
Inviscid and Incompressible Fluid Simulation on
Triangle Meshes

Lin Shi Yizhou Yu

Computer Science, University of Illinois at Urbana-Champaign

201 North Goodwin Avenue, Urbana, IL 61801, USA

email: {linshi,yyz}@uiuc.edu

Simulating fluid motion on manifold surfaces is an in-

teresting but rarely explored area because of the difficulty

of establishing plausible physical models. In this paper,

we introduce a novel method for inviscid fluid simulation

over meshes. It can enforce incompressibility on closed sur-

faces by utilizing a discrete vector field decomposition al-

gorithm. It also includes effective implementations of semi-

Lagrangian tracing and velocity interpolation schemes. Dif-

ferent from previous work, our method performs simulations

directly on triangle meshes and thus eliminates parametriza-

tion distortions. Our implementation can produce convincing

fluid motion on surfaces and has interactive performance for

meshes with tens of thousands of faces.

Keywords: Advection, The Poisson Equation, Velocity Inter-

polation

Introduction
Fluid simulation on manifolds is a challenging problem with

many applications. There has been previous work in the phys-

ical sciences which deals with fluid flow on a sphere, which

can serve as a model for our atmosphere. In graphics, such

simulations provide a means to confine fluid flows to a geo-

metric shape and can be used for creating interesting special

visual effects, such as objects with elegant dynamic appear-

ances and soap bubbles with swirling diffraction patterns.

Existing physics-based equations for fluid dynamics work

in 3D spaces. Simulating flows on flat surfaces can be consid-

ered as a special case of 3D simulation. However, due to the

geometric properties of curved surfaces, physically accurate

fluid simulations on surfaces are still being investigated by

researchers [1]. Our goal in graphics is to develop techniques

that can produce visually convincing, physically plausible re-

sults. Stam [2] proposed such a solution for Catmull-Clark

subdivision surfaces [3]. His method performs fluid simula-

tion in the 2D parametrization space of a curved surface.

In this paper, we provide a solution for triangle meshes

which are widely used for representing free-form objects and

can serve as the control polyhedra of Loop subdivision sur-

faces [4]. Our method directly simulates an incompressible

and inviscid fluid on a mesh instead of its parametrization

space. Because a mesh is a discretization of an underlying

smooth surface, our strategy is to use this same discretization

or its subdivisions for fluid simulation as well and adapt ev-

ery step of a previous numerical solution for regular 3D grids

to this irregular surface discretization. During such adapta-

tion, we maintain important physical properties of the fluid.

We demonstrate that our method not only eliminates distor-

tions and guarantees the zero divergence property, but also

produces visually convincing results.

1

Related Work
The modeling of fluid phenomena has received much atten-

tion from the computer graphics community over the last two

decades. Recent work in this direction simulates the equa-

tions of fluid dynamics. Foster and Metaxas [5] used rela-

tively coarse grids to produce nice smoke motion in three-

dimensions. Their simulations are stable only when the time

step is sufficiently small. To alleviate this problem and make

the simulations more efficient, Stam introduced a new model

which is unconditionally stable and could be run at any speed

[6]. This was achieved using a combination of a semi-

Lagrangian advection scheme [7] and implicit solvers. Fed-

kiw et. al. [8] introduced vorticity confinement and a higher-

order interpolation technique. As a result, the simulations can

keep finer details on relatively coarse grids. Wei et. al. [9]

simulated the motion and deformation of lightweight objects

in a wind generated by the Lattice-Boltzmann Model.

The focus of this paper is surface flows while the afore-

mentioned fluid simulation techniques are all concerned with

volumetric fluids. Thus, the most related previous work in

graphics is presented in [2] which introduces a nice technique

to solve this problem for Catmull-Clark subdivision surfaces.

This method does simulations in the surface parametrization

space and alleviates parametrization distortions by incorpo-

rating the metric tensor. Though the amount of distortion

was reduced significantly, it still exists and is noticeable.

There has not been any techniques to completely eliminate

such parametrization distortions as far as we know. In addi-

tion to distortions, it is also hard to simulate incompressible

flows in the parametrization space by enforcing the zero di-

vergence property. On the contrary, the method presented in

this paper directly simulates fluids on surface meshes. Our

method eliminates distortions and guarantees the zero diver-

gence property.

