Surface Reconstruction from Unorganized Points Using
Self-Organizing Neural Networks

Yizhou Yu

Computer Science Division
University of California at Berkeley

ABSTRACT

We introduce a novel technique for surface reconstruction from un-
organized points by applying Kohonen’s self-organizing map. The
topology of the surface is predetermined, and a neural network
learning algorithm is carried out to obtain correct 3D coordinates
at each vertex of the surface. Edge swap and multiresolution learn-
ing are proposed to make the algorithm more effective and more
efficient. The whole algorithm is very simple to implement. Exper-
imental results have shown our techniques are successful.

Keywords: Surface Reconstruction, Point Set, Neural Networks,
Self-Organizing Maps, Geometry, Modeling, Visualization, Laser
Scanner

1 Introduction

The problem of reconstructing a surface from scattered sample
points arises in many applications such as geometric model acqui-
sition in graphics, visualization of data from medical imaging, and
cartography where the input devices can only obtain the 3D posi-
tions of sample points with no information of connectivity among
them.

The difficulty involved in the problem of surface reconstruction
from unorganized points is in obtaining correct connectivity among
the sample points. Correct connectivity can give us a reconstructed
surface mesh that faithfully represent the shape and topology of the
original object from which the set of sample points were drawn.
Usually this difficulty is tackled in a bottom-to-top way. That is,
previous work[7, 3, 2] tried to build connections among nearest
points and finally build a mesh out of the input point set. This
approach requires that the sample points be dense enough; other-
wise, holes may appear at undersampled areas, which changes the
topology of the surface. We are pursuing a totally different ap-
proach here, which we call the top-to-bottom approach. We assume
a mesh with correct topology(connectivity) has already been given
in advance with some help from the user, e.g. the user can tell
from the sample points whether the original object is topologically
equivalent to a sphere or a torus. However, in the beginning, the

*Email: yizhouy@acm.org, yyz@cs.berkeley.edu,
Website: http://www.cs.berkeley.edu/~yyz

coordinates at each vertex of the mesh are unknown and initialized
in a naive way. Instead of building connectivity, the major chal-
lenge here is to work out a method of moving the vertices so that
they are close enough to the input point set to manifest its shape.
A learning procedure, which was originally used for training self-
organizing neural networks[1], is applied to the vertices which ob-
tain meaningful coordinates at the end so that the shape of the mesh
approximates that of the input point set. We can summarize the dif-
ference of these two approaches as learning connectivity given co-
ordinates versus learning coordinates given connectivity. The major
advantage of our approach is that no holes will appear at unexpected
places even for sparse datasets because of the predetermined mesh
topology.

This paper is organized as follows. Section 2 describes previous
work on surface reconstruction. Section 3 introduces Kohonen’s
Self-Organizing Map and its training algorithm. Section 4 gives our
surface reconstruction algorithm using the above-mentioned train-
ing algorithm. Section 5 describes how to assign texture coordi-
nates in our approach. Section 6 shows some example results. And
Section 7 has the conclusions.

2 Previous Work

There are two types of previous work on surface reconstruction:
interpolation and approximation. The first type has combinatorial
algorithms. The second type is similar to data fitting by using a
piecewise linear surface and minimizing the distance between the
point set and the approximating surface.

Hoppe et al[7, 6], Curless and Levoy[3] presented algorithms in
the second type. They exploited the fact that a surface can be re-
constructed from its normal orientations because we can get tangent
planes from normals and the area around the normal on a tangent
plane is a first order approximation of the local surface. These algo-
rithms need to estimate normals from the point set very accurately.

The algorithm in the first type includes «-shape by Edelsbrun-
ner et al[5], and the “crust” by Amenta and Bern[2]. a-shape is
a heuristic. It works well for uniform sampling. The major draw-
back of using «-shapes for surface reconstruction is that the opti-
mal value of o depends on the sampling density, which often varies
over different parts of the surface. The "crust” is provably correct if
the sampling density is enough everywhere. But the local topology
may be changed and holes may appear due to undersampling.

3 Kohonen’s Self-Organizing Map

The basic configuration of Kohonen’s Self-Organizing Map [1] is
a two-dimensional network of cells denoted by {C\, Cs, ...,Cn}
with a kind of spatial arrangement so that each cell in the network
has a few neighboring cells. The spatial arrangement and definition
of neighborhood may be different for different applications. For
instance(Fig. 1), if the cells are arranged as a rectangular array,



@) (b)

(d) )

Figure 2: (a)-(b) If the local mesh structure is like the one shown in (a) where vertex A belongs to one part of the surface and vertices B, C, D
belong to some other part of the surface, we can use a single swap at the middle edge to reduce the number of problematic triangles as shown
in (b); (c)-(e) If the local mesh structure is like the one shown in (c) where vertices A, E belongs to one part of the surface and vertices
B, C, D belong to some other part of the surface, we can use a double swap at the middle triangle to reduce the number of problematic
triangles. (d) shows the 0 after the first single swap, and (e) shows the structure after the second single swap.

