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ABSTRACT

Nonrigid or deformable 3D objects are common in many applica-
tion domains. Retrieval of such objects in large databases based on
shape similarity is still a challenging problem. In this paper, we first
analyze the advantages of functional operators, and further propose
a framework to design novel shape signatures for encoding non-
rigid object structures. Our approach constructs a context-aware
integral kernel operator on a manifold, then applies modal analysis
to map this operator into a low-frequency functional representation,
called fast functional transform, and finally computes its spectrum
as the shape signature. Our method is fast, isometry-invariant, dis-
criminative, and numerically stable with respect to multiple types
of perturbations.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Retrieval models; H.4 [Information Systems Ap-

plications]: Miscellaneous; I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Geometric algorithms,
languages, and systems

Keywords

Content-Based Object Retrieval, Shape Retrieval, Biharmonic Dis-
tance, Functional Map, Shape Signature

1. INTRODUCTION
Content-based 3D object retrieval facilitates the search for de-

sired objects within a large 3D object repository. It has become
increasingly popular due to the rapid development of 3D scan-
ning technologies and the emergence of large 3D object databases.
Content-based object retrieval is useful in many application do-
mains, including CAD/CAM, medicine, molecular biology, 3D com-
puter games and virtual worlds.

Since many 3D object models, such as avatars, creatures and
biomedical objects, can take various types of deformations, it is
much desired for an object retrieval technique to be able to recog-
nize deformed versions of an object. Nonetheless, nonrigid object
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retrieval is a very challenging task because a deformed object may
not be visually similar to the original one any more. Important
criteria for measuring the performance of nonrigid object retrieval
techniques include isometry invariance, discrimination power, ef-
ficiency and stability. In addition, there exist other considerations,
including extensibility, applicability and complexity of implemen-
tation.

In this paper, we first analyse functional operators over modal
space and further introduce spectrum-based shape signatures to en-
code the structure of a nonrigid shape. The basic idea underly-
ing our shape signature is to compute the spectrum of the newly
proposed functional operator, which is constructed from an intrin-
sic, context-aware integral kernel operator by projecting it to the
linear space spanned by low-frequency modes defined over an ob-
ject surface, while the integral kernel operator is itself based on a
modal based pairwise distance. The resulting transformation ma-
trix can be analytically written in a succinct form. Our method
is isometry-invariant and stable with respect to noise, holes and
nonisometric deformations. The implementation of our shape sig-
nature is based on linear FEM. The signature itself can be effi-
ciently computed for meshes in a wide range of resolutions and
topologies. To further boost retrieval performance, we incorpo-
rate a pseudo-relevance feedback mechanism to iteratively improve
similarity ranking among retrieved object instances.

Our experiments demonstrate that our new shape signature for
nonrigid objects can outperform all non-hybrid methods participat-
ing in the nonrigid track of the SHREC’11 contest [9] on a rep-
resentative mixed dataset combining the dataset from the nonrigid
track of SHREC’11 and another custom built dataset. In particular,
our method achieves obviously higher precision than other methods
when recall is above 50%.

The rest of the paper is organized as follows. Related work will
be discussed in Section 1.1. In Section 2, we discuss the funda-
mental mathematics behind our signature design. In Section 3,
we briefly sketch our numerical implementation. In Section 4, we
present experimental results to validate our shape signature. Sec-
tion 5 concludes our paper.

1.1 Related Work
Among extensive work on 3D object retrieval, most techniques

are devoted to rigid objects and are based on extrinsic geometry
such as Euclidean distance, curvatures and snapshots of 3D canon-
ical views. Nevertheless, nonrigid models have gained increasing
popularity. Their extrinsic geometry often varies under nonrigid
deformations. Isometric shape deformation was initially addressed
in [8], where researchers began to consider bending invariant or
insensitive 3D shape recognition.