Background

The Poisson Equation
Originally emerging from Isaac Newton’s law of gravitation,

the Poisson equation with Dirichlet boundary condition is for-

mulated as

∇2f = ∇ · w, f |∂Ω = f∗|∂Ω, (1)

where f is an unknown scalar function, w is a guidance

vector field, f∗ provides the desirable values on the bound-

ary of Ω, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian op-

erator, ∇ · w = ∂wx

∂x
+

∂wy

∂y
+ ∂wz

∂z
is the divergence of

w = (wx, wy, wz). Since the Poisson equation defines the

Laplacian of an unknown scalar function, solving the equa-

tion is actually the process of reconstructing the scalar func-

tion from its local differential property.

Vector Field Decomposition
Fluid simulation is closely related to Helmholtz-Hodge vector

field decomposition [10] which uniquely exists for a smooth

3D vector field w defined in a region Ω:

w = ∇φ + ∇× υ + h, (2)

where φ is a scalar potential field with ∇ × (∇φ) = 0, υ is

a vector potential field with ∇ · (∇ × υ) = 0, and h is a

field that is both divergence and curl free. The uniqueness of

this decomposition requires proper boundary conditions. The

scalar potential field φ from this decomposition happens to be

the solution of the following least-squares minimization

min
φ

∫ ∫

Ω

‖∇φ − w‖2dA, (3)

whose solution can also be obtained by solving the Poisson

equation, ∇2φ = ∇ · w.

Discrete Fields and

Decomposition
One prerequisite of solving differential equations over a tri-

angle mesh is to overcome its irregular connectivity in com-

parison to a regular image or voxel grid. One recent ap-

proach to circumvent this difficulty is to approximate smooth

fields with discrete fields first and then redefine the differen-

tial properties and equations for the discrete fields [11, 12]. A

discrete vector field on a triangle mesh is defined to be piece-

wise constant with a constant vector within each triangle. A

discrete potential field is defined to be a piecewise linear func-

tion, φ(x) =
∑

i Bi(x)φi, with Bi being the piecewise-linear

basis function valued 1 at vertex vi and 0 at all other vertices,

and φi being the value of φ at vi.

2

For a discrete vector field w on a mesh, its divergence at

vertex vi can be defined to be

(Divw)(vi) =
∑

Tk∈N(i)

∇Bik · w|Tk| (4)

where N(i) is the set of triangles sharing the vertex vi, |Tk|

is the area of triangle Tk, and ∇Bik is the gradient vector of

Bi within Tk. Note that this divergence is dependent on the

geometry and 1-ring structures of the underlying mesh.

Given the definitions of discrete fields and their diver-

gence, the discrete Poisson equation [12] can be expressed

as

Div(∇φ) = Divw, (5)

which is actually a sparse linear system,

Af = b, (6)

that can be solved numerically using the conjugate gradient

method. We still call (5) the Poisson equation for conve-

nience.

Overview
Our method simulates inviscid and incompressible fluids on

meshes that are manifold surfaces. The basic equations for

such fluids in a 3D space are:

5 · u = 0 (7)
∂u

∂t
= −(u · 5)u −5P + f (8)

A numerical implementation solving the above incom-

pressible scheme consists of the following basic steps [8]:

1. Compute an intermediate fluid velocity field, {u∗},

from (8) ignoring the pressure term by first adding ex-

ternal force times the time step, and then solving the ad-

vection part (u · ∇)u by using semi-Lagrangian tracing

[7];

2. Obtain the pressure P by solving the Poisson equation,

∇2P =
1

4t
∇ · u∗; (9)

where 4t is the size of the time step;

3. Obtain the divergence free component of {u∗} by sub-

tracting the gradient of P from the intermediate veloc-

ity,

u = u∗ −4t∇P. (10)

4. Advect the density field ρ using semi-Lagrangian trac-

ing again.

We adapt these steps from regular 3D grids to meshes with

irregular connectivity. Before revising these steps, we need to

clarify the discretization scheme on meshes first. Following

the definition of discrete fields on meshes, we define a veloc-

ity field as a piecewise constant vector field and a pressure or

density field as a piecewise linear scalar field. The constant

velocity vector within each triangle is defined at the center

of the triangle while pressure or density values are defined at

the mesh vertices. The pressure or density at a point inside

a triangle is linearly interpolated from the values at the three

vertices of the triangle using the barycentric coordinates of

the point as interpolation coefficients.