fffffffff 665000

fffffffff G000 0 RO,
fffffffff GO0 HH BB GG

fffffffff R R

Figure 1: Kohonen’s Self-Organizing Maps with rectangular and
triangular spatial arrangement, respectively. Each cell in the rect-
angular arrangement has four immediate neighbors. Each cell in
the triangular arrangement has six immediate neighbors.

each cell has four immediate neighbors. In computer graphics, tri-
angular meshes are very common geometric representations. So we
may arrange the cells as the vertices in a triangulation. Two cells
are neighbors to each other if there is an edge between them. The
distance between two neighboring cells is usually defined to be one,
and the distance between any two cells in the network is defined to
be the length of the shortest path connecting them.

The input to the network is a set of vectors denoted by
{z1,z2,...,z,}. Each cell C; in the network has a weight vector
w; whose dimensionality is the same as that of the input vectors.
Given a particular input vector, the response of a cell can be either
the inner product between the input vector and the cell’s weight
vector or the Euclidean distance between these two vectors. The
winner cell is defined to be the one with the largest(inner product)
or smallest(Euclidean distance) response.

Kohonen’s iterative training procedure is used for obtaining a
proper weight vector for every cell so that winner cells correspond-
ing to two input vectors are close to each other in the network if the
input vectors are close to each other in their vector space. In his
training algorithm, if cell C(¢) is the winner cell corresponding to
input vector x(t) at time step ¢, the updating rule may read

wi(t) + K(t, d)[z(t) — wi(t)],
d = Distance(Cy, C(t)) < 6(t),
otherwise.
@

where K (t,d) is a scalar-valued function 0 < K(¢,d) < 1, and
d(t) is a distance threshold, both of which vary as the training
proceeds. K(t,d) is actually the product of a gain function a(t)
and a hat function h(t, d) where «(t) becomes smaller and smaller
as the training proceeds, and h(t, d) is usually a bell-shaped func-
tion with its width gradually decreased. A Gaussian function like
exp(—d?/a?(t)) is appropriate for h(t,d) where o(t) controls the
width. Once o(t) is defined, we can see it is appropriate to set

wk(t+1) = {

wi(t),

d(t) = co(t) where c is a positive constant. So there are only two
functions a.(t) and o (¢) that need fine-tuning.

The above training algorithm can effectively adapt a network to
learn the implicit order in the input vectors and adjust the weight
vectors of the cells so that they respond to the input vectors in an
orderly manner, i.e. the winner cell will move continuously in the
network as the input vector changes smoothly. The achieve this
result, a(t) should be initialized to a large value close to 1 and
gradually decrease to a small value of the order of or less than 0.01.
Meanwhile, o (¢) should be initialized to a value of the order of the
radius of the network and gradually decrease to be less than 1.

4 Surface Reconstruction

Kohonen’s training algorithm for self-organizing maps is suitable
for our approach. We consider the vertices in a mesh as the cells
in a neural network, the coordinates at each vertex as the three di-
mensional weight vector at each cell, the input unorganized point
set as the set of input vectors. Therefore, a geometric mesh defines
an equivalent self-organizing map. The winner cell corresponding
to an input point is chosen such that its coordinates are closest to
the input point in 3D Euclidean space. This can be formulated as

where C, is the winner cell, z;, is the input point. Because of the
algorithm’s ability to learn the implicit order of the input dataset,
neighboring vertices in the final mesh should be close to each other
geometrically and the final mesh should look smooth and not have
any discontinuities. If we imagine the initial mesh as a rubber sheet,
the procedure of learning coordinates for the vertices is like stretch-
ing the rubber sheet and wrapping it around the point set so that
there are no big gaps between the point set and the rubber sheet.
The number of vertices in the mesh is usually different from the
number of input points. And the coordinates of a certain vertex in
the mesh do not necessarily coincide with those of a particular point
from the input.

4.1 Edge Swap

Here we assume a triangular mesh is used. If the real object sur-
face has concave structures, simply applying Kohonen’s learning
algorithm sometimes has difficulty to approximate those parts well.
The reconstructed surface may have some thin elongated faces con-
necting separate parts and filling up concave structures (Fig. 3(a)).



(b)

(d)

Figure 3: (a) Simply applying Kohonen’s learning algorithm sometimes has difficulty to approximate concave structures well. The recon-
structed surface may have some thin elongated faces connecting separate parts and filling up concave structures. It can be removed by edge
swaps. (b)-(d) Intermediate reconstruction with edge swaps at three consecutive resolutions with 320, 1280, 5120 triangles, respectively.

