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Abstract
Graphics processing units (GPUs) have a SIMD architecture
and have been widely used recently as powerful general-
purpose co-processors for the CPU. In this paper, we in-
vestigate efficient GPU-based data cubing because the most
frequent operation in data cube computation is aggregation,
which is an expensive operation well suited for SIMD par-
allel processors. H-tree is a hyper-linked tree structure used
in both top-k H-cubing [21] and the stream cube [20]. Fast
H-tree construction, update and real-time query response are
crucial in many OLAP applications. We design highly ef-
ficient GPU-based parallel algorithms for these H-tree based
data cube operations. This has been made possible by taking
effective methods, such as parallel primitives for segmented
data and efficient memory access patterns, to achieve load bal-
ance on the GPU while hiding memory access latency. As a
result, our GPU algorithms can often achieve more than an or-
der of magnitude speedup when compared with their sequen-
tial counterparts on a single CPU. To the best of our knowl-
edge, this is the first attempt to develop parallel data cubing
algorithms on graphics processors.

1 Introduction
Graphics processing units (GPUs) are routine components of
personal computers and were traditionally designed for dis-
playing visual information on the computer screen. Over the
years, the rapid progress of modern GPU architectural design
has significantly shifted their role in computing. GPUs have
been widely used recently as powerful general-purpose co-
processors for the CPU. Similar to CPUs, in particular multi-
core CPUs, GPUs consist of multiple processors. However,
GPUs provide parallel lower-clocked execution capabilities on
over a hundred SIMD (Single Instruction Multiple Data) pro-
cessors whereas current multi-core CPUs typically offer out-
of-order execution capabilities on a much smaller number of
cores. Moreover, the majority of GPU transistors are devoted
to computation units rather than caches, and GPU cahe size are
an order of magnitude smaller than CPU cache sizes. These
hardware design choices make GPUs particularly well suited
for high-bandwidth computationally intensive tasks with rela-
tively simple logic.

Data cubes are a common data mining technique for ab-
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stracting and summarizing relational databases [18]. Cuboids
in a data cube store preprocessing results that enable effi-
cient on-line analytical processing (OLAP) [8]. Computing
data cubes is a time-consuming and computationally intensive
process. Parallel algorithms [30, 10, 9, 12] have been devel-
oped for systems with multiple CPUs. We investigate efficient
GPU-based data cubing algorithms in this paper because the
most frequent operation in data cube computation is aggrega-
tion, which is an expensive operation well suited for SIMD
parallel processors.

For high-dimensional datasets, a fully materialized data
cube may be several hundred times larger than the original
data set. It is thus only practical to precompute a subset of
the cuboids. Partial data cubes are also very useful for real-
time streaming data as computing and updating a full data cube
would take too long a time to keep pace with the arrival rate of
a real-time data stream, and therefore, preclude the possibility
of real-time data analysis. H-tree [21, 20] is an efficient data
structure for computing partially materialized data cubes as
well as for incremental and online cubing of streaming data. It
is also closely related to efficient mining of frequent patterns
[22]. In this paper, we focus on the development of H-tree
based data cubing algorithms on the GPU. Specifically, we de-
sign highly efficient GPU-based parallel algorithms for H-tree
construction, incremental H-tree update as well as online H-
tree based data cube query processing. These GPU algorithms
can achieve more than an order of magnitude speedup when
compared with their sequential counterparts on a single CPU.

Although there has been much recent success on GPU-based
data structures, including k-d trees [40], developing GPU-
based parallel algorithms for the H-tree data structure still im-
poses a great challenge. The primary reason lies in the fact that
unlike binary trees and k-d trees, different H-tree nodes may
have drastically different number of children nodes, which
makes it very hard to achieve load balance among different
threads and thread blocks. We adopt three important strategies
to overcome this difficulty. First, use parallel primitives de-
signed for segmented data. By using a flag vector to indicate
distinct data segments each of which may correspond to a dif-
ferent parent node, data across an entire level of an H-tree can
be processed in parallel. For this purpose, we have developed
the first segmented sorting algorithm for GPUs. It is based on
a parallel algorithm for radix sort. Second, adaptively divide
the workload from each data segment among multiple thread
blocks. Since the workload from different data segments may
differ significantly, to achieve load balance, each data segment
needs to be divided into a variable number of chunks which
may be assigned to different thread blocks. Third, use scat-
ter and gather primitives as well as coalesced memory access
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to efficiently redistribute data in parallel. This is necessary
because data vectors often need to be reorganized to expose
parallelism at different stages of an algorithm.

In summary, this paper has the following three contribu-
tions. First, we identify technical challenges in performing
parallel H-tree based data cubing tasks on GPUs and provide
general solutions to address these challenges. Our GPU-based
data-parallel primitives are applicable to not only H-tree oper-
ations but also other GPU-based parallel data structures. Sec-
ond, we design and implement GPU-based parallel algorithms
for representative H-tree operations, and empirically evalu-
ate these algorithms in comparison with optimized versions of
their CPU counterparts. To the best of our knowledge, this is
the first attempt to develop data cubing algorithms on graphics
processors and the first attempt to develop parallel algorithms
for H-tree operations. Third, we provide insights and sugges-
tions on GPU programming for the tasks considered.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly introduce the GPU architecture and program-
ming model, and review GPU-based algorithms for database
operations as well as parallel data cubing algorithms on mul-
tiple CPUs. In Section 3, we describe a few parallel primi-
tives that serve as building blocks for our algorithms for H-
tree based operations. In particular, we introduce three new
primitives and their implementations. We describe the H-tree
structure and its GPU implementation in Section 4. In Section
5, we present our GPU algorithms for several H-tree based
data-cubing tasks. We experimentally evaluate our algorithms
in Section 6 and provide insights and suggestions on GPU pro-
gramming as well.

2 Background and Related Work

2.1 Graphics Processors (GPUs)

In the following, we briefly introduce the architecture and pro-
gramming model for both AMD and NVidia GPUs with an
emphasis on NVidia G80 GPUs.

At a high level, the GPU consists of many SIMD multi-
processors each of which has multiple scalar processors. At
any given clock cycle, each processor of a multiprocessor exe-
cutes the same instruction, but operates on different data. The
GPU has a large amount of device memory, which has high
bandwidth and high access latency. For example, the G80
GPU has an access latency of 400-600 cycles and a memory
bandwidth of 84.6 GB/second. In addition, each multiproces-
sor usually has a fast on-chip local memory, which is shared
by all the processors in a multi-processor. The size of this local
memory is small but the access latency is low.

GPU threads are different from CPU threads in that they
have low context-switch cost and low creation time as com-
pared to their CPU counterparts. Threads are organized into
thread groups, and the threads within the same group are al-
ways assigned to the same multi-processor. Threads within a
thread group share computational resources such as registers
on a multi-processor. They can also communicate through the

fast local shared memory of the multi-processor they are as-
signed to. Moreover, when multiple threads in a thread group
access consecutive memory addresses, these memory accesses
are grouped into one access. Multi-processors allow a large
number of active threads to hide the high memory access la-
tency. While some threads are waiting for the data, the others
can execute instructions. This further implies that each thread
group needs to have a reasonably large number of threads. For
example, each G80 multi-processor has eight scalar processors
and the suggested minimum number of threads per group is 32.

GPU programming languages include graphics APIs such
as OpenGL [2] and DirectX [6], and GPGPU languages such
as NVidia CUDA [3], AMD CTM [1]. With these APIs, pro-
grammers write two kinds of code, the kernel code and the
host code. The host code runs on the CPU to control the data
transfer between the GPU and the system memory, and to start
kernels on the GPU. The kernel code is executed in parallel on
the GPU. In the kernel code, a computational task is divided
among a number of thread groups, which are further dynam-
ically scheduled among the multi-processors. Typically, mul-
tiple thread groups can be simultaneously scheduled on the
same multi-processor.