With such a discretization scheme on meshes, we summa-

rize the revisions of the above numerical simulation as fol-

lows.

• In the first step, we add the acceleration onto the ve-

locity field and then solve velocity advection by imple-

menting semi-Lagrangian tracing on the mesh surface.

Details will be introduced in the next section.

• In the second step, to solve the Poisson equation for

pressure on meshes, we replace the original equation

with the discrete Poisson equation in (5). In the cur-

rent context, the unknowns in the equation should be

pressure values at the mesh vertices. To be consistent,

we also multiply the right hand side of (5) with 1
4t

. The

solution to this equation is a piecewise linear pressure

function defined over the mesh surface.

• In the third step, the original scheme can be followed

without any change since there is a constant intermedi-

ate velocity vector within each triangle and the gradient

of the pressure function is also a constant vector within

each triangle. This step enforces incompressibility.

• In the last step, we also need to adapt semi-Lagrangian

tracing for density advection, which will also be dis-

cussed in the next section.

These revisions produce a working numerical solution for vi-

sual fluid simulation on meshes. We will discuss in detail how

to perform the advection of velocity and density fields in the

next section.

3

Advection on Meshes
Semi-Lagrangian tracing is the key component of the method

we use to perform the advection of both velocity fields and

density fields. In a 3D space, if we would like to obtain the

advected velocity at a point r with the reversed velocity di-

rection ur, semi-Lagrangian tracing is simply carried out by

transporting the velocity at r+urdt to r, where dt is the time

step.

Performing semi-Lagrangian tracing on meshes is more

complicated. Since the velocity of a triangle is defined at

its center, velocity tracing always starts from the center of a

triangle. On the other hand, since density (scalar) values are

defined on vertices, we have to start tracing from there. How-

ever, the reversed velocity direction at a vertex is not well

defined without a careful interpolation scheme. In this sec-

tion, we first describe a method to advect velocities, and then

generalize it to solve the advection of density (scalar) fields.

Advection of Velocity Fields
In a 3D space, the destination of semi-Lagrangian tracing is

still in the same space. However, on a curved mesh surface,

r + urdt is not necessarily on the same surface any more.

To overcome this difficulty, the key point is to generate a

curved trajectory on the mesh by wrapping the tracing direc-

tion around the surface and treating the shared edge of two

adjacent faces properly when the trajectory crosses it from

one of the faces. It is natural to require that the trajectory

continue in the adjacent face from its intersection with the

shared edge.

0T

1T

1T

0T

Figure 1: Flattening faces T0 and T1: rotate face T0 to

the same plane as T1, and rotate the velocity

vector using the same matrix operation.

How can we define the tracing direction on the adjacent

face to guarantee continuity? The situation is shown in Fig-

ure 1. We first need to define the continuity of vector fields

across faces. The vector field on two adjacent faces is con-

sidered to be continuous at their shared edge if the resulting

vector field from the following operation is continuous at the

shared edge: the operation simply rotate one of the faces, as

well as the vectors on it, along the shared edge onto the plane

where the other face resides. According to this definition, it is

straightforward to define the tracing direction on the adjacent

face. Note that there are two possible choices in the above ro-

tation. More reasonably we use the one that makes two faces

end up on different sides of the edge. This guarantees that our

algorithm degenerates into the original fluid algorithm for 2D

spaces when the mesh is actually representing a flat surface.

And this is an important issue when adapting the original al-

gorithm for meshes. We call it degeneracy concern.

x
�y

�

x
�

y
�

z
�

z
�

0T 1T

0C

Figure 2: The velocity vector at the end of a traced tra-

jectory in face T1 is transported to the begin-

ning of the trajectory at the center of face T0.

The x-axis of the local frame in T0 is the start-

ing tracing direction.

Once the end of the trajectory has been reached, the ve-

locity there needs to be transported to the point where we

started tracing. In a 3D space, velocity vectors can be simply

translated. However, on a mesh surface, a translated vector

will not necessarily belong to the same surface any more. In

addition, a curved surface change its orientation constantly.

