)

Fig. 8. The four configurations of two touching conics in 3D. Sub-figures (a), (b), (c) & (d) correspond to the cases (6), (7), (8) & (11) of Table 3, respectively.
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5.9. Case IX – conics vs. lines in R3

Consider CCD between a conic CðtÞ and a lineLðu; tÞ in R3.
We assume that CðtÞ is given as the intersection between a
quadric bCðtÞ : XT bCðtÞX ¼ 0 and a plane PCðtÞ in R3 (so that
the axis of bCðtÞ is orthogonal to PCðtÞ). We may disregard
the case ofLðu; tÞ and PCðtÞ being always identical, as any pos-
sible first contact of the CQMs due to CðtÞ andLðu; tÞ can then
be detected by CCD of Lðu; tÞ and the neighboring boundary
elements of CðtÞ. If Lðu; tÞ and PCðtÞ are parallel for all t, then
Lðu; tÞ and CðtÞ have no contact. Otherwise, we obtain pðtÞ
which is the intersection of Lðu; tÞ and PCðtÞ. The conic CðtiÞ
is in contact withLðu; tiÞ in R3 at time ti if and only if pðtiÞ lies
on CðtiÞ, that is, pðtiÞT bCðtiÞpðtiÞ ¼ 0, and pðtiÞ is not at infinity.
Hence, the roots of pðtÞT bCðtÞpðtÞ ¼ 0 are the candidate con-
tact time instants; those of which corresponding to pðtiÞ at
infinity are discarded.

5.10. Case X – conics vs. lines in R2

Let CðtÞ : XT CðtÞX ¼ 0 be a conic and Lðu; tÞ be a line in
R2, where X ¼ ðx; y;wÞT 2 PR2. By substituting Lðu; tÞ into
CðtÞ, we obtain gðu; tÞ ¼ Lðu; tÞT CðtÞLðu; tÞ which is qua-
dratic in u. Each root ti of the discriminant DgðtÞ of gðu; tÞ
is a candidate contact time instant of CðtÞ and Lðu; tÞ, with
a corresponding contact point Lðu0; tiÞ, where u0 is a dou-
ble root of gðu; tiÞ.

5.11. Case XI – lines vs. lines

For CCD of two lines in R3, we seek the time instants at
which the lines intersect in R3. Two lines L1ðu; tÞ ¼ p1ðtÞþ
u q1ðtÞ and L2ðv ; tÞ ¼ p2ðtÞ þ v q2ðtÞ intersect in PR3 if
and only if q1ðtÞ;q2ðtÞ and p2ðtÞ � p1ðtÞ are coplanar.
The contact time instants are then given by the roots
of gðtÞ ¼ det½q1ðtÞ;q2ðtÞ;p2ðtÞ � p1ðtÞ� ¼ 0. The case of
gðtÞ � 0 is neglected since it corresponds to two moving
MAðtÞ ¼

1 0 0 �60t þ 30
0 1 0 20
0 0 1 0
0 0 0 1

0BBB@
1CCCA and;

MBðtÞ ¼

�2t2 þ 2t 0 �2t þ 1 �120t3 þ 180t2

0 2t2 � 2t þ 1 0 160t3 � 260t2

2t � 1 0 �2t2 þ 2t 0
0 0 0 2t2 � 2

0BBB@
lines which are always coplanar; any contact between
two moving line segments of this kind for two CQMs can
be detected by CCD of an end vertex of one line segment
and a CQM face on which the other line segment lies. For
each candidate time instant t0, the corresponding candi-
date contact point is given by p ¼ p1ðt0Þ þ u0 q1ðt0Þ, where
u0 ¼ ððp2ðt0Þ � p1ðt0ÞÞ � q2ðt0ÞÞ � ðq1ðt0Þ � q2ðt0ÞÞ=jq1 ðt0Þ
�q2ðt0Þj2 (see [41]). The straight line L1ðu; t0Þ and
L2ðu; t0Þ are parallel and have no contact in R3 if
jq1ðt0Þ � q2ðt0Þj2 ¼ 0.