2.2 GPU-Based Database Operations
Recently, GPUs have been used to accelerate scientific, geo-
metric, database and imaging applications. For an overview
on the state-of-the-art GPGPU techniques, we refer the reader
to the recent survey by Owens et al. [31]. In the following,
we focus on the techniques that use GPUs to improve the per-
formance of database and data mining operations. Sun et al.
[38] used the rendering and search capabilities of GPUs for
spatial selection and join operations. Bandi et al. [5] imple-
mented GPU-based spatial operations as external procedures
to a commercial DBMS. Govindaraju et al. pioneered GPU-
based algorithms for relational database operators including
join [25], selections, aggregations [15] as well as sorting [14],
and for data mining operations such as computing frequen-
cies and quantiles for data streams [16]. In contrast, our al-
gorithms are designed for data cubing [18] and online analytic
processing [8] instead of regular database query processing.
A few primitives supporting data-parallel programming have
been developed on a similar GPU architecture our algorithms
are based on. Sengupta et al. implemented GPU-based prefix
sum [37] and segmented scan [36]. Popov et al. [32] imple-
mented reduction and Zhou et al. [40] implemented segmented
reduction on the GPU. He et al. [24] proposed a multi-pass
scheme to improve the scatter and gather operations on the
GPU. Our algorithms utilize these operations as primitives.
Recently, Lieberman et al. [29] developed a similarity join,
and Zhou et al. [40] developed an algorithm for kd-tree con-
struction both using CUDA.

2.3 Parallel Data Cubes
Data cubes are a common data mining technique for abstract-
ing and summarizing relational databases [17, 18]. Cuboids in
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a data cube store preprocessing results that enable efficient on-
line analytical processing (OLAP) [8, 34]. Since computing
data cubes is a time-consuming process, parallel algorithms
have been developed for systems with multiple CPUs. Such
systems may or may not have a shared file system. When
there exists a shared file system, corresponding parallel algo-
rithms focus on evenly distributing computational load among
the multiple CPUs. The methods in [30, 10] reduce commu-
nication overhead by partitioning the load into coarse-grained
tasks and assigning sets of groupby computations to individual
processors. When working with PC clusters without a shared
file system, in addition to load balancing, minimizing data re-
distribution cost also becomes critical. The method in [13]
is based on a spatial merge between different sub-cubes dis-
tributed over different machines. The spatial merge operation
can be reduced to a parallel prefix. Effective data partition-
ing methods for data cubes represented as relational databases
have been studied in [9, 12]. Optimal communication and
memory schemes for parallel data cube construction have been
presented in [27]. To the best of our knowledge, there has not
been any previous work on GPU-based parallel algorithms for
data cube construction and query operations.

For high-dimensional datasets, a fully materialized datacube
may be several hundred times larger than the original data set.
It is thus only practical to precompute a subset of the cuboids.
A parallel algorithm has been developed in [11] to compute
partial data cubes on multiple CPUs. However, there has not
been any previous work on parallel algorithms for H-tree based
partial materialization.

3 PRIMITIVES

In this section, we present parallel primitives frequently used
by our GPU-based parallel algorithms. For those developed in
previous work, we only provide their definitions.

3.1 Existing Primitives

Gather and Scatter Gather and scatter are parallel memory
access primitives for modern GPUs. We adopt their definitions
and implementations from [24]. Scatter outputs each element
in an array, Rin, to its corresponding location in another array,
Rout.

Primitive: scatter(Rin, L,Rout)
Input: Rin[1, ..., n], L[1, ..., n]
Output:Rout[1, ..., n]
Function:Rout[L[i]] = Rin[i], i = 1, ..., n

Gather does the opposite of scatter.

Primitive: gather(Rin, L,Rout)
Input:Rin[1, ..., n], L[1, ..., n]
Output:Rout[1, ..., n]
Function:Rout[i] = Rin[L[i]], i = 1, ..., n

Compact Compact only scatters the elements whose flag has
been set to 1 according to a flag vector. It is originally from
[Harris et al.2007].

Primitive: compact(Rin, F, L,Rout)
Input: Rin[1, ..., n],F [1, ..., n],L[1, ..., n]
Output: Rout[1, ...,m]
Function: if F [i] = 1, Rout[L[i]] = Rin[i], i = 1, ..., n

Reduction and Segmented Reduction Summing up or
finding the maximum (minimum) element of an array is a typ-
ical reduction operation. Popov et al. [32] was the first to use
it on the GPU.

Primitive: reduction(Rin,
⊕

, Rout)
Input:Rin[1, ..., n],binary operator

⊕
Output:Rout

Function:Rout =
⊕

Rin[i], i = 1, ..., n

Gropp et al. [19] performs segmented reduction on arbitrary
segments of the input vector by using a flag vector. [40] was
the first one to perform segmented reduction in a thread block
on GPUs. Our implementation extends its capability and per-
forms segmented reduction across multiple blocks using recur-
sion. We found that segmented reduction was perfectly suited
for parallel aggregation (roll-up) operations.

Primitive: segmented reduction(Rin, segID,
⊕

, Rout)
Input: Rin[1, ..., n], segID[1, ..., n], binary operator

⊕
Output: Rout[1, ...,m]
Function: Rout[i] =

⊕
Rin[j],wheresegID[j] = i, i =

1, ...,m

Scan and Segmented Scan Scan was first used on GPUs by
Horn [26], then extended and carefully optimized by Sengupta
et al. [37] using CUDA. One typical example of scan is prefix
sum, with each output element computed as the sum of its pre-
ceding elements in an array. Note that there are two types of
scan, excluded scan and included scan. Included scan should
include the element at the current position itself. We use the
prefix sum implementation from the CUDPP library [23].

Primitive: scan(Rin,
⊕

, Rout)
Input:Rin[1, ..., n], binary operator

⊕
Output:Rout[1, ..., n]
Function: Rout[i] =

⊕
j<i Rin[j], i = 1, ..., n

Segmented scan primitives was first introduced in [35]. It
permits parallel scans on an arbitrary ”segment” of the input
vector by using a flag vector to demarcate each segment. Sen-
gupta et al. [36] is the first to introduce segmented scan on
GPUs using CUDA API.

Primitive: segmented scan(Rin, segID,
⊕

, Rout)
Input: Rin[1, ..., n], segID[1, ..., n], binary operator

⊕
Output: Rout[1, ..., n]
Function: Rout[i] =

⊕
j<i,segID[j]=segID[i] Rin[j], i =

1, ..., n
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Sort Sort is a key operation in our H-tree construction algo-
rithm. Much work has been performed on various GPU-based
sorting algorithms by other researchers. This includes bitonic
sort [36], radix sort [36] and quicksort [36, 7, 25]. In partic-
ular, [25] provides a quicksort implementation based on radix
sort. It can handle additional data types, such as strings. Note
that it is sufficient to represent the value of a database dimen-
sion using an integer or a string. Since we only need to sort
values of dimensions in this paper, our sorting primitives, in-
cluding radix sort and segmented (radix) sort (Section 3.2),
only support these two data types. Our radix sort is based on
[25].

Primitive: radix sort(Rin, pos)
Input: Rin[1, ..., n]
Output: sorted Rin[1, ..., n] and pos[1, ..., n]
Function: histogram based radix sort, pos stores the new
position for each element.

3.2 Our Primitives
In addition to the above primitives, we have developed three
new primitives needed by our GPU algorithms.