Translated vectors cannot reflect this orientation change. Our

solution to this problem is based on local frames defined in

the starting face and the terminating face of the trajectory. It

is illustrated in Figure 2. We define a local frame inside a tri-

angle face with respect to a tracing direction as follows. The

unit vector along the specific tracing direction in the face is

the x-axis. The normal vector of the face is the y-axis. The

4

z-axis is simply the cross product between the x- and y-axes.

A mapping between vectors in the two faces can be defined.

A vector in the second local frame is mapped to the vector in

the first frame with the same local coordinates. We use this

mapping to transport desirable velocity vectors from the ter-

minating face of the trajectory to the starting face. Note that

both the local frames and mapping change when the tracing

direction changes. This scheme also degenerates into vector

translation in 2D when the mesh is actually representing a flat

surface.

Velocity Interpolation

Note that in this paper, a velocity field is represented as a

piecewise constant vector field. The velocities at triangle

edges are not continuous. Therefore, the velocity at the end

of the traced trajectory should be first smoothly interpolated

before being transported to avoid visual discontinuities and

other artifacts. Before introducing our general interpolation

scheme, let us first look at how to interpolate the velocity at a

vertex.

4v

0v

2v

3v
1v

034
fu

014
fu

234
fu

124
fu

?

4v
0v

1v

v

3v

124
fu

234
fu034

fu

014
fu

Figure 3: Velocity interpolation at a vertex whose

neighboring faces are formed by folding a flat

surface.

The first choice we tried is to perform vector interpolation

in the 3D space. Unfortunately, we found it to be problem-

atic. Consider the situation in Figure 3, where we would like

to interpolate the velocity at v4. The result from simple 3D

interpolation should be close to zero. But this conflicts with

the fact that neighboring faces of v4 form a flat surface when

being unfolded and in that plane all velocities are the same.

Naturally, the velocity at v4 is expected to be the same, too.

To correctly interpolate the velocity at a vertex, what we

really need is to flatten its 1-ring neighborhood first. In

this paper, local flattening is achieved with affine mappings

(parametrizations). In Figure 4, we show how vector f is

0 1f e eα β′ ′ ′= +

0v′
1v′

2v′

0e′

1e′

0e

0 1f e eα β= +

0v

1e

1v

2v

Figure 4: A local affine transformation defined by map-

ping two basis vectors e0 and e1.

mapped when the triangle it lies on is transformed to a dif-

ferent shape. Suppose unit vectors e0 and e1 collinear with

two edges of the triangle shown in the figure are transformed

to e′0 and e′1. If we consider e0 and e1 as the basis vectors

of an affine frame, the transformed vectors e′0 and e′1 define

a new affine frame. An affine transform between the origi-

nal and new affine frames can be easily derived. This affine

transform can be applied to any vector defined in the origi-

nal frame to obtain its corresponding new vector in the new

frame. Meanwhile, the inverse affine transform is also well-

defined so a vector can be mapped from the new frame back

to the original frame.

iv
0iv

1iv
2iv

3iv

4iv

0e

1e
2e

3e

4e

0
fu

1
fu

2
fu

3
fu

4
fu 4θ

0θ
1θ 2θ

3θ

2i
i

θ π=/∑

0e′

1e′
2e′

3e′

4e′

2
j j

i
i

πθ θ
θ

′ =
∑

0
fu′

1
fu′

2
fu′

3
fu′

4
fu′

v
iu′

v
iu

Figure 5: Vertex velocity interpolation in a local

parametrization plane.

With these local affine mappings, velocity interpolation at

a vertex proceeds as follows. We perform the unfolding pro-

cess as in Figure 5. We map the unit vectors pointing from

vi towards its neighboring vertices onto a unit circle lying

on a parametrization plane such that the relative proportion

of their angles is preserved. A local affine transform can

be derived for each face adjacent to vi using these mapped

unit vectors. Then the velocity vector at each face center is

mapped to a new vector on the parametrization plane using

the derived affine transform for the face. The weighted aver-

age of the transformed velocity vectors is the average velocity

at vertex vi in the parametrization plane. The angle of a face

at this vertex is used as the weight. Note that there is a dis-

5

tinct affine transform for each face, the average velocity in the

parametrization plane cannot be uniquely mapped back onto

the mesh.

