
Efficient Collision Detection for Moving Ellipsoids

Using Separating Planes

W. Wang, Y-K. Choi, B. Chan, Hong Kong, M-S. Kim, Seoul, J. Wang, Jinan

Received March 28, 2003; revised November 4, 2003
Published online: April 8, 2004

Springer-Verlag 2004

Abstract

We present a simple, accurate and efficient algorithm for collision detection among moving ellipsoids.
Its efficiency is attributed to two results: (i) a simple algebraic test for the separation of two ellipsoids,
and (ii) an efficient method for constructing a separating plane between two disjoint ellipsoids. Inter-
frame coherence is exploited by using the separating plane to reduce collision detection to simpler
subproblems of testing for collision between the plane and each of the ellipsoids. Compared with
previous algorithms (such as the GJK method) which employ polygonal approximation of ellipsoids,
our algorithm demonstrates comparable computing speed and much higher accuracy.

AMS Subject Classifications: 65D17, 68U07, 68U05.

Keywords: Collision detection, ellipsoids, algebraic test, separating plane, characteristic equation, self-
polar.

1. Introduction

Collision detection has many important applications in computer graphics,
including the simulation of virtual environments, computer animation and, in
particular, 3D computer games [5], [8], [9], [15], [18]. Ellipsoids are frequently used
for exact shape representation (e.g. in molecule simulation) and also as a tight
bounding shape for many natural objects and organic forms used in character
modeling [2]. Thus efficient algorithms for detecting collision among ellipsoids
have considerable potential.

We represent the interiors of two ellipsoids A and B by the inequalities
X T AX < 0 and X T BX < 0, where A and B are 4� 4 real symmetric matrices and
X ¼ ðx; y; z;wÞT represents a point in homogeneous coordinates.

A simple algebraic condition for the separation of two ellipsoids is established by
Wang et al. [26]. Given two ellipsoids A : X T AX ¼ 0 and B : X T BX ¼ 0, the
quartic equation fðkÞ ¼ detðkAþ BÞ ¼ 0 is called the characteristic equation of A
and B. Two ellipsoids are said to be disjoint if they do not have a common
boundary or interior point.
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Proposition 1 [26]. Let A and B be two ellipsoids with the characteristic equation
fðkÞ ¼ 0. Then

1. A and B are disjoint if and only if fðkÞ ¼ 0 has two distinct positive roots;
2. A and B touch each other externally if and only if fðkÞ ¼ 0 has a positive

double root.

Figure 1a shows two disjoint ellipsoids. Note that their characteristic equation
has two distinct positive roots. In Fig. 1b, two ellipsoids overlap and their
characteristic equation has no positive root.

Combining this result with a simple method for constructing a separating plane
for two disjoint ellipsoids, we devise an efficient algorithm for detecting collisions
between two moving ellipsoids. An arbitrary number of moving ellipsoids can also
be dealt with by repeated pairwise application of the algorithm.

It is well known that the efficiency of collision detection can be greatly improved
by using a separating plane [1]. Once a plane separating two ellipsoids is found,
there can be no collision between the ellipsoids until one of them collides with the
separating plane. Thus the original problem is reduced to two simpler subprob-
lems of searching for an intersection between a plane and an ellipsoid. Applying
an affine transformation, an ellipsoid and a plane can be reduced to a sphere and a
plane, and each of these subproblems then becomes equivalent to computing the
distance between the center of the sphere and a plane.

Since ellipsoids are preserved under affine motion, our approach can be applied to
ellipsoids that are moving and deforming under affine transformation. This is an
important advantage over specialized algorithms that work only for simple geo-
metric shapes such as axis-aligned boxes, spheres, cylinders, cones, or tori; such
algorithms may not be generalized when affine motions are used.

The remainder of this paper is organized as follows. In Section 2, we briefly
review related previous work. In Section 3, we develop a method for constructing
a separating plane for two disjoint ellipsoids. In Section 4, we present our com-
plete collision detection algorithm. In Section 5, experimental results are dis-
cussed. Section 6 concludes this paper.

2. Related Work

In the past, collision detection for ellipsoids was usually performed by faceting,
and then applying a collision detection package appropriate to general convex
polyhedra, such as GJK [7], I-COLLIDE [4], or V-Clip [14]. A drawback with this
approach is that accuracy and efficiency are compromised by polyhedral
approximation.