Figure 4: (a) The original dataset of the Stanford bunny with 35947 points, (b) The final reconstruction of the Stanford bunny with 20480
triangles. (c) The original dataset of a height function with 10000 points, (d) The reconstructed surface(2209 rectangles) of the point set in

(c) with texture-mapping.

They are not part of the real object surface. It is relatively easy to
detect these triangles by calculating the minimum distance between
the centroid of a triangle and the input point set. This minimum
distance for a triangle T is defined as follows.

MD(T) = mig Distance(p, centroid of T) (3
PE

where S is the input point set. After applying Kohonen’s learn-
ing algorithm, we calculate M D(T') for every triangle 7' in the
mesh, and obtain the mean and standard deviation over all trian-
gles. Those elongated triangles that do not belong to the real object
surface should have large minimum distance compared to the mean
minimum distance.

To remove these problematic triangles, we adopt one mesh op-
eration: edge swap. Edge swap can preserve the original topology
of the mesh. In [6], Hoppe et al. discussed three elementary opera-
tions, edge collapse, edge swap, edge split. They are the only oper-
ations needed to transform two arbitrary triangular meshes to each
other. However, if we want to transform between two meshes which
have the same number of vertices and edges and both of which are
2D manifolds, edge swap is the only operation needed. A simple
and classic example of this is using edge swap to transform two
different triangulations of a convex polygon.

Theorem: Edge swap can transform two manifold triangular
meshes with the same number of vertices and edges to each other.

Proof: There exists a particular sequence of edge swaps that can
realize the 0. Choose a vertex V' in the first mesh and suppose its
corresponding vertex in the second mesh is V. Swap the edges in
the two meshes in such a way that in the end, all the edges in the
first mesh are incident to V" and all the edges in the second mesh are
incident to V’. The desired sequence is obtained by concatenating
the sequence of edge swaps for the first mesh with the reversed
sequence for the second mesh. The details about how to swap the
edges are left out here.

Now that we know edge swap is enough for changing a mesh
if the number of vertices and edges, therefore the faces, are kept
the same. However, the sequence of edge swaps described in the
above proof is not useful in practice. To remove those problematic
triangles, we actually use two variants of edge swaps, single swap
and double swap. A single swap is the same as the original edge
swap (Fig. 2(a)-(b)). After a single swap, the two triangles sharing
the old edge are deleted and two new triangles sharing the new edge
are generated. A double swap is two consecutive single swaps but
the two swapped edges belong to the same triangle in the original
mesh (Fig. 2(c)-(e)).

To choose which edge of a problematic triangle should be
swapped, we define a quantity called the deviation of an edge as
follows.

Dev(e) = MD(Ty) + MD(T>) 4

where e denotes some edge in the mesh, 71 and T are the two tri-
angles sharing edge e. For a problematic triangle whose minimum
distance is larger than a threshold, we choose to swap the edge with
the largest deviation. First, a single swap is tried and accepted if
and only if the deviation of the new edge is smaller than that of the
old one and the minimum distance of at least one of the two new
triangles is smaller than the prescribed threshold. If a single swap
fails, we continue to try a double swap which means that we keep
the first swap and try to swap another edge with the second largest
deviation. A double swap is accepted if and only if the second swap
satisfies the above conditions. Otherwise, we recover the original
mesh and no edge swap happens to the considered triangle.

For the whole mesh, we first obtain the minimum distance of
each triangle, then gradually decrease a threshold on the minimum
distance from a large value to the mean. At each step of the decre-
ment, single out the list of triangles whose minimum distance is
larger than the threshold and try a single (and double swap) on each
of them.

There is a minor problem that needs some attention before edge



C

Figure 5: If there is a dangling vertex in the middle of two different
parts of the surface, we need to move it close to one part of the
surface before an edge swap can happen. The left figure shows the
structure before the move, the right one shows the structure after
the move.

swap is carried out. There may be a small number of vertices far
away from the whole input point set(Fig. 5). Edge swap can not
move the triangles incident to them closer to the input points be-
cause these vertices pull the centroids of their incident triangles
away from the input point set. We need to move these vertices
first. We go through each of the vertices which has a nearby point
from the input, and move towards it any of its neighboring vertices
in the mesh that are far away from the input points. This process is
repeated a few times until all the vertices have some nearby point
from the input.

4.2 Multiresolution Learning

Overall performance of the algorithm can be improved by applying
Kohonen’s learning algorithm at multiple resolutions of the mesh.
Most low-frequency features can be learned at lower resolutions
with much less computational cost. When it comes to the desired
resolution, only limited high-frequency details need to be learned.
Therefore, the number of iterations can be fairly small at the highest
resolution. We do edge swap at each intermediate resolution after
the learning algorithm has been applied. So concave structures can
also be learned gradually at multiple resolutions. We use either tri-
angular or rectangular meshes. Every time when both learning and
edge swap are finished at a certain resolution and a higher reso-
lution is desired, each face in the mesh needs to be split into four
smaller faces, each edge needs to be split into two with a new vertex
inserted in-between. The total number of faces is quadrupled. And
S0 is the computational cost at the next level.