3.2.1 Split and Segmented Split

The split primitive we develop here is completely different
from previously developed versions used by [36, 25]. The dif-
ference is that their split is mainly used for sorting while our
split and segmented split primitives just demarcate the spans of
a vector, where a span consists of a few consecutive elements
that are identical to each other. Split and segmented split set
the first element of each span to 1 and leave the rest to 0. These
two primitives are primarily used to obtain the flag vector for
segmented scan, reduction and sort.

Primitive: split(Rin, Rout)
Input: Rin[1, . . . , n]
Output: Rout[1, . . . , n]

begin
for each element i in parallel

if Rin[i] = Rin[i− 1] then
Rout[i]← 0

else
Rout[i]← 1

end

Primitive: segmented split(Rin, segID, Rout)
Input: Rin[1, . . . , n], segID[1, . . . , n]
Output:Rout[1, . . . , n]

begin
for each element i in parallel

if segID[i] = segID[i− 1] then
if Rin[i] = Rin[i− 1] then

Rout[i]← 0
else

Rout[i]← 1
else

Rout[i]← 1
end

3.2.2 Segmented Sort

Our segmented sort is histogram-based. It is inspired by the
parallel radix sort algorithm proposed by [39] and [25]. How-
ever there are two major differences. The first is that seg-
mented sort performs sorting on a number of segments in par-
allel while the aforementioned work can be considered a spe-
cial example in that it performs on one large segment only.
The second difference is that each processor (thread) can own
more than one histograms if its assigned data belongs to mul-
tiple segments.

Primitive: segmented sort(Rin, segID, pos, Rout)
Input: Rin[1, ..., n], segID[1, ..., n]
Output: pos[1, ..., n], Rout[1, ..., n]

Variables
T , the total number of threads
P = n/T , the number of elements assigned to each thread
HNum, 1D array holding the number of histograms per seg-
ment
preHis, 1D array for the results of prefix sum on HNum
H , the total number of histograms
Key, the number of bins in a histogram
L, a large 1D array holding all the histograms and scatter lo-
cations
begin
(Phase 1. Histogram allocation)

1. for each segment i in parallel
2. HNum[i] = # of threads that fully or partially process

the i-th segment
3. reduction(HNum, +, H)
4. scan(HNum, +, preHis)
5. L← new Array,size = H ∗Key

(Phase 2. Building histograms)
6. each thread builds its histogram(s) in L such that all

histograms in segment i are all stored before those in segment
i+1; but for all histograms within each segment, lower valued
keys are all stored before higher valued ones.

7. scan L, and store results into L
(Phase 3. Scatter elements to their sorted locations)

8. each thread scatters its assigned elements to Rout ac-
cording to the corresponding location in L, store that location
in pos
end

Our overall segmented sorting algorithm basically performs
radix sort on individual segments at the same time trying to
achieve load balance. For strings, we repeatedly run the above
algorithm every time using the characters at a specific posi-
tion in the strings as the sorting keys. It starts from the least
significant (rightmost) character of every string. Once we have
reached the leftmost character, all strings become sorted. Each
time we use the scatter result of the previous run as its input.
To achieve load balance, we always assign an equal number
of elements to each thread no matter whether these elements
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belong to the same segment or not. Step 2 in phase 1 shows
that each segment could be processed by several threads and
a thread could process several segments. For example, thread
tid is responsible for the subset Rin[t, t+1, ..., t+P −1] and
the first k(1 < k < P ) elements belong to i-th segment and
the rest of the elements belong to the i+ 1-th segment, so two
histograms should be allocated and built by thread tid with the
first storing the counting results of the first k elements and the
second for the rest.

The whole algorithm is divided into three phases. The first
phase is the pre-computation phase for histogram allocation
and thread assignment. Unlike unsegmented sort primitive
proposed in [25] which allocates thread level histograms for
each thread and then scatter them to a large array, our seg-
mented sort primitive directly allocates one large array L to
hold all histograms and each histogram has its designated lo-
cations in L. As step 6 shows, all the histograms for segments
1, ..., i− 1 should be stored before the histograms for segment
i. However, within each segment, lower valued keys of all the
histograms should be written before the higher valued keys.
By doing this, relative positions of the elements within the
same segment in the final sorted array are implied by the loca-
tions of their sorting keys in L. Note that each thread processes
its assigned elements sequentially. Therefore, in step 8, every
time after a thread deposits an element into the final sorted ar-
ray, its destination index stored in L should be incremented by
1. This is to avoid write conflicts when another element with
the same key comes the next time.

To the best of our knowledge, we are the first to propose a
parallel algorithm for segmented sorting. We have compared
our algorithm with the straightforward ”segmented sort” im-
plementation, which sequentially sorts one segment after an-
other. Our experiments show that our parallel algorithm can
achieve a three to ten fold speedup. The efficiency is due to
the variance of segment lengths. The smaller the variance of
segment lengths, the better the efficiency. Intuitively, a larger
variance of segment lengths may evoke more histograms and
thus incur more memory access latency.

4 GPU Data Structures for H-Trees

H-tree is a hyper-linked tree structure originally presented in
[21] for efficient computation of iceberg cubes. It was later
deployed again in [20] as the primary data structure for stream
cubes. In the following, we briefly review the definition of an
H-tree before introducing its actual implementation on GPUs.

1. An H-tree HT is a compact representation of all tuples in
a relational database. HT has a root node ”null”. From
the second level, each level in HT corresponds to a dis-
tinct dimension of the database. The order of the levels
in HT follows a predefined order of the dimensions. Note
that by default the dimensions are sorted in a cardinality
ascending order. For stream data cubing [20], this order
is set to suit the specific needs of a data cubing task and
is called a popular path.

2. A tuple from the relational database is represented as a
path from the root to a leaf. If two tuples share the same
values in the first L dimensions in the predefined order,
their corresponding paths in HT also share the first L seg-
ments. The two different values in the L+1-th dimension
are stored in two children nodes of the node holding the
shared value of their L-th dimension.

3. There is a header table for each level of the tree. It holds
all distinct values of the corresponding dimension and the
number of repetitions of each distinct value. All nodes
sharing the same value are linked together by introducing
an additional side link in each node. The header table also
holds a pointer to the first node in each linked list.

4. All measures within a tuple are stored at the leaf node cor-
responding to that tuple. Intermediate nodes of HT hold
aggregated measures resulting from data cube computa-
tion. An intermediate node saves the aggregated mea-
sures over the subset of tuples represented by the subtree
rooted at the node. Thus, an H-tree is equivalent to a par-
tially materialized data cube.

Each node in an H-tree needs to record at least such infor-
mation as an attribute value of the corresponding dimension,
parent index, the index of the leftmost child, the number of
children as well as one or more aggregated measures. It can be
summarized by the following structure.

struct HNode{
char* atributeValue;
HNode* parentPointer;
HNode* leftMostChildPointer;
HNode* sideLink;
int childNum;
int aggregatedMeasure;

}
Let us now describe our GPU data structures for an H-tree.

For optimal GPU memory access performance, we use a struc-
ture of arrays (SoA) instead of an array of structures (AoS).
Each level of the H-tree has six arrays with the same size. Each
array holds the values of one field in the above data structure
for all nodes at that level. There are various indices used for
linking these arrays.

• key: an array holding attribute values of a dimension
• p: an array for parent indices
• m: an array holding values of an aggregated measure
• lmc: an array for the indices of the leftmost children
• cn: an array for the number of children for each node
• sL: an array of indices representing sidelink pointers.

The header table for each level is defined by three arrays with
the same size.