Rimon and Boyd [17] present an efficient numerical technique for computing a
quasi-distance, which they call the ‘margin’, between two disjoint ellipsoids, using
an incremental approach. Based on line geometry, Sohn et al. [20] devised a
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distance computation method for two ellipsoids by solving a system of two
equations in two variables. Lennerz and Schömer [10] compute the distance be-
tween two general quadrics using Lagrange multipliers. Other schemes have been
developed in related areas, such as molecule simulation in computational physics
[16] and geomechanics [12], based on numerical iterations; but they leave much to
be desired for efficiency. The algorithms described by Baraff [1] and Gilbert and
Foo [6] also belong to this category, but are applicable to a wider class of objects
bounded by smooth surfaces.

The relationship between two quadric surfaces, including ellipsoids as a special
case, has been studied in classical geometry and CAGD [23]. The Segre charac-
teristics, defined by the elementary divisors of the matrix kAþ B, are used in
algebraic geometry [3, 21] to classify a degenerate intersection curve between two
quadric surfaces in complex projective space. Similar work in real projective space
is presented by Tu et al. [22]. These results are not applicable to our collision
detection problem since we are concerned with the relationship between two
ellipsoids in real affine space: two ellipsoids always intersect in complex projective
space, but this does not mean that they share any common points in real affine
space. Various algorithms have also been studied in CAGD for computing the
intersection curve of two quadric surfaces (e.g., [11], [13], [24], [25], [27]). The
objectives of these algorithms are to classify the topological or geometric structure
of the intersection curve and to derive its parametric representation; efficient
collision detection is not their primary purpose.

3. Constructing a Separating Plane

In this section we show how to construct a separating plane of two disjoint
ellipsoids.

Theorem 1. LetA : X T AX ¼ 0 and B : X T BX ¼ 0 be two disjoint ellipsoids. Let Vi

denote the four eigenvectors of �A�1B associated with the eigenvalues ki,
i ¼ 0; 1; 2; 3. Then their endpoints Vi form the vertices of a tetrahedron, denoted by
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Fig. 1. Two (a) disjoint; (b) overlapping ellipsoids and the corresponding fðkÞ
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½V0V1V2V3�, that is self-polar for the ellipsoidsA andB 1. Furthermore, V0 and V1 are
outside A and B, V2 is inside B, and V3 is inside A.

Proof : Since A and B are disjoint, by Proposition 1, detðkAþ BÞ ¼ 0 has two
negative roots and two distinct positive roots: k0 � k1 < 0 < k2 < k3. When k0 <
k1, the four eigenvalues of�A�1B, which are equal to the roots of the quartic equa-
tion f ðkÞ � detðkAþ BÞ ¼ 0, are distinct. Thus their corresponding eigenvectors Vi

are linearly independent. From the equalities ðkiAþ BÞVi ¼ 0 and ðkjAþ BÞVj ¼ 0,
0 � i < j � 3, it follows that kiV T

i AVj þ V T
i BVj ¼ 0 and kjV T

i AVj þ V T
i BVj ¼ 0,

respectively. Since ki 6¼ kj, we have V T
i AVj ¼ V T

i BVj ¼ 0. When k0 ¼ k1, it can
easily be shown [26] that the eigenspace of�A�1B has dimension 2. Therefore, two
linearly independent vectors V0 and V1 can be selected to be the eigenvectors
associated with k0 such that V T

i AVj ¼ V T
i BVj ¼ 0 for 0 � i < j � 3. Hence, the

tetrahedron ½V0V1V2V3� is self-polar with respect to both A and B [19, 21]. This
means that, for both ellipsoids, each of the points Vi is the pole of a plane which
passes through the other three vertices of the tetrahedron ½V0V1V2V3� (see Fig. 2).

It follows from ðk0Aþ BÞV0 ¼ 0 that k0V T
0 AV0 þ V T

0 BV0 ¼ 0, since k0 < 0, V T
0 AV0

and V T
0 BV0 have the same sign. If V T

0 AV0 < 0 and V T
0 BV0 < 0, then V0 would be

inside both A and B, and hence A and B would overlap. We deduce that
V T
0 AV0 > 0 and V T

0 BV0 > 0: i.e. V0 is outside A and B. Similarly, V1 is outside A
and B.

It follows from ðk3Aþ BÞV3 ¼ 0 that k3V T
3 AV3 þ V T

3 BV3 ¼ 0. Since k3 > 0, V T
3 AV3

and V T
3 BV3 have different signs. We are going to show that V T

3 AV3 < 0, i.e. that V3

is inside A.