0v

1v

2v

3v

0T

1T

0
fu

pu

θΘ

00
vu

01
vu

1
vu

0
vu

p

0C

1C

Figure 6: Velocity interpolation within a triangle.

Our general velocity interpolation scheme is illustrated in

Figure 6. Assume we are interpolating the velocity at point p

on face T0 whose vertices are v0, v1, and v2. Also assume

p is within the triangle formed by v0, v2 and c0 which is the

center of face T0. We use the interpolated velocity of v0, v1

(mapped back onto face T0) and the face velocity of T0 at its

center to interpolate that of p. Naturally, the barycentric co-

ordinates of p with respect to this smaller triangle are used

as the averaging weights. To ensure the continuity of inter-

polated velocity across the shared edge of two adjacent faces,

this scheme needs to be enhanced.

Suppose T0 and T1 are two adjacent faces, and v0 and v2

are the vertices of their shared edge. If we flatten the 1-ring

structure at v0, there are two distinct affine mappings associ-

ated with T0 and T1, respectively. Vertex v0 has an average

velocity in its local parametrization plane. The inverse affine

transform associated with T0 maps this average velocity back

to a vector uv
00 coplanar with T0. A vector uv

01 coplanar with

T1 can also be generated similarly. In general, uv
00 and uv

01

are not the same even if we flatten T0 and T1 into a plane

along their shared edge. We decided to linearly interpolate

between these two vectors to achieve continuous interpolated

velocity at the shared edge. Suppose the center of T0 is c0 and

the center of T1 is c1. Let θ be the angle between lines v0p

and v0c0, Θ be the angle between lines v0c1 and v0c0 after

flattening. The interpolation coefficient between uv
00 and uv

01

is defined to be θ
Θ . Thus, the interpolated velocity at v0 is

uv
0 =

(

1 −
θ

Θ

)

uv
00 +

θ

Θ
uv

01. (11)

The interpolated velocity uv
2 at v2 is defined similarly. The

final interpolated velocity up at p is

up = αuv
0 + βuv

2 + (1 − α − β)uf
0 (12)

where u
f
0 is the face velocity at the center of T0, and

(α, β, 1 − α − β) represent the barycentric coordinates of p

inside the triangle formed by v0, v1 and c0.

Advection of Scalar Fields
At the last substep of each time step, the scalar density field

is advected and interpolated. This part only differs from the

advection of the velocity field in two aspects. For a density

field defined on vertices, it is not obvious from which face

to start the tracing and with what velocity. We use the aver-

age vertex velocity in its parametrization plane to determine

the face where the velocity vector lies and map the average

velocity back onto it. And the rest of tracing is exactly the

same as that of velocity field. Unlike velocity advection, we

do not need to transport vectors and perform vector interpola-

tion. Density interpolation at the end of the trajectory is much

simpler since density values are defined on vertices instead of

face centers. We only need to use the barycentric coordinates

of the endpoint of the trajectory with respect to the vertices of

the terminating face to interpolate from the density values at

those vertices. The interpolated density is deposited onto the

vertex where the tracing started.

Implementation
The sparse matrix equation in (6) can be solved using ei-

ther conjugate gradient (CG), or preconditioned conjugate

gradient (PCG). In the case of PCG, we use the Incomplete

Cholesky Factorization (ICF) as in [8].

To handle meshes with open boundaries, a few places in

the implementation need to be modified. When solving the

Poisson equation for pressure, the pressure values on the

6

Figure 8: Density is periodically deposited onto the top of a Pawn model, and gravity drives the rest of the simula-

tion. The mesh has 130050 vertices and 260096 faces.

Figure 9: Fluid flows on a Bunny model. The mesh has 139122 vertices and 277804 faces.

Figure 7: Fluid flows on a Sphere model with a striped

initial density distribution. The mesh has

98306 vertices and 196608 faces.

mesh boundaries are actually the boundary condition for the

Poisson equation. In practice, we use Dirichlet boundary con-

ditions and set the pressure to be 0 at boundary vertices. The

coefficient matrix in (6) needs to be adjusted to accommodate

this type of boundary conditions. When setting up the local

affine transforms during velocity interpolation at boundary

vertices, we keep the original angles when they are mapped

into the parametrization plane unless the summation of all the

angles surrounding a vertex exceeds 2π, which in practice we

did not notice any. Semi-Lagrangian tracing can go beyond

the mesh boundary, in which case smoothly decreasing the

Figure 10: Fluid flows on a high genus Torus model.