• hKey: an array of distinct values in key

• hSL: an array holding the first indices of the sidelink lists
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• hN : an array holding the number of repetitions of each
distinct value

The header table holds values and indices facilitating query
processing. The size of the header table for each level is equal
to the cardinality of its corresponding dimension.

5 GPU Algorithms for H-Tree Based
Data Cubing

5.1 GPU-Based H-Tree Construction
Parallel kd-tree construction [40] and parallel top-down
bounding volume hierarchy construction [28] have already
been widely used in computer graphics. Different from [28],
our H-tree construction algorithm first takes a top-down ap-
proach to build the tree structure and then follows a bottom-up
manner to aggregate measures at every tree node in parallel.
In addition, our method heavily utilizes the proposed GPU
primitives, such as segmented sort and segmented reduction,
to achieve better efficiency.

In the following, we present the detailed algorithm for GPU-
based H-tree construction. Since an H-tree is constructed from
a collection of tuples in a relational table, the order of the di-
mensions (of this relational table) within the H-tree needs to be
specified by OLAP experts. Note that a dimension may have
multiple levels. Without loss of generality, we consider each
distinct level as a new dimension in this paper.

Algorithm 1. H-TREE CONSTRUCTION
Input: A1, ..., Am, arrays holding values of the dimensions
of a relational table, T , with n tuples, m dimensions and one
measure mea without loss of generality (multiple measures
can be handled similarly)
Output: H[1, ...,m], an H-tree

Variables
pos, newPos, flg, flg2, flg3: 1D arrays of size n
sF [1, ...,m][1, ..., n]: 2D array
begin
1. initialize sF to 0
2. sort(A1, newPos)
3. split(A1, flg), flg3← flg
4. set flg[1] = 0, then scan(flg, +, f lg2)
5. compact(A1, f lg3, f lg2,H[1].key)
6. flg ← flg3, sF [1]← flg2
7. for i = 2 to m
8. scatter(Ai, newPos, Ai)
9. segmented sort(Ai, flg2, pos)
10. for each element p in newPos in parallel
11. newPos[p]← pos[newPos[p]]
12. segmented split(Ai, f lg2, f lg3)
13. flg ← flg3
14. set flg[1] = 0, then scan(flg, +, f lg2)
15. compact(Ai, f lg3, f lg2, H[i].key)
16. for each element e in flg3 in parallel
17. if flg3[e] = 1 then
18. H[i].p[flg2[e]]← sF [i− 1][e]

19. flg ← flg3, sF [i]← flg2
20. GCHILDREN(H[i].p,H[i− 1].lmc,H[i− 1].cn)
21. if i = m then
22. scatter(mea, newPos, mea)
23. segmented reduction(mea, flg2,

⊕
, H[i].m)

end
end

24. for i = m to 2
25. segmented reduction(H[i].m, H[i].p,

⊕
, H[i− 1].m)

26. HTABLE(H[i].key)
end

end
The above pseudo code first follows a top-down approach

when computing most of the properties at each node. At the
beginning, we sort all tuples using the first dimension A1 as
the sorting key. Instead of updating the positions of all the
remaining dimensions immediately, we only update the next
dimension Ai according to newPos. Note that newPos al-
ways traces the updated positions of the attribute values of the
previously processed dimension Ai−1. Steps 10-11 show how
to trace the updated positions.

After sorting in step 2, tuples with the same attribute value
in the first dimension become contiguous in each segment. The
split primitive is performed to label the first element of each
segment to 1 and others to 0. In order to remove duplicated
values in the sorted array, the compact primitive is performed
in step 5 by only scattering the nodes whose corresponding
label is 1. Within each segment in dimension Ai, all the ele-
ments share the same parent node. The segmented sort primi-
tive in step 9 can make duplicate elements within each segment
clustered in consecutive locations. Then the split and compact
primitives can remove repetitions and obtain the final set of
nodes for the level corresponding to dimension Ai.

The number of nodes at each level of an H-tree is dynam-
ically determined by flg2[n] + flg[n], where flg is a flag
array and flg2 is the result of running the scan primitive on
flg (step 10). flg2 also serves as the scatter location for each
valid node. Steps 6 and 19 store the array flg2 into sF in order
to retrieve the parent indices of the next level’s nodes in steps
16-18. Note that we always use the array of parent indices at
the current level to compute the array of children indices at the
parent level.

Steps 23 and 25 perform roll-up operations to compute the
aggregated measure for the internal nodes of the constructed
H-tree using a bottom-up approach. Segmented reduction is
perfectly suited for carrying out these roll-up operations, and
our GPU data structures facilitate this process since the parent
index of each node naturally serves as the segmentID.

Two steps, GCHILDREN and HTABLE, in the above
pseudo code require further elaboration. GCHILDREN is re-
sponsible for computing the number of children and the index
of the leftmost child for each node. HTABLE is responsible
for constructing the header tables.

Procedure GCHILDREN
Input: p[1, ..., n]
Output: lmc[1, ..., k], num[1, ..., k]

6



begin
1. split(p, flg)
2. set flg[1] = 0, scan(flg, +, sf )
3. for each element i in flg in parallel
4. if flg[i] = 1 then
5. lmc[sf [i]]← i
6. T ← new Array, size = n; initialize all to 1
7. segmented reduction(T, sf, +, num)
end

In the above procedure, we perform the split primitive on
the parent index array. The result is the array of indices for the
leftmost children of the nodes at the next higher level. Steps
6-7 show how to obtain the number of children for each node
at the next higher level. Since children with the same parent
are stored in contiguous locations, we can easily access one
particular child using these two previously computed parame-
ters.

Procedure HTABLE
Input: Rin[1, ..., n]
Output: Rout[1, ..., k], Num[1, ..., k],

hSL[1, ..., k], sL[1, ..., n]

begin
1. sort(Rin, pos)
2. for each element i in pos in parallel
3. sL[pos[i]]← i
4. split(Rin, f lg), flg2← flg
5. set flg[1] = 0, scan(flg, +, sf )
6. compact(Rin, f lg2, sf, Rout)
7. compact(sL, flg2, sf, hSL)
8. T ← new Array, size = k; initialize all to 1
9. segmented reduction(T, sf, +, Num)
end

Note that the sidelink lists for each level are computed in
procedure HTABLE, and side links in our algorithm are dif-
ferent from the sequential version which stores a pointer to
the next node holding the same value. In our parallel version,
by sorting the entire array of attribute values at each level, all
the duplicate values are clustered in consecutive locations. Af-
ter sorting, pos holds the new locations for all elements. The
sidelink list is then computed by saving the original location
for each element in pos. Steps 2-3 perform this task. Simi-
lar to procedure GCHILDREN, the number of repetitions for
each distinct value of a dimension is computed by segmented
reduction in steps 8-9. In the header table, we only store the
first location of these repetitions and the number of repetitions
for each distinct value.

5.2 GPU-Based H-Tree Update

In this section, we introduce a parallel algorithm for updating
an H-tree. Such an operation would be very useful for stream-
ing data. For example, a stream data cube should be continu-
ously and incrementally updated with respect to a potentially
infinite incoming data stream [20]. Instead of inserting one
tuple at a time which would be a waste of the massive par-
allelism on the GPU, we propose to accumulate N incoming

tuples and insert them simultaneously every time. This is in
the same spirit as the algorithm presented in [33] for bulk in-
cremental updates.