6. Contact validation

For each contact point computed from the CCD sub-
problems, we need to check if it is a valid contact point
of two CQMs. A candidate contact point p is a valid contact
point if and only if

1. p lies on both CQMs;
2. p constitutes an external contact of the CQMs, which

means that the interior of the CQMs does not overlap.

We assume here that a CQM is obtained using CSG
(constructive solid geometry). By recursive evaluation
of the CSG construction trees, we can easily determine
if a point lies on the surface of both CQMs or not. As
for the second criteria, since the two given CQMs are
separate initially, the first occurrence of a valid con-
tact point must guarantee an external contact of the
CQMs.
7. Two working examples

Example 7. In this example, we solve CCD of two moving
capped elliptic cylinders AðtÞ and BðtÞ, both are of the
same size (Fig. 9a). The boundary elements of the cylinders
are:
� 120t þ 30
þ 180t � 50

t þ 1

1CCCA;
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� Face FA;1; FB;1: a cylinder x2

52 þ y2

102 ¼ 1; z 2 ½�5;5�.
� Face FA;2; FB;2: a plane z ¼ �5; and face FA;3; FB;3: a plane

z ¼ 5.
� Edge EA;1; EB;1: an ellipse x2

52 þ y2

102 ¼ 1; z ¼ �5; and edge
EA;2; EB;2: an ellipse x2

52 þ y2

102 ¼ 1; z ¼ 5.

Cylinder AðtÞ assumes a linear translation, while cylin-
der BðtÞ assumes a degree-2 rotation as well as a linear
translation. The motion matrices of AðtÞ and BðtÞ are
respectively, t 2 ½0;1�. We refer the readers to [36] for the
details of the construction of the rational motion MBðtÞ.
The moving face FA;1 can then be expressed as XT AðtÞX ¼ 0,

where X ¼ ðx; y; z;1ÞT and AðtÞ ¼ M�T
A ðtÞ diag 1

52 ;
1
52 ;0;�1

� �
M�1

A ðtÞ. Expressions for other elements can be derived
similarly by applying appropriate motion matrices.

The subproblems are listed as follows:

� ðF; FÞ – ðFA;1; FB;1Þ
� ðF; EÞ – ðFA;1; EB;1Þ; ðFA;1; EB;2Þ; ðFB;1; EA;1Þ, ðFB;1; EA;2Þ; ðFA;2;

EB;1Þ; ðFA;2; EB;2Þ; ðFA;3; EB;1Þ; ðFA;3; EB;2Þ; ðFB;2; EA;1Þ; ðFB;2;
EA;2Þ, ðFB;3; EA;1Þ; ðFB;3; EA;2Þ
� ðE; EÞ – ðEA;1; EB;1Þ; ðEA;1; EB;2Þ; ðEA;2; EB;1Þ, ðEA;2; EB;2Þ

We shall show how four of the above CCD subproblems
(corresponding to the four cases in Fig. 7) is solved. For
brevity, contact point verification is skipped.

ðF; FÞ: ðFA;1; FB;1Þ—cylinder vs. cylinder

The characteristic polynomial f ðk; tÞ ¼
detðkAðtÞ � BðtÞÞ is quadratic in k (since
detðAðtÞÞ � 0 and detðBðtÞÞ � 0). The candidate time
instants are the roots of Reskðf ; fkÞ ¼ 0, which are
found to be t0 ¼ 0:5;0:625; 0:875.
� For t0 ¼ 0:5, we have f ðk; t0Þ ¼ 0. The pencil
kAðt0Þ � Bðt0Þ is degenerate. Hence, we transform
Aðt0Þ and Bðt0Þ by M�1

A ðt0Þ so that their axes
(which are parallel) are orthogonal to the xy-
plane, and check whether the cross-sectional
ellipses on the xy-plane have any contact.
Now, the characteristic polynomial f ðk; t0Þ ¼
�ð16k� 1Þð256k2 þ 112kþ 1Þ of the cross-sec-
Fig. 9. (a) Two moving capped cylinders. (b) The cylinders are fo
tional ellipses does not have any multiple root.
Hence, there is no contact between the cylinders
at t ¼ 0:5.