In our knowledge, two major classes of approaches are proposed
for nonrigid shape retrieval during the last decade. The first class



includes all local feature based approaches. Inspired by the suc-
cess of the SIFT feature descriptor in image retrieval, researchers
proposed analogous descriptors based on extrinsic curvatures and
tangential fields, such as meshSIFT [12] and MeshHOG [25], for
representing local features on mesh surfaces. ShapeGoogle [14, 4]
emphasizes the robustness of association and classification, espe-
cially for objects with missing parts and topological noises. It inte-
grates the local Heat Kernel Signature (HKS) [22, 6] with the bag-
of-word framework. By extracting isometrically invariant dense
point descriptors and quantizing them into binary codes, shapes are
registered for efficient indexing, comparison and association.

The second class emphasizes coarser-scale or global structures of
a 3D nonrigid shape. The skeleton-based method in [23] encodes
the geometric and topological information in the form of a skeleton
graph and uses graph matching to retrieve similar skeletons. An-
other method based on Gromov-Hausdorff distance has been pro-
posed in [5] for matching nonrigid shapes. Statistical techniques,
such as histograms and D2 distributions [18], are also popular in
designing descriptors in respect of coarse-scale structures.

Among those methods concerning global shapes, spectrum-based
techniques became popular in recent years. Shape-DNA [17] pro-
poses to use the spectrum of the Laplace-Beltrami operator as an
isometry-invariant shape descriptor. Another similar method, SD-
GDM [20] proposes to compute a singular value decomposition
(spectra) for the geodesic distance matrix, which seems to outper-
form shape-DNA [9]. However, compared to shape-DNA, matrix
assembly in SD-GDM requires all-pairs geodesic distances, which
are computationally prohibitive to obtain even with the latest devel-
opments in fast geodesic distance computation [24, 15], and a uni-
form mesh decimation is typically employed in practice to speed
up this process.

Local features, such as SIFT [11] and its variants, have been suc-
cessfully adopted in image retrieval. However, in the context of 3D
nonrigid shape retrieval, local feature based methods have been out-
performed by shape descriptors emphasizing coarser-scale struc-
tures. We provide the following explanations for this phenomenon.
First, pixel values captured by a camera are related to photomet-
ric properties of real scenes and objects. Photometric properties
tend to have higher frequencies than pure geometry. For example,
there could be high-frequency texture patterns over a geometrically
flat surface. Given such high-frequency photometric properties,
it is possible for a local feature descriptor to encode sufficiently
discriminative visual information for recognition or retrieval tasks.
Second, 3D scanning techniques are not as mature as digital pho-
tography. Even when a 3D surface does have high-frequency de-
tails, such as pores and wrinkles on skin, it is unlikely for them
to be accurately captured by a 3D scanner. Very often, such high-
frequency details are buried in noises. Therefore, high-frequency
geometry over a 3D surface tend to be inaccurate and unreliable,
thus unsuitable for retrieval tasks.

2. OUR APPROACH

2.1 Laplace-Beltrami Operator
Shape-DNA [17] exploits eigenvalues to achieve an impressive

shape retrieval performance, while there are a number of other
methods, such as [18, 22], utilizing eigenvectors. All these meth-
ods compute the spectrum of the Laplace-Beltrami operator ΔM ,
where M is the underlying manifold embedded in the 3D Euclidean
space as a surface, by solving the following eigenvalue problem,

−ΔMu = λu. (1)

The Laplace-Beltrami operator is a generalized operator for func-

tions defined on Riemannian manifolds. By solving the above equa-
tion, we obtain a complete set of modal bases {φi}∞i=0 over a man-
ifold, where each φi corresponds to a normalized eigenvector with
eigenvalue λi in an ascending order.

2.2 Functional Operator
The eigenvectors of Laplace-Beltrami operator intrinsically span

a low-frequency functional space Φ which is useful in modal anal-
ysis. For example, in [13], the authors construct intrinsic flexible
maps between two shapes by solving for a linear transform ma-
trix between their modal spaces Φ1 �→ Φ2 subject to certain con-
straints.