The key idea is that every time we need to update the H-
tree, we parallelize over the N new tuples, and let each thread
perform the insertion of one tuple in a purely sequential way.
To some extent, we can simply treat each new tuple as one
small H-tree which has only one branch from the root to the
leaf. Therefore, updating the H-tree becomes equivalent to si-
multaneously merging N small H-trees with one existing large
H-tree. Similar to the construction algorithm, the update algo-
rithm also follows a top-down approach. Instead of immedi-
ately inserting each new node which could cause many write
conflicts, we try to scatter two arrays, one for the nodes in the
existing H-tree and the other for the new nodes constructed for
the incoming tuples, simultaneously into a temporary third ar-
ray. By performing the split and compact primitives, we can
merge these arrays of nodes for each level in a way much sim-
ilar to the H-tree construction algorithm. A key challenge in
this update operation is to identify for each node in the second
array the target location of the scatter operation. Once we have
scattered these new nodes, the remaining slots in the temporary
array are only left for nodes from the existing H-tree.

Algorithm 2. H-TREE UPDATE
Input : oldTree[0, ...,m], an existing H-tree;

A1, ..., Am, arrays holding values of the dimensions
of n incoming m-dimensional tuples
Output: updated H-tree

Variables
newPos, pos, flg, sf, IsFound, preIndex: 1D arrays of
size n
insertIndex[1, . . . ,m][1, . . . , n]: 2D array
begin
1. sort(A1, newPos)
2. split(A1, f lg) 3. flg[1]← 0, scan(flg, +, sf )
4. for i = 1 to m
5. if i > 1 then
6. scatter(Ai, newPos, Ai)
7. segmented sort(Ai, sf, pos)
8. for each element p in pos in parallel
9. newPos[p] = pos[newPos[p]]
10. segmented split(Ai, sf, flg)
11. scan(flg, +, sf )

end
12. for each element e in Ai in parallel
13. left← oldTree[i− 1][preIndex[e]].lmc
14. right← left+ oldTree[i− 1][preIndex[e]].cn
15. if IsFound[e] then
16. binary search Ai[e] in the oldTree[i].key from

[left, right), set the search stop index to ss
17. insertIndex[i][e]← ss
18. if Ai[e]! = oldTree[i].key[ss] then
19. IsFound[e]← false

end
20. else
21. insertIndex[i][e]← right
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22. preIndex[e]← insertIndex[i][e]
23. insertIndex[i][e]+ = e+ 1

end
24. middleData← new Array, size = oldTree[i].size+
n
25. scatter(Ai, insertIndex[i], middleData)
26. scatter oldTree[i] to the empty positions of
middleData
27. split and compact middleData to get final nodes
28. compute parent(children) indices using split results

end
29. roll up to get each new node’s aggregated measure
30. re-compute header table for each level
end

In the above pseudo code for parallel H-tree update, some of
the ideas are similar to the construction algorithm. Steps 12-
28 show the differences. For every small H-tree(one tuple), we
search for each of its nodes in a set of candidate nodes of the
existing H-tree. Since we maintain the nodes in a sorted order,
binary search can be applied to perform the search efficiently.
There are two observations. First, if one node finds a match
in the existing H-tree, its child should only be searched among
the children of the matched node. Second, if one node cannot
find a match in the candidate set, descendants of the candidates
can be safely pruned. The incoming node should be inserted
as the rightmost child of the matched node at the higher level.
Steps 14 and 19 show the search process.

After step 23, insertIndex[i][e] holds the scatter location
for each incoming new node. We allocate one temporary ar-
ray, valid, and initialize all its elements to 1. Then we re-
set all its elements corresponding to the locations recorded in
insertIndex[i] to 0. Those elements remaining to be 1 indi-
cate the locations for the nodes from the existing H-tree. We
use oldPos[i] to represent the scatter locations for nodes at
level i of the existing H-tree. oldPos[i] can be set using the
result from an excluded scan of valid.

The attribute values of the dimensions and parent indices of
the nodes in the updated H-tree are both computed by steps
24-28. We must update the parent indices of the nodes in the
existing H-tree before scattering them to the middleData array
because at this time, their parent nodes have already been scat-
tered. Parent indices of the new nodes can be directly fetched
from the scatter locations of their parent nodes in the previ-
ous step. Steps 29 and 30 compute the aggregated measure
array and header tables in the same way as the construction
algorithm.

5.3 GPU-Based H-Tree Query Processing

In this section, we describe GPU-based algorithms supporting
data cube queries using the constructed H-tree. Since an H-
tree represents a popular path in the corresponding data cube,
it only materializes the cuboids along this popular path. When
a query can be answered by simply fetching an aggregated
measure from an H-tree node, there is not much computation
involved except for the lookup operation to locate the node.
Otherwise, online cubing (aggregation) needs to be performed

to answer the query using partially materialized results in the
H-tree. According to [20], the precomputed results in the H-
tree can significantly accelerate online cubing. Unlike a se-
quential algorithm which processes queries one by one, our
GPU-based algorithm can process N queries in parallel. We
assign one thread to each query that only requires the lookup
operation, but parallelize any query that requires online cub-
ing over multiple threads to achieve better load balance. Each
thread then processes the data related to a portion of a sidelink
list.

Without loss of generality, our query processing algorithms
only address point queries, which only have instantiated di-
mensions but no inquired dimensions. Subset (or subcube)
queries with inquired dimensions can always be decomposed
into multiple point queries which can then be processed in par-
allel on the GPU.

5.3.1 Simple Lookup

We first present the algorithm for queries that can be directly
answered by H-tree lookups. For stream cubes, this is called
on-popular-path queries [20].

Algorithm 3: ON-POPULAR-PATH QUERY
Input: H[0, ...,m], an H-tree;

q[1, ..., n][1, ...,m], n queries each with at most m
instantiated dimensions
Output: Rout[1, ..., n]: results of the n queries

begin
1. left← H[0].lmc
2. right← left+H[0].cn
3. j ← 1
4. for each query q[i] in parallel
5. binary search q[i][j] in H[j].key between [left, right)
6. if found then
7. let fIndex be the found index
8. if q[i][j] is the last instantiated dimension of q[i] then
9. Rout[i]← H[j].m[fIndex]
10. return
11. lmChild← H[j].key[fIndex]
12. childNum← H[j].cn[findex]

end
13. else
14. return not found

end
15.j ← j + 1
16.goto step 4
end

In the above algorithm, H[i](i = 1, ...,m) represents the
pointer to the i-th level (H[0] is the root). q[i][j] represents
the value of the j-th instantiated dimension of query i. For
an on-popular-path query, instantiated dimensions must match
attribute values of dimensions along a contiguous segment of a
path in the H-tree and this contiguous segment must start from
the root. Thus, all the instantiated dimensions in the query
must be checked, if they can all be found in the corresponding
levels of the H-tree, we simply return the aggregated measure
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stored at the last instantiated dimension in the tree. Otherwise,
return zero or not defined. If the fan-out factor of every node
in the H-tree is C, at most TotalV isit = 1

2 C Numr nodes
would be visited during the lookup, where Numr represents
the number of instantiated dimensions. Since all children of
a node are maintained as an ordered list, we can use binary
search to speed up the lookup operation.

5.3.2 Online Cubing

The more general case involves queries not on the popular
path. Such queries require online cubing to compute any ag-
gregated measure. That means the final result may be an-
swered by aggregating partial results at multiple nodes. Such
aggregations are performed on the fly.