V0

V2

V3

V1

Fig. 2. The tetrahedron ½V0V1V2V3�

1½V0V1V2V3� is a self-polar tetrahedron for a quadric X T AX ¼ 0, if V T
i AVj ¼ 0 for i 6¼ j. See [19], page

272.
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Clearly, there is a point P on the line V2V3 which is outside both A and B. Thus
P ¼ aV2 þ bV3 for some constants a 6¼ 0 and b 6¼ 0. Then P T AP ¼ a2V T

2 AV2þ
b2V T

3 AV3 > 0, since P is outside A. Similarly, P T BP ¼ a2V T
2 BV2 þ b2V T

3 BV3 > 0.
Since ðk2Aþ BÞV2 ¼ 0 and ðk3Aþ BÞV3 ¼ 0, we have BV2 ¼ �k2AV2 and BV3 ¼
�k3AV3. Substituting for BV2 and BV3 yields

P T BP ¼ a2V T
2 BV2 þ b2V T

3 BV3

¼ a2V T
2 ð�k2AV2Þ þ b2V T

3 ð�k3AV3Þ

¼ �k2ða2V T
2 AV2 þ b2V T

3 AV3Þ þ b2ðk2 � k3ÞV T
3 AV3

¼ �k2P T AP þ b2ðk2 � k3ÞV T
3 AV3:

Thus

V T
3 AV3 ¼ b�2ðk2 � k3Þ�1ðP T BP þ k2P T AP Þ < 0:

Hence, V3 is inside A. Similarly, it can be shown that V2 is inside B. This com-
pletes the proof.

Suppose that A : X T AX ¼ 0 and B : X T BX ¼ 0 are two disjoint ellipsoids. Since
V3 is inside A, its polar plane V0V1V2 does not intersect A [19]; and, since V2 is
inside B, its polar plane V0V1V3 does not intersect B. Thus, the line V0V1, which is
the intersection of the planes V0V1V2 and V0V1V3, does not intersect either A or B.
So there are two planes, TA

L and TA
R, tangent to A that pass through V0V1 (see

Figure 3(a)).

Let P A
L and P A

R denote the points at which TA
L and TA

R touch A. Clearly, A is
contained entirely between the planes TA

L and TA
R. Since the tetrahedron

½V0V1V2V3� is self-polar with respect to A, the line V0V1 is conjugate with the line
V2V3. Hence, the points P A

L and P A
R are on the line V2V3, i.e. the line segment

½P A
L P A

R � is contained in V2V3. Let P B
L and P B

R denote the points where the two
tangent planes TB

L and TB
R that pass through V0V1 touch the ellipsoid B. By a

similar argument to that just used for ellipsoid A, we can show that B is
contained between the planes TB

L and TB
R, and the line segment ½P B

L P B
R � is

contained in the line V2V3.

Since A and B are disjoint, the line segments ½P A
L P A

R � and ½P B
L P B

R � are disjoint. Let
the four tangent points P A

L , P A
R , P B

L , and P B
R be labeled such that the open line

segment ðP A
R P B

L Þ is outside A and B (see Figure 3). Clearly, any plane passing
through V0V1 and intersecting ðP A

R P B
L Þ does not intersect A or B and lies between

A and B; hence, this plane separates A and B.

Therefore, we have proved

Theorem 2. Any plane passing through the line V0V1 and intersecting the open line
segment ðP A

R P B
L Þ is a separating plane of A and B (see Figure 3(b)). In particular,
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the plane passing through V0, V1, and P A
R touches A at P A

R , and the plane passing
through V0, V1, and P B

L touches B at P B
L .

Now we will consider the computational procedure for obtaining a separating
plane for two disjoint ellipsoids A and B. Using Proposition 1, we first compute
the four real roots of the characteristic equation fðkÞ ¼ detðkAþ BÞ ¼ 0: two of
the roots are negative and the other two are distinct positive roots, and can be
labeled according to the inequalities k0 � k1 < 0 < k2 < k3. Since detðkAþ BÞ ¼
detðAÞ detðkI þ A�1BÞ, these roots ki are also the eigenvalues of the matrix �A�1B.
The eigenvectors V2 and V3 are obtained by solving the equations
ðkiI þ A�1BÞX ¼ 0, i ¼ 2; 3. Next we compute the points P A

R and P B
L where the line

V2V3 intersects the ellipsoids A and B (see Figure 3). Then we obtain the tangent
plane TA

R of A at P A
R and the tangent plane TB

L of B at P B
L . Since, by Theorem 2,

TA
R and TB

L intersect on the line V0V1, a separating plane can be found by taking
an appropriate linear combination of the equations of TA

R and TB
L .