We instead focus on intrinsic functional transforms i.e. maps be-
tween Φ and itself. Of course, Laplace-Beltrami operator is itself
a functional transform that map φi �→ −λiφi, which is isometry-
invariant. We in this section introduce a new set of functional trans-
forms which are experimentally shown to be more robust in pres-
ence of their spectrums than Laplace-Beltrami operator.

Given a symmetric function, k(·, ·), let us consider the following
integral kernel operator,

Kf(y) =
∫
M

k(x, y)f(x)dx. (2)

If k(·, ·) is isometry-invariant, the spectrum ofK is also isometry-
invariant. For example, in the non-rigid track of the 2011 3D shape
retrieval contest (SHREC’11) [9], the retrieval performance of SD-
GDM [20], a method based on geodesic distance matrices (GDM),
is ranked first. It outperforms shapeDNA. GDMs are in fact a class
of integral kernel operators. If we set k(x, y) as the geodesic dis-
tance between x and y, the spectrum of K is the mathematically
precise form of SD-GDM and is provable isometry-invariant.

The major important contribution of our approach is instead naively
computing transforms matrix in complexity of geometry (i.e. pair-
wise values k(xi, xj) for all xi, xj ∈M ), we restrict the kernel to
modal space Φ (i.e. applying the kernel to functions in Φ, the space
spanned by the lower eigenvectors and then projecting the solution
back onto Φ). We can write the transform matrix by

K̃ = ΦTKΦ, (3)

where Φ = [φ0, φ1, . . . , φm, . . .].
It is worth noting that this restriction is not a simple efficient

approximation, the functional transforms before and after restric-
tion are different in both theory and numerics. Precisely speaking,
the original functional space before restriction is generally a Ba-
nach space (and is numerically approximated in a Sobolev space,
i.e. Wq,p(M) = {f ∈ Lp(M) : Dαf ∈ Lp(M), ∀α ≤ q}1);
while the functional space Φ in restriction is an infinite dimen-
sional Hilbert space or inner product space (and is numerically ap-
proximated by truncating lower eigenvectors, converges in a weak
sense). Hence the spectrums of K in these two functional spaces
can be different (although they are identical for Laplace-Beltrami
operator).

In our experiments (see comparison of track BiHDM and R-
BiHDM in section 4.2), it is indicated spectrum computed by modal
space restriction can better tolerate manifold deformations, and out-
performs the spectrum of a pairwise kernel in retrieval tasks.

2.3 Distance Map Based on Modals

1Here, the notation Dαf = ∂|α|f
∂x

α1
1 ...∂x

αi
i

, for α =

(α1, α2, . . . , αi)



Computing the geodesic distance matrix is very computationally
expensive for large meshes. We choose to compute (squared) bihar-
monic distance [10] instead because it exhibits multiple nice prop-
erties while being more efficient to compute, and can be restricted
in modal space analytically in a succinct way.

In the continuous case, the (squared) biharmonic distance is de-
fined as follows,

d2(x, y) =

∞∑
i=1

(φi(x)− φi(y))
2

λ2
i

, (4)

where φi and λi are the eigenfunctions and eigenvalues (resp.) of
the semi-positive definite Laplace-Beltrami operator, −Δφi(x) =
λiφi(x), where 0 = λ0 < λ1 ≤ λ2 ≤ . . . and

∫
M
|φi|2 = 1.

The distance is a metric, and is smooth, locally isotropic, globally
“shape aware”, isometry invariant, insensitive to noise and small
topology changes, parameter-free, and practical to compute on a
discrete mesh. In [10] these two types of distances have been ex-
tensively compared in detail. Biharmonic distance provides a nice
trade-off between being nearly geodesic for small distances and
global shape-awareness for large distances.