� For t0 ¼ 0:625; f ðk; t0Þ has a multiple root and
hence the cylinders are in contact. The contact
point is found to be ð�7:5;10;0ÞT and is verified
to be a point on both capped cylinders. This is
done exactly (see Remark 2). Therefore, a valid
first contact at t ¼ 0:625 is found for the cylin-
ders. We may now skip the other larger roots of
Df ðtÞ ¼ 0 and also other candidate time instants
later than t0 ¼ 0:625 obtained in the subsequent
CCD subproblems. (Note that in the followings,
calculations for the later candidate time
instant are still presented for illustrations, while
they are skipped in practice for efficiency
considerations.)
ðF; EÞ: ðFA;1; EB;1Þ—cylinder vs. ellipse

Both FA;1 and EB;1 are mapped by the same transfor-
mation such that EB;1 is an ellipse in standard form
on the xy-plane. The intersection of the transformed
FA;1 and the xy-plane is an ellipse E, and CCD is per-
formed between the two ellipses E and EB;1. The
characteristic polynomial of the ellipses are found
to have a double root at t0 ¼ 0; 0:6341;1.
� For t0 ¼ 0; f ðk; t0Þ ¼ 0 has a double root 0 which
does not correspond to any valid contact and is
hence rejected; E is indeed a line that does not
touch EB;1.

� For t0 ¼ 0:6341; f ðk; t0Þ ¼ 0 has a double root
k0 ¼ �0:2843. A single contact point
ð�6:623;10:414;�4:95ÞT is found, which is veri-
fied to lie on both truncated cylinders.
ðF; EÞ: ðFA;3; EB;1Þ—plane vs. ellipse

Let PðtÞ be the plane FA;3 and EðtÞ be the ellipse EB;1.
Both PðtÞ and EðtÞ are simultaneously transformed
such that EðtÞ is in standard form on the xy-plane.
The plane PðtÞ intersects the xy-plane in the line
Lðu; tÞ ¼ ð10t � 5;uð1� 2tÞ;0;4t2 � 4t þ 1ÞT . We
now deal with CCD of the line Lðu; tÞ and the ellipse
und to have the first contact at t ¼ 0:625.



(a) (b)

Fig. 10. Specifications of two CQM objects in Example 8.
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EðtÞ. Substituting L into the ellipse equation yields
hðu; tÞ and solving the discriminant DhðtÞ gives the
roots t0 ¼ 0; 0:5;1.
MBðtÞ
� For t0 ¼ 0, solving hðu; t0Þ ¼ 0 gives u0 ¼ 0, and
the contact point is given by X0 ¼ ð25;�50;5ÞT .
However, since XT

0EðtÞX0 ¼ 49 > 0;X0 is not in
the elliptic disk on PðtÞ and hence t0 ¼ 0 is
rejected.

� For t0 ¼ 0:5;Pðt0Þ is parallel to the xy-plane, and
t0 is therefore rejected.

� For t0 ¼ 1, the contact point is found to be
X0 ¼ ð�25;30;5ÞT which does not lie within the
elliptic disk on PðtÞ and t0 ¼ 1 is rejected.

� Hence, Pðt0Þ and Eðt0Þ are collision-free.
Fig. 11. (a) CCD of two CQMs in Exa
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ðE; EÞ: ðEA;1; EB;1Þ—ellipse vs. ellipse

Let EAðtÞ be EA;1 and EBðtÞ be EB;1. We transform both
ellipses simultaneously such that EBðtÞ is in standard
form on the xy-plane. The containing planes of the
ellipses are not equal for all t and we proceed with
CCD of two 1D ellipses, and the candidate contact
times are t0 ¼ 0:5; 0:6342;0:875;0:9658.
mple 8

ð�60u
þð90u
þð�3

ð9u
þð
þð

ð20u
þð60
þð�4
ð2
þ

� For t0 ¼ 0:5; EAðt0Þ lies on the xy-plane; hence, we
perform collision detection for the two static
ellipses E1ðt0Þ : x2

25�
y2

100�
2y
5 þ 3 ¼ 0 and

E2ðt0Þ : x2

400þ
y2

1600þ
y

80 ¼ 0. The characteristic equa-
tion for E1ðt0Þ and E2ðt0Þ has no multiple root, and
hence there is no contact at t0 ¼ 0:5.