5 Texture Mapping

Given an arbitrary mesh, the assignment of texture coordinates to
every vertex could be painful. In our approach, texture-mapping
can be carried out in a natural way for a point set whose topology
is equivalent to a disk. We start with a flat rectangular or triangular
mesh which is initially embedded in the texture space. The initial
2D coordinates at each vertex can be considered as its pre-assigned
texture coordinates. Then Kohonen’s learning algorithm is applied
on the mesh to learn the geometry of the input point set. When the
learning is done, every vertex has correct 3D coordinates as well
as texture coordinates. Texture-mapping the final mesh becomes
straightforward.

6 Results

We implemented the above surface reconstruction algorithm on a
Pentium 11 300MHz processor running Linux. We are currently
considering two different kind of mesh topology, open surface with
one continuous boundary which is homeomorphic to a disk, and
closed surface without holes which is homeomorphic to a sphere.
We use rectangular mesh for the open surface topology, and tri-
angular mesh for the spherical topology which is initialized as an
icosahedron with twenty faces. Each subdivision splits each face
into four smaller ones. The number of iterations at each resolu-
tion is between 50 and 100. We have tested our algorithm on two
datasets, a 10000 point dataset sampled from a height function de-
fined by a mixture of three Gaussian functions (Fig. 4(c)-(d)), and a
35947 point dense dataset of the well-known Stanford bunny (Fig.
3(b)-(d) and 4(a)-(b)). We use the open surface topology for the first
dataset, and the closed spherical topology for the other. From the
results, we can see our algorithm is quite effective to generate the
correct surface reconstruction. The running time of our algorithm is
less than half an hour for the smaller dataset, but a little more than
one hour for the larger bunny dataset.

7 Conclusions and Future Work

In this paper, we introduced a novel technique for surface recon-
struction from unorganized points by applying Kohonen’s self-
organizing map. A learning procedure is carried out to obtain cor-
rect 3D coordinates at each vertex of the surface. Edge swap and
multiresolution learning are introduced to make the algorithm more
effective and more efficient. The whole algorithm is very simple
to implement. Experimental results have shown our techniques are
successful. In future, we would like to extend this work to accom-
modate more sophisticated topology and try different distance met-
rics, such as geodesic distance, for cells in the self-organizing map.
Space subdivision schemes, such as octrees, could be used for ac-
celerating the search for the nearest input point to a mesh vertex.

Acknowledgments

This research was supported by a Multidisciplinary University Research Initiative on
three dimensional direct visualization from ONR and BMDO, grant FDN00014-96-1-
1200, and Microsoft Graduate Fellowship. The author wishes to thank Marshall Bern
for providing the bunny point set, and the reviewers for their valuable comments.

References

[1] Kohonen, T., "The Self-Organizing Map”, in Proceedings of the IEEE, vol. 78,
No. 9, pp.1464-1480, 1990.

[2] Amenta, N., Bern, M., and Kamvysselis, M., ” A New Voronoi-Based Surface
Reconstruction Algorithm ”, in Proc. of S GGRAPH’ 98, pp.415-421.

[3] Curless, B., and Levoy, M., ” A volumetric method for building complex models
from range images”, in Proc. of SGGRAPH’ 96, pp.303-312, 1996.

[4] Turk, G., and Levoy, M., ” Zippered polygon meshes from range images,” in
Proc. of SGGRAPH’ 94, pp.311-318, 1994,

[5] Edelsbrunner, H., and Miicke, D.P., "Three-dimensional Alpha Shapes”, in ACM
Transactions on Graphics, 13, pp.43-72, 1994.

[6] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W., "Mesh
Optimization”, in Proc. of SGGRAPH’ 93, pp.19-26.

[7]1 Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W., "Surface
reconstruction from unorganized points”, in Proc. of SGGRAPH’ 92, pp.71-78.

[8] Stander, B.T., and Hart, J.C., "Guaranteeing the Topology of an Implicit Surface
Polygonization for Interactive Modeling”, in Proc. of SSIGGRAPH’97, pp.279-
286.

[9] Yu, Y., "Efficient Visibility Processing for Projective Texture-Mapping”, in Jour-
nal of Computers & Graphcs, Vol. 23, No. 2, (1999), pp. 245-253..

[10] Yu, Y., AND Wu, H., A Rendering Equation for Specular Transfers and its

Integration into Global Illumination. Eurographics’97, in Journal of Computer
Graphics Forum, 16(3), (1997), pp. 283-292.