4. The Complete Algorithm

Based on the results discussed in the previous sections, we present below an
algorithm for detecting collision between two moving ellipsoids. Figure 4 gives a
schematic description of the algorithm.

Suppose that two ellipsoids Ai�1 and Bi�1 at frame i� 1 are disjoint. The
separating plane is computed and becomes the candidate separating plane at the
next frame, i. Under continuous motion, the positions and orientations of the
moving ellipsoids may be expected to change little between frame i� 1 and
frame i. Thus, in most cases, the candidate separating plane may still separate
Ai and Bi, and this can be verified efficiently. If the candidate separating plane
at frame i does indeed separate Ai and Bi, then a great deal of time is saved by
avoiding solving the characteristic equation of Ai and Bi, which is a relatively
expensive procedure; otherwise, we need to compute the roots of the
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Fig. 3. (a) Four planes passing through V0 and V1: T
A
L and TA

R are tangent to ellipsoidA; TB
L and TB

R
are tangent to ellipsoid B; (b) A separating plane is one that passes through V0, V1 and S, where S can

be any point on the open line segment ðP A
R P B

L Þ
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characteristic equation, either to find that the ellipsoids collide, or to find that
they are disjoint and then to compute a new separating plane. The algorithm is
efficient because the non-collision case occurs much more frequently than the
collision case, due to inter-frame coherence. It is also possible to maintain more
than one candidate separating plane, so as to increase the likelihood of detecting
disjoint ellipsoids.

A plane separates two ellipsoids if and only if (i) the plane does not intersect
either of the ellipsoids; and (ii) the centers of the two ellipsoids are on the
opposite sides of the plane. Since it is relatively easy to test the second condi-
tion, the problem essentially reduces to that of testing whether a plane intersects
an ellipsoid. Note that an ellipsoid can be transformed to the unit sphere by an
affine transformation, which is normally available as the inverse of the motion
matrix. Applying this transformation, the problem is simplified to one of
detecting the intersection between a plane and a unit sphere centered at the
origin. The problem can be further reduced to one of finding the distance be-
tween the origin and a plane.

The availability of a separating plane not only simplifies the collision test in
many frames due to inter-frame coherence, but also provides useful geometric
information about the relative positions of the ellipsoids. For example, the
tangent points P A

R and P B
L serve as good approximations to the pair of mutually

closest points on the two ellipsoids; in fact, if the ellipsoids are actually
spheres, then P A

R and P B
L are exactly the closest points. Furthermore, when two

ellipsoids touch each other externally (i.e. k2 ¼ k3), P A
R and P B

L merge into the
contact point, which provides very useful information for computing collision
impulses.

Does 
the candidate

separating plane
separate

and ?

Is
a candidate

separating plane
available?

Compute a new
separating plane

for the next frame.

Start

End

Yes

No

Yes

No

Yes

NoCompute the
roots of .f(L)

and
are disjoint.

and
collide.

Does have
two distinct

positive roots?

Fig. 4. Algorithm for collision detection between two ellipsoids Ai and Bi at frame i
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5. Experimental Results

In this section we shall demonstrate the effectiveness of the separating plane in
speeding up our method, and also compare our method with the GJK method [7].
For brevity, our new algorithm will be referred to as EECD (for Exact Ellipsoid
Collision Detection). To demonstrate the improved performance of EECD
achieved by using the separating plane, two ellipsoids of the same size (with
principal axes of half-lengths 3, 3 and 5) are made to rotate continuously about
their centers for 10,000 frames. The distance between the two centers is 8. Three
sets of experiments are carried out in which the ellipsoids rotate about a random
axis with low, medium and high angular speeds (angular increments of 0.1, 0.5
and 1 radians per frame). The simulation was run on a PC equipped with a
Pentium 4 2.26GHz processor and the results are shown in Table 1.

When the ellipsoids rotate at the low angular speed, the orientations of the
ellipsoids between successive frames differ only by a little and we see that the use
of separating planes allows the algorithm to identify as many as 8,310 separations
out of the overall 8,798 separations. As a consequence, the time taken for collision
detection is significantly reduced. As the angular speed increases, there are fewer
cases where the candidate separating plane reports separation, but a considerable
amount of time is still saved. EECD takes on average less than 5 microseconds per
frame to detect collisions between two ellipsoids. It is also obvious that, when the
distance between the two ellipsoids increases, more candidate separating planes
will remain valid and therefore the benefit of using separating planes becomes
more remarkable. Optimal performance is achieved when the candidate separat-
ing plane remains valid for all frames.