� For t0 ¼ 0:6342, the characteristic equation f ðkÞ
has a multiple root and the contact point is found
to be ð�6:7084;10:3668;�5ÞT .
Final result: Combining the results from all 17 subprob-
lems, the two capped cylinders are found to have the first
contact at t ¼ 0:625 for the pair ðFA;1; FB;1Þ at ð�7:5;10;0ÞT

(Fig. 9(b)). The algorithm is implemented with Maple using
exact algebraic computations for all CCD formulations. We
use floating point evaluation (15 significant digits) for
solving the candidate time instants and computing the con-
tact points. It takes 0.12 s to complete on an Intel Core 2 Duo
E6600 2.40-GHz CPU (single-threaded).
. (b) The first contact.
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Example 8. In this example, we solve CCD for two moving
CQMs as shown in Fig. 11(a). Object A comprises 45
boundary elements (4 cylinders, 9 planes, 10 circles, 14
lines and 8 vertices) while object B includes 13 boundary
elements (3 cylinders, 1 cone, 3 planes and 6 circles). The
specifications of the two objects are given in Fig. 10. Object
A translates linearly on the plane while B moves with a
linear translation and a degree-2 rotation (Fig. 11(a)). The
motion matrices of AðtÞ and BðtÞ are

MAðtÞ ¼

1 0 0 15� 45t

0 1 0 15� 25t

0 0 1 0
0 0 0 1

0BBB@
1CCCA and

respectively, t 2 ½0;1�. There are altogether 366 CCD sub-
problems, and it takes about 5 s to complete the CCD com-
putations under the same Maple environment as in
Example 7. The first contact configuration is found to hap-
pen at t ¼ 0:313 between the circle ðyþ10Þ2

22 þ z2

22 ¼ 1; x ¼ �6,
of A and the cone x2 þ z2 ¼ ðy� 8Þ2; y 2 ½6;7�, of B as
shown in Fig. 11(b).
8. Conclusion

We have presented a framework for CCD of composite
quadric models (CQMs) whose boundary surfaces are
defined by piecewise linear or quadric surface patches
and whose boundary curves are conic curves or line seg-
ments. A hierarchy of CCD subproblems for various types
of boundary element pairs in different dimensions are
solved. Some subproblems can be solved using a dimen-
sion reduction technique so that the original problem is
transformed to one in a lower dimensional space. In partic-
ular, we solved CCD of moving general quadrics and CCD of
moving conics in R3. We also developed procedures for
contact points verification to check if a contact point of
the extended boundary elements lies on a CQM surface.

Our algorithm is exact in the sense that no approxima-
tion of the time domain or of the geometries is necessary. It
only requires the evaluation of polynomial expressions at
real roots of other univariate polynomials, the operations
of which can be performed exactly (see Remark 2). Alge-
braic formulations are established for the CCD subprob-
lems. Out of efficiency considerations, contact time
instants and the corresponding contact points are solved
for numerically. When the degree of motion is high,
numerical stability problems thus introduced remain to
be resolved.

In general, a boundary edge of a CQM may not be a
conic curve, but rather a general degree four intersection
curve of two boundary quadrics. Algorithms for CCD of this
type of general CQMs still need to be developed. Major dif-
ficulties arise from the handling of degree four intersection
curves. An idea is to reduce the problem of CCD of a mov-
ing general boundary edge and a moving quadric to the
study of intersection of three quadrics in 3D (two of which
intersect to give the boundary edge). There is a contact
between a quadric surface A and a general boundary edge
which is the intersection of two quadrics B and C, if and
only if A;B and C have a common singular intersection.
The latter condition is indicated by that the quartic curve
Gða; b; cÞ � detðaAþ bBþ cCÞ ¼ 0 has a singular point.
Hence, we need to develop methods to detect the time t0

at which the moving planar quartic curve Gða; b; cÞ ¼ 0
has a singular point. The case of CCD of two edges can be
treated similarly, but is reduced to the study of the inter-
section of four quadrics, that is, the two pairs of quadrics
defining two extended boundary curves. This will then lead
to the study of singularity of a quartic surface.
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