Additionally note that we can have different weight choices in-
stead of 1/λ2

i , e.g. λi exp(−λit). It is of course interesting to
justify specific choices. But in our experiments, we in “hard-code”
choose biharmonic weights to achieve favorable results. See sec-
tion ?? for a more extensive discussion.

2.4 Functional Biharmonic Distance Map
Combining previous two section together, i.e. let k(x, y) =

d2(x, y), we fomulate K̃ explicitly as follows.

Kφ0(y) =
∞∑
i=1

∫
M

(φi(x)− φi(y))
2

λ2
i

φ0(x)dx

=
1√
A

∞∑
i=1

1

λ2
i

+
√
A

∞∑
i=1

φ2
i (y)

λ2
i

where A is the total area of M , and note φ0 = 1/
√
A. Let 〈·, ·〉 be

the standard inner product of L2 functions, we have

a0 = 〈φ0,Kφ0〉 = ∑∞
i=1

2

λ2
i

,

aj = 〈φj ,Kφ0〉 =
√
A
∫
M

∑∞
i=1

φ2
i

λ2
i

φj j > 0.
(5)

We also have

Kφj(y) =
∞∑
i=1

∫
M

(φi(x)− φi(y))
2

λ2
i

φj(x)dx

=
∫
M

∞∑
i=1

φ2
i

λ2
i

φj − 2φj(y)

λ2
j

j > 0,

where 〈φ0,Kφj〉 = aj and 〈φi,Kφj〉 = − 2

λ2
j

δij . Thus we have

obtained the projected matrix K̃, called reduced biharmonic dis-
tance matrix(R-BiHDM),

K̃ =

⎡
⎢⎢⎢⎣
a0 a1 a2 . . .
a1 −2/λ2

1

a2 −2/λ2
2

...
. . .

⎤
⎥⎥⎥⎦ . (6)

The above matrix is infinite. Let K̃m be an (m+ 1)× (m+ 1)
square matrix formed by the following two steps: i) take the first
m + 1 rows and first m + 1 columns of K̃; ii) when calculating
each aj in this truncated matrix, every infinite summation in (5) is

approximated by the first m terms. As m→∞, the largest tens of
eigenvalues of K̃m enjoy quick convergence rate. Figure 1 shows
the maximum error of the first 30 eigenvalues versus m, the number
of eigenpairs of the Laplace-Beltrami operator. It is observed that
the asymptotic eigenvalues converge linearly.
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Figure 1: Convergence of the first 30 eigenvalues of an R-

BiHDM.

Note that tr(K̃) = 0. We denote all eigenvalues of K̃ in a
magnitude descending order as {μj}Lj=0. We have observed that
μ0 > 0 and μj < 0 ∀j > 0. (Such matrix has a single posi-
tive eigenvalue, and the rest are negative. See [1] and references
therein) Hence a scale invariant spectrum can be defined as

μ̄j =

∣∣∣∣μj

μ0

∣∣∣∣ . (7)

Our shape signature is defined as a vector S = [μ̄1, μ̄2, . . . , μ̄L]
T ,

which in theory is also isometric invariant. In practice, we select L
ranging from 10 ∼ 30, and m > max{60, 2L}.

To compare two shape signatures, Sp and Sq , one can reference
the dissimilarity measures in [20]. In particular, let us mention two
useful ones here, mean normalized Manhattan distance,

D1 =
L∑

j=1

∣∣∣∣S
p
j − Sq

j

Sp
j + Sq

j

∣∣∣∣ ,
which is used in SD-GDM, and normalized Euclidean distance

D2
2 =

L∑
j=1

(Sp
j − Sq

j )
2

Sp
j S

q
j

, (8)

which performs better for our approach by experiments.