Algorithm 4: ONLINE CUBING
Input: H[1, ...,m], an H-tree;

q[1, ..., n][1, ...,m], n queries each with at most m
instantiated dimensions
Output: Rout[1, ..., n], results of the n queries

begin
1. set up n thread blocks with block size S on the GPU
2. Hist← new Array[n*S], initialize all to 0
3. for each query q[i] in parallel
4. assign q[i] to the i-th thread block whose ID is bid
5. find the lowest level whose corresponding dimension is

instantiated in query q[i], let the found level be fLevel
6. search q[i][fLevel] in H[fLevel].hKey
7. if found then

Let t be the found index in H[fLevel].hKey
8. num← H[fLevel].hN [t]
9. st← H[fLevel].hSL[t]

end
10. else
11. return not found
12. divide the elements in H[fLevel].sL[st, ..., st+ num]
into chunks, the size per chunk is chs = num/S
13. for each thread tid in block bid in parallel
14. for k = 1 to chs
15. old← H[fLevel].sL[tid ∗ chs+ k + st]
16. pi = H[fLevel].p[old]
17. j ← fLevel − 1
18. flg ← true
19. while(j >= 0) do
20. if q[i][j] is instantiated in query q[i] then
21. if q[i][j] = H[j].key[pi] then
22. pi← H[j].p[pi]
23. else
24. flg ← false, break
25. j ← j − 1

end
26. if flg = true then
27. Hist[bid∗S+tid]

⊕
= H[fLevel].m[old]

end
end

end

28.segID ←new Array[n*S]
29.for each element e in segID in parallel
30. segID[e]← e/S
31.segmented reduction(Hist, segID,

⊕
, Rout)

end
In the above algorithm, if the size of the header table is suf-

ficiently large, step 6 can also be parallelized. Both the start-
ing index of a sidelink list and the number of nodes in the
sidelink list, can be directly retrieved as in steps 8 and 9. Then
we parallelize over all elements in the sidelink list. Since the
number of elements in a sidelink list can be large, we use one
thread block to process them and the elements are evenly dis-
tributed among all threads within the block. Each element in
the sidelink list has an index into the array holding the attribute
values of a dimension. We can use this same index to retrieve
the parent index and move up the tree, checking all instanti-
ated dimensions on the way up. Steps 19-27 show this process.
Step 31 performs segmented reduction on Hist to obtain the
final aggregated result of the inquired measure for each query.
Since one thread block is responsible for one query, we can
use the block ID as the segment ID in the segmented reduction
primitive.

Please note that for a single query, our method achieves
load balance very well thanks to parallel segmented reduc-
tion. However, for multiple queries, load balance would be-
come an issue, and our current online cubing algorithm has not
explicitly considered this issue. To further improve the query
response time, we need an explicit cache model to store the
top-k most popular queries. Nevertheless, this is a challenging
problem out of the scope of this paper.

5.3.3 Hybrid Queries

In a real scenario, there is usually a combination of both types
of queries. We can split the batch of queries into two sepa-
rate groups, first invoke the GPU kernel for on-popular-path
queries, and then invoke the online cubing kernel for the sec-
ond group. Finally, we merge the query results together.

6 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our proposed
GPU algorithms, including H-tree construction, update and
query processing algorithms, and compare them with the cor-
responding algorithms on the CPU.

6.1 Experimental Configuration
The described algorithms have been implemented and tested
on an Intel Core 2 Duo quad-core processor with an NVidia
GeForce 8800 GTX GPU. The details of the experimental
setup are shown in Table 1. The GPU uses PCI-E 2.0 bus to
transfer data between the host (CPU memory) and the device
with a theoretical bandwidth of 4GB/s. The 128 processors on
the GPU are organized into 16 SMs (stream multiprocessor)
with each SM executing multiple thread blocks concurrently.
There are 16KB shared memory and 8192 registers in each
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Figure 1: Time and GPU speedups for H-tree construction. (left) speedup and time vs. the number of tuples; (middle) speedup
and time vs. # of dimensions; (right) speedup and time vs. cardinality of each dimension.

Table 1: Hardware configuration
CPU GPU

processor 2.4GHz x 4 1.35GHz x 128
data cache L1:32KB x 4, 16KB x 8

L2:4096KB x 2
cache latency (cycles) L1:2, L2:8 1
DRAM(MB) 4096 768
DRAM latency (cycles) 300 400-600
bus width (bits) 64 384

SM. Note that, shared memory is pure CUDA implementation.
It is used as data exchange cache within a thread block, and is
as fast as registers if there are no bank conflicts. More transis-
tors on the GPU have been devoted to data processing rather
than data caching and flow control. In order to fully keep all
the ALUs busy, thousands of threads should be spawn to hide
GPU memory access latency.

Note that even though the GPU has much more processors,
it has higher memory access latency and less amount of data
cache, and its processors have a lower clock rate. Therefore,
the peak performance of the GeForce 8800 GTX GPU is 346
GFlops which is only 9x the peak performance of a single core
on the Intel Core 2 Duo processor.

6.2 Data Generator
We have tested our algorithms with synthetic data sets, which
were produced by a data generator similar to the IBM data gen-
erator [4] designed for testing data mining algorithms. We use
the dataset convention as defined in [20], e.g., D6C20T800K
means there are 6 dimensions with the cardinality of each di-
mension set to 20, and there are a total of 800k tuples.

6.3 Implementation on GPU
Our proposed algorithms are implemented using CUDA [3],
which is the only C language environment for GPUs. The par-
allel task is encoded as kernels invoked by the host but run
on the device. At any point, there is only one kernel being
executed on the GPU. Global synchronization is implemented
through the GPU memory. That means the current running ker-

nel uses the output of the previous kernel as its input. When
setting up a kernel, the number of thread blocks and the num-
ber of threads in each block have to be specified. Issuing more
threads per block results in less allocated resource (registers,
etc.) per thread, but can potentially improve the overall perfor-
mance because more memory access latency could be masked.
Our experiments show that the number of threads per block
should be between 128 and 256 for H-tree construction and 32
for online cubing.

No atomic operations are supported for GPUs within CUDA
1.1 or below. Since NVidia GeForce 8800GTX is only com-
patible with CUDA 1.0, software strategies are used to avoid
write conflicts. For example, in the sorting and segmented
sorting primitives, each thread owns its assigned histogram(s)
and only counts the elements it is responsible for. Afterwards,
the scan primitive is run over all the histograms to generate
write locations for all elements.

Note that the number of nodes at each level of an H-tree is
dynamically determined by the scan result of a flag vector for
the sorted attribute values of a dimension. Thus the memory
for the H-tree is also dynamically allocated. Since we process
relational datasets, values of a dimension are usually speci-
fied as character strings. Our string type data is implemented
using char4 pointer array in order to improve the efficiency
of memory access and alignment. The pointer is declared on
the host and GPU memory for that array is allocated by the
cudaMalloc API. We then transfer the data from the host to
the GPU allocated array by cudaMemcpy API.

6.4 Optimization Considerations
6.4.1 Minimize memory overhead

First, low data transfer rate over the PCI-Express bus nega-
tively affects the overall performance. Frequent data trans-
fer between GPU and CPU memories should be avoided. To
achieve this goal, the entire constructed H-tree always resides
in the GPU memory instead of being sent back to the system
memory. We also suggest to batch many small transfers into
a large one due to the overhead associated with each trans-
fer. Second, shared memory within the SMs should be utilized
as much as possible to improve data locality and avoid GPU
memory access latency. For example, in the online cubing al-
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Figure 2: Time and GPU speedups for H-tree update. (left) speedup and time vs. the number of new tuples; (middle) speedup
and time vs. # of dimensions; (right) speedup and time vs. cardinality of each dimension.

gorithm, we use one block to process each query so that we can
load the instantiated dimension values into the shared mem-
ory to improve locality since they are accessed multiple times.
Third, coalesced GPU memory access patterns should be ex-
ploited to improve performance. Coalescing means if threads
in a half-warp access consecutive memory words, these mem-
ory accesses can be coalesced into one memory transaction.
Otherwise, a separate memory transaction is issued for each
thread and throughput is significantly reduced. Our results
show that coalesced access can achieve 1.5 to 3 times speedup
when compared with noncoalesced access.

6.4.2 Avoid bank conflicts

Shared memory is on-chip. It is as fast as registers as long as
there are no bank conflicts between threads. So much attention
should be taken by developers when using shared memory. To
achieve high memory bandwidth, shared memory is divided
into equally-sized modules, called banks, which can be ac-
cessed simultaneously. Bank conflicts occur when multiple
memory requests fall into the same bank, in which condition
the access has to be serialized, which significantly decreases
the shared memory bandwidth. Shared memory padding is one
possible solution to avoid it. Our proposed structures of arrays
(SoA) can avoid bank conflicts to some extent by design.

6.4.3 Minimize branch divergence

Recent GPUs include control flow instructions in the GPU in-
struction set but programs using these instructions may expe-
rience reduced performance due to branch divergence. Branch
divergence occurs only within a warp. Different warps exe-
cute independently regardless of whether they are following
the common code path or not. Once divergence occurs, the
warp serially executes each path taken, disabling the threads
not on the current running path. Therefore, the use of control
flow instructions should be minimized when possible.

6.5 Analysis
Let us now present the time and space complexity of the pro-
posed parallel H-tree algorithms. Let P be the number of pro-
cessors (P = 128 in G80), N be the number of incoming

tuples for H-tree construction or update, M be the number of
dimensions, C be the maximum cardinality of any dimension,
L be the maximum length of the strings used as values of the
dimensions, T be the number of tuples in an existing H-tree,
and Key be the number of distinct keys in the histograms used
in the sorting (sort and segmented sort) primitives.

6.5.1 Time Complexity

The time complexity for H-tree construction and update are
O(NML/P+M logN) and O(NML/P+M log(N+T )+
M logC/P + TM/P ), respectively. And the time complex-
ity for an on-popular-path query and online cubing query are
O(M logC/P ) and O(NM/(CP )) respectively. So from a
theoretical perspective, on-line cubing is more complicated
than on-popular-path queries.

6.5.2 Space Complexity

The total amount of device memory used by H-tree con-
struction in addition to the memory holding input data is
O(NM+F (N)), where F (N) represents the memory cost of
sorting primitives. In the worse case, F (N) = (Key + 1)N
(each element is a distinct segment). Similarly, the total
amount of additional device memory used by H-tree update
is O(NM + Sold + F (N)), where Sold represents the size
of the existing H-tree. In an H-tree update, we need to first
put the existing tree and incoming tuples together before elim-
inating duplicate nodes, which incurs additional memory cost
compared with H-tree construction. The memory cost by on-
line cubing is O(S) (where S is the block size) per query, since
it needs to summarize all the partial values computed by each
thread. An on-popular-path query costs the least amount of
memory which is only O(1) per query.

6.6 Results
In this section, we analyze the performance of our proposed
GPU algorithms over their CPU counterparts. In our exper-
iments, we investigated how the total number of tuples, the
total number of dimensions and the cardinality of each dimen-
sion affect the performance of our algorithms. There are two
main reasons giving rise to the reported performance. One

11



lies in the differences in the hardware architecture, including
memory stalls, cache amount, the type of processors, memory
bandwidths and so on. The other lies in the differences in algo-
rithm design choices. We will analyze which one contributes
more. As mentioned in Section 6.1, the peak performance of
the GPU we use is only 9x the peak performance of a single
core on the CPU. This peak performance ratio should be used
as a reference number when we look at the speedups of our
algorithms. In all experiments, the performance of the GPU
algorithms was compared against the performance of an op-
timized sequential algorithm running on a single core of the
CPU.

Figure 1 demonstrates the performance of our parallel
H-tree construction algorithm, which typically achieves a
speedup above 10. Figure 1(a) shows the elapsed time on both
CPU and GPU as well as the speedups for H-tree construction
on datasets with an increasing number of tuples. The number
of dimensions is set to 15 and the cardinality of each dimen-
sion is set to 160. We found that our GPU-based construction
algorithm scaled better with larger datasets compared with the
CPU-based sequential algorithm. This is probably because it is
easier to achieve load balance with larger datasets. Figure 1(b)
shows the elapsed time and speedups for H-tree construction
on datasets with an increasing number of dimensions. The car-
dinality of each dimension is set to 160 and there are 400k tu-
ples in each dataset. The results show that the GPU algorithm
has more advantage when the number of dimensions is rela-
tively small. Figure 1(c) shows the elapsed time and speedups
for H-tree construction on datasets with the cardinality of each
dimension increasing from 20 to 320. There are 15 dimen-
sions and 400k tuples in each dataset. The running time of
both CPU and GPU algorithms increases with the cardinality
of each dimension. However, the running time of our GPU al-
gorithm increases at a much slower rate than that of the CPU
algorithm.

Figure 2 shows the performance of our parallel H-tree up-
date algorithm. Figure 2(a) shows the elapsed time and
speedups for updating an existing H-tree constructed from
D15C40T300K using an increasing number of incoming tu-
ples. The speedup improves with the number of incoming tu-
ples. For stream cubes, this parameter can be tuned to suit
the data arrival rate. In figure 2(b), the number of dimensions
increases from 6 to 18. The existing H-tree was constructed
from 300K tuples and the cardinality was set to 40. We up-
date the existing H-tree using 300K incoming tuples. The re-
sults show that our algorithm is more advantageous when the
number of dimensions is relatively small. Figure 2(c) shows
that when the cardinality of each dimension varies from 20 to
320, the running time of both CPU and GPU algorithms are
increasing, but our GPU-based algorithm increases at a much
slower rate. This is because the CPU algorithm sequentially
builds the header table and children pointers. Before every
node insertion, it needs to check its existence in the header
table and sequentially find the correct location to insert. On
the other hand, our GPU algorithm processes nodes in paral-
lel, and maintains the children nodes of the same parent in a
sorted order so binary search can be performed to accelerate
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Figure 3: GPU speedup and average time vs. # of dimensions
for on-popular-path queries

the process.
Figures 3-6 show the performance of our data cube query

processing algorithms. To test the on-popular-path query al-
gorithm, we randomly generate 10K on-popular-path queries
with each one containing a random number of instantiated di-
mensions. To test the online cubing algorithm, we also ran-
domly generate 10K queries none of which is on the popular
path. Then we analyze the average elapsed time per query in
each type. Since our H-tree resides in the GPU device mem-
ory, we need to transfer the queries from the host to the device
memory and then transfer the results back to the host again.
We have included these transfer times in the reported average
elapsed time per query. Note that our online cubing algorithm
can typically achieve a speedup much larger than 10.

Figures 3 and 5 show the performance of both query pro-
cessing algorithms with an increasing number of dimensions.
Note that varying the number of dimensions has little impact
on on-popular-path queries. This is because we let each thread
process one query in a purely sequential way, and the over-
head of parallelization becomes minimal. However, for the
online cubing, our GPU algorithm has less advantage with a
larger number of dimensions. Figures 4 and 6 show the perfor-
mance of both query algorithms with an increasing cardinality
of the dimensions. Similarly, varying cardinality has little im-
pact on on-popular-path queries. Compared with CPU query
algorithms, both our GPU query algorithms have more advan-
tage when the cardinality is relatively small. This is mainly
because a larger cardinality of the dimensions gives rise to
larger H-trees which require more memory accesses to search
for instantiated dimensions of a query. Note that we also tested
hybrid queries and the performance is similar to online cubing
since on-popular-path queries only needs a small portion of the
overall running time.