The mesh has 271356 vertices and 542720

faces.

density helps prevent undesirable discontinuities. Note that

our current implementation does not enforce zero divergence

at the boundary vertices.

Experimental Results
Listed here are the results of several examples. In the Pawn

example shown in Figure 8, we periodically deposit density

7

Figure 11: Fluid flows on the Hypersheet model. The

mesh has 117877 vertices and 234752 faces.

onto the top of it, and let gravity drive the rest of the simu-

lation. The model is derived from an original Pawn model

after five iterations of Loop subdivision. If we run our pro-

gram on the original coarse Pawn model with 16256 faces,

we can achieve a frame rate of 6fps on a 1.7GHz Pentium

IV Xeon processor. Because of incompressibility, the fluid

moves in the opposite direction of gravity in some regions.

In terms of the bunny model shown in Figure 9, we initially

place density as horizontal strips, and use gravity to pull them

down. Note that the bunny model is not a waterproof model

and has some holes on the bottom and between the forelegs.

The fluid moves interestingly around these regions. The fluid

behavior at open mesh boundaries is even more clear in the

hypersheet model shown in Figure 11 where the fluid escapes

when crossing the boundary. We use Dirichlet boundary con-

dition for both examples. Note that it is also a straightfor-

ward implementation to reflect the fluid velocity vector once

it reaches the boundary. In the triple torus example shown in

Figure 10, we show our method works equally well for high

genus models.

The videos for the examples in this paper may be found at:

http://www-sal.cs.uiuc.edu/˜yyz/

research/surface flow

Discussions
In this paper, we described a novel fluid simulation method

directly performed on triangle meshes. It eliminates

parametrization distortions and enforces incompressibility on

closed surfaces. This work can be potentially generalized to

other types of manifold meshes and even unstructured 3D

grids. So far our algorithm works for inviscid and incom-

pressible fluid simulation. For a more complicated and re-

alistic fluid solver, further studies of the underlying physics

foundation is essential. We would also like to improve the

performance of our solver especially by using an appropriate

preconditioner for the conjugate gradient method.

References
[1] M. Bertalmio, L.T. Cheng, S. Osher, and G. Sapiro.

Variational problems and partial differential equa-

tions on implicit surfaces. Computational Physics,

174(2):759–780, 2001.

[2] J. Stam. Flows on surfaces of arbitrary topology. ACM

Transactions on Graphics, 22(3):724–731, 2003.

[3] E. Catmull. A Subdivision Algorithm for Computer Dis-

play of Curved Surfaces. PhD thesis, Univ. of Utah,

1974. Report UTEC-CSc-74-133.

[4] C. Loop. Smooth subdivision surfaces based on trian-

gles. Master’s thesis, University of Utah, Department of

Mathematics, 1987.

[5] N. Foster and D. Metaxas. Modeling the motion of a

hot, turbulent gas. In SIGGRAPH 97 Conference Pro-

ceedings, pages 181–188, 1997.

[6] J. Stam. Stable fluids. In SIGGRAPH 99 Conference

Proceedings, pages 121–128, 1999.

[7] A. Staniforth and J. Cote. Semi-lagrangian integration

schemes for atmospheric models: A review. Monthly

Weather Review, 119:2206–2223, 1991.

[8] R. Fedkiw, J. Stam, and H.W. Jensen. Visual simulation

of smoke. In SIGGRAPH 01 Conference Proceedings,

pages 15–22, 2001.

[9] X. Wei, Y. Zhao, Z. Fan, W. Li, S. Yoakum-Stover, and

A. Kaufman. Blowing in the wind. In ACM Symposium

on Computer Animation, 2003.

[10] R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Ten-

sor Analysis, and Applications, volume 75. Springer,

1988. Applied Mathematical Sciences.

[11] K. Polthier and E. Preuss. Variational approach to vector

field decomposition. In Proc. Eurographics Workshop

on Scientific Visualization, 2000.

[12] Y. Tong, S. Lombeyda, A.N. Hirani, and M. Desbrun.

Discrete multiscale vector field decomposition. ACM

Trans. Graphics, 22(3):445–452, 2003.

8