3. IMPLEMENTATION
Computing eigenspace of the Laplace-Beltrami operator on a

manifold is well studied in the literature. It involves space dis-
cretization and a sparse eigensolver. In experiments, we use the
finite element method [26] (also adopted in [17, 16]) to discretize
manifolds. It can handle meshes with a wide range of simplicial
degrees and topologies, including non-manifolds. We found a lin-
ear FEM enough for our approach. Although solving PDEs with
FEM is sampling invariant, mesh quality during discretization is an
important factor affecting numerical accuracy. Fortunately, there
is already considerable amount of work [7, 3] in mesh generation,
repairing and quality improvement. Our method only assumes that



the mesh is properly refined to at least a few thousand triangles and
has no (near) degenerate faces.

Once the stiff and mass matrices have been assembled, the rest
is to solve a sparse symmetric generalized eigenvalue problem that
has efficient solvers, such as IRAM [2] and Krylov-Schur [21].

4. EXPERIMENTAL RESULTS

4.1 Efficiency
Efficiency is usually important for shape retrieval techniques to

be practical on large datasets. Very few works in 3D shape re-
trieval reports their timings. Most existing techniques in shape
analysis and higher-level geometry processing are computation-
ally expensive. Computational intensity is a major limitation for
methods based on optimization, geodesic computation, per-node
based quantization. In contrast, our approach can always com-
pute shape signatures in an efficient manner. Because our approach
is directly based on computing lower eigenvalues/eigenvectors of
Laplace-Beltrami operator and requires very little extra cost of as-
sembly R-BiHDM (see eq. (6)) and solving for its eigenvalues.
The eigensolver of Laplace-Beltrami operator contain a sparse di-
rect preconditioner in complexity O(n2) and a dimensional free
iterative eigensolver in complexity O(n).

On an Intel Core2 Duo CPU E8400@3.00GHz, running times
required for the methods used in the subsequent section 4.2 are re-
ported in Table 1. Such running times are based on our implemen-
tation of R-BiHDM and SD-GDM [20]2, and the original authors’
implementation of meshSIFT [12]3.

Model #vert. Time Model #vert. Time

R-BiHDM: linear FEM SD-GDM

gmm_prisms 969 0.5s gmm_prisms 969 14.8s

abstract 4096 1.7s ant_dec 2502 2m28s

nonrigid ant 9501 4s abstract 4096 12m13s

human meta 13336 5.8s meshSIFT

helicopter 22664 9.8s ant_dec 2502 1m31s

bimba_cvd 74764 41s abstract 4096 2m5s

desktop 106961 1m20s nonrigid ant 9501 13m5s

Table 1: Timings for constructing shape signatures or descrip-

tors. Our shape signature can be computed much more effi-

ciently than most successful methods in the literature. For a

mesh with 10k vertices, we can compute its signature within

seconds.

It is seen from the timing table that, computations of SD-GDM
and meshSIFT are expensive even for a mesh with only thousands
vertices and grow super linearly, while our method is much faster
at the same resolutions (see timing of model “abstract”).

4.2 Signature Based Retrieval
We have tested the nonrigid shape retrieval performance of our

method on a representative large dataset, which mixes the dataset
from the nonrigid track of SHREC’11 with another dataset custom
2Geodesic distance is computed using the fast march-
ing Matlab toolbox, http://www.mathworks.com/
matlabcentral/fileexchange/6110
3This code can be downloaded at https://mirc.uzleuven.
be/MedicalImageComputing/downloads/meshSIFT.
php

Figure 2: 30 classes of nonrigid models in the nonrigid track of

SHREC’11

(a) Representative query meshes, including 4 bipeds, 3 dinosaurs
and 3 quadrupeds

(b) Ambiguous meshes, including 13 bipeds, 13 dinosaurs and 14
quadrupeds

Figure 3: Examples from our custom built dataset

built by ourselves. The SHREC’11 nonrigid track dataset serves
as a background dataset. It has 600 watertight triangle meshes that
were derived from 30 original models. The custom built dataset
contains 200 deformed meshes derived from 4 biped models, 3 di-
nosaur models and 3 quadruped models (Figure 3(a)) as well as 40
background meshes (other biped, dinosaur and