In the reported performance comparisons, we can find that
the speedup always decreases with an increasing number of di-
mensions for all GPU algorithms. This is because with a larger
number of dimensions, more global arrays need to be allocated
to store values of additional dimensions, parent(child) indices,
side links, header tables and so on. As a result, more scat-
ter operations are needed to update these arrays, and compact
the H-tree nodes and header table elements. Since the scatter
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Figure 4: GPU speedup and average time vs. cardinality of
each dimension for on-popular-path queries
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Figure 5: GPU speedup and average time vs. # of dimensions
for online cubing

Table 2: Breakdown of GPU Running Times (ms)
Search I/O Key Index Htable Rollup

H-tree const- N/A 23 1948 118 559 36
ruction for
D15C40T600K
H-tree update 25 14 1058 257 530 38
D15C40T300K
10K on popular 7.4 0.68 N/A N/A N/A N/A
path queries
10K online 3758 0.72 N/A N/A N/A 1.83
cubing queries

operation cannot guarantee coalesced memory access to the
GPU memory and branch divergence is hard to avoid within
the warps, the overall performance is negatively affected. An-
other important reason is that GPU memory access latency is
about 400-600 cycles which is longer than CPU DRAM access
latency.

Table 2 shows the breakdown of running times for the four
GPU algorithms. Note that in the H-tree construction and up-
date algorithms, the I/O item only includes the data transfer
time from the host to the device since we maintain the H-
tree on the device. But in the query processing algorithms,
we include the transfer time from the device back to the host.
From the table we can find out that I/O operations only oc-
cupy 8% of the total execution time of the on-popular-path
query algorithm. Compared with on-popular-path queries, on-
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Figure 6: GPU speedup and average time vs. cardinality of
each dimension for online cubing

line cubing takes much more time. Although search pays an
important role in the update algorithm, its cost can be ignored
when compared with other components. Note that in both H-
tree construction and update algorithms, computation related
to values of dimensions, often used as sorting keys, is domi-
nant. This is mainly due to the segmented sort primitive. The
”Index” column in the table includes the time to compute par-
ent and children indices. Compared with H-tree construction,
H-tree update costs more in this item because it has to first
put the incoming nodes and the existing nodes together, and
then eliminate the duplicated ones. Header table related com-
putation takes the second largest portion of the running time
because before compacting the header table we have to sort
the array of nodes at each level. Finally, we found that the
roll-up operation cost very little because our segmented reduc-
tion primitive was well optimized with padding to avoid bank
conflicts. Note that we ran the query processing algorithms on
an H-tree constructed for D15C40T600K.

7 Conclusions

In this paper, we have presented efficient GPU-based paral-
lel algorithms for H-tree based data cube operations. This
has been made possible by parallel primitives supporting seg-
mented data and efficient memory access patterns. As a result,
our GPU algorithms can achieve a speedup comparable to the
peak performance ratio between the GPU and a single core on
the CPU most of the time. Our H-tree construction and online
cubing algorithms can often achieve a speedup much larger
than 10. We have analyzed various factors that can either pos-
itively or negatively affect the performance. To the best of
our knowledge, this is the first attempt to develop parallel data
cubing algorithms on graphics processors.

Acknowledgments

This work was partially supported by National Natural Sci-
ence Foundation of China (60728204/F020404) and National
Science Foundation (IIS 09-14631).

13



References
[1] Amd ctm. http://ati.amd.com/products/streamprocessor.

[2] Opengl. http://www.opengl.org.

[3] Nvidia cuda (compute unified device
architecture) programming guide 2.0.
http://developer.nvidia.com/object/cuda.html, 2008.

[4] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proc. Int. Conf. Data Engineering (ICDE), 1995.

[5] N. Bandi, C. Su, D. Agrawal, and A. El Abbadi. Hard-
ware acceleration in commercial databases. In VLDB,
2004.

[6] D. Blythe. The direct3d 10 system. In SIGGRAPH, 2006.

[7] D. Cederman and P. Tsigas. A practical quicksort
algorithm for graphics processors. Technical report,
No.2008-01, 2008.

[8] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record,
26:65–74, 1997.

[9] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. Paral-
lel rolap data cube construction on shared-nothing multi-
processors. Distributed and Parallel Databases, 15:219–
236, 2004.

[10] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin.
Parallelizing the data cube. Distributed and Parallel
Databases, 11:181–201, 2002.

[11] F. Dehne, T. Eavis, and A. Rau-Chaplin. Computing par-
tial data cubes for parallel data warehousing applications.
In Euro PVM/MPI, 2001.

[12] F. Dehne, T. Eavis, and A. Rau-Chaplin. The cgm-
cube project: Optimizing parallel data cube generation
for rolap. Distributed and Parallel Databases, 19:29–62,
2006.

[13] S. Goil and A. Choudhary. High performance olap and
data mining on parallel computers. Data Mining and
Knowledge Discovery, 1:391–417, 1997.

[14] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
Gputerasort: high performance graphics co-processor
sorting for large database managment. In SIGMOD,
2006.

[15] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. In SIGMOD, 2004.

[16] N. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast
and approximate stream mining of quantiles and frequen-
cies using graphics processors. In SIGMOD, 2005.

[17] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational operator generalizing group-by, cross-
tab and sub-totals. In Proc. 1996 Int. Conf. Data Engi-
neering (ICDE’96), pages 152–159, New Orleans, LA,
Feb. 1996.

[18] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Re-
ichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing
group-by, cross-tab and sub-totals. Data Mining and
Knowledge Discovery, 1:29–54, 1997.

[19] W. Gropp, E. Lusk, and A. Skjullum. Using MPI:
Portable Parallel Programming with the Message Pass-
ing Interface. MIT Press, 1994.

[20] J. Han, Y. Chen, G. Dong, J. Pei, B.W. Wah, J. Wang,
and Y.D. Cai. Stream cube: An architecture for multi-
dimensional analysis of data streams. Distributed and
Parallel Databases, 18(2):173–197, 2005.

[21] J. Han, J. Pei, G. Dong, and K. Wang. Efficient compu-
tation of iceberg cubes with complex measures. In SIG-
MOD, 2001.

[22] J. Han, J. Pei, and Y. Yin. Mining frequent patterns with-
out candidate generation. In SIGMOD, 2000.

[23] M. Harris, J.D. Owens, S. Sengupta, Y. Zhang, and
A. Davidson. Cudpp library. CUDPP homepage.
http://www.gpgpu.org/developer/cudapp, 2007.

[24] B. He, N. Govindaraju, Q. Luo, and B. Smith. Efficient
gather and scatter operations on graphics processors. In
ACM/IEEE Supercomputing, 2007.

[25] B. He, K. Yang, R. Fang, M. Lu, N.K. Govindaraju,
Q. Luo, and P.V. Sander. Relational joins on graphics
processors. In SIGMOD, 2008.

[26] D. Horn. Stream reduction operations for gpgpu applica-
tions. In M. Pharr, editor, GPU Gems 2, pages 573–589.
Addision Wesley, 2005.

[27] R. Jin, K. Vaidyanathan, G. Yang, and G. Agrawal. Com-
munication and memory optimal parallel data cube con-
struction. IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, 16(12):1105–1119, 2005.

[28] Mo Q. Lauterbach, C. and D. Manocha.

[29] M.D. Lieberman, J. Sankaranarayanan, and H. Samet. A
fast similarity join algorithm using graphics processing
units. In ICDE, 2008.

[30] H. Lu, X. Huang, and Z. Li. Computing data cubes us-
ing massively parallel processors. In Proc. 7th Parallel
Computing Workshop, 1997.

[31] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris,
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