The same sets of experiments are performed using a collision detection scheme
that solves the characteristic equation in every frame without using separating
planes. It takes about 8 microseconds to detect collision between two ellipsoids,
longer than that needed by EECD. We note that the running time is insensitive to
the number of collisions and separations in each test. This is because the same
amount of computation is required no matter whether the ellipsoids are disjoint or
overlapping.

Another experiment was conducted to compare EECD with the enhanced GJK
method, which has been described [14] as one of the most robust and efficient
collision detection methods for convex polyhedra currently available. We have

Table 1. Experimental results demonstrating the effect of using the separating plane in EECD

Angular velocity Low Medium High

Number of collisions (out of 10,000 frames) 1,202 1,554 1,622
Number of separations (out of 10,000 frames) 8,798 8,446 8,378

Number of separations reported by separating plane tests 8,310 6,029 4,502
Time per frame (ls) using the separating plane, averaged

over 10,000 frames (EECD)
2.474 3.985 4.982

Time per frame (ls) without using the separating plane,
averaged over 10,000 frames

7.906 7.951 7.899
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adapted the routines for the enhanced GJK method2 by removing the code for
distance computation, thus improving their efficiency for collision detection.

The experiment is set up as follows (see Fig. 5). A sphere AðtÞ of radius 1.0 orbits
along a circular path around an ellipsoid B. The half-lengths of the three principal
axes of B are 4.5, 4, and 2, respectively. The path of AðtÞ lies on the plane
determined by the two longer principal axes of B. AðtÞ and B collide only near
the two ends of the longest principal axis of B, as shown by bright spheres in
Fig. 5. The central angle subtended by the displacement of AðtÞ between two
consecutive frames is 0.01 radians. For each frame, the bounding boxes of AðtÞ
and B are first checked. If they do not intersect, separation is reported, shown by
framed boxes bounding AðtÞ in the figure; otherwise, a collision detection pro-
cedure, either EECD or enhanced GJK, is called.

Out of a total of 13,746 frames, the bounding boxes of AðtÞ and B intersect in
10,000 frames, and AðtÞ collides with B in 1,157 of these frames. Collision
detection for the 10,000 frames using EECD takes 0.0212 seconds. Among the
8,843 frames in which AðtÞ and B are disjoint, 8,020 frames are detected using

  (t)

Fig. 5. Experimental set-up corresponding to the results in Table 2: a sphere AðtÞ moves along a
circular orbit around an ellipsoid B. Bright spheres indicate collision. Framed boxes bounding AðtÞ

are disjoint from the bounding box of B

2The enhanced GJK routines are due to Stephen Cameron and are available at
http://users.comlab.ox.ac.uk/stephen.cameron/distances.html.
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separating planes. As a comparison, without using separating planes, it takes
0.0763 seconds for the same set-up. Thus the use of separating planes reduces the
computational time by a factor of more than 3 in this example. As explained
earlier, this improvement is specific in this particular example, and varies with the
orbit taken by AðtÞ. In an extreme case, the two ellipsoids would collide in all
frames and the separating planes may offer no benefit.

The enhanced GJK method was also run on the same set-up, with different
numbers of vertices (n) used for approximating AðtÞ and B. The results are
summarized in Table 2.

The results show that EECD is about an order of magnitude quicker than the
enhanced GJK method. When the ellipsoids are coarsely faceted, the enhanced
GJK method, is also fast; however when n ¼ 488, it incorrectly reports collision as
separation in all frames. The number of misses reduces with increased resolution;
when 13,124 vertices are used for polyhedral approximation, there are errors in
only 46 frames, but the computation time per frame is now increased from 15.2
microseconds to 54.3 microseconds. This trade-off between accuracy and effi-
ciency is intrinsic to any collision detection methods based on polyhedral
approximation.

6. Conclusions

We have presented an efficient algorithm for detecting collision among ellipsoids.
It is based on a simple algebraic condition on the separation of two ellipsoids, and
uses a separating plane to exploit frame coherence between moving ellipsoids. Our
algorithm is simple to implement and has high accuracy, since it does not rely on
polyhedral approximations. The central idea behind this new algorithm can be
extended to other types of quadric surfaces or objects modeled as unions of
ellipsoids in a straightforward manner. A related problem for future research is to
devise efficient methods for detecting collisions among CSG models of quadric
primitives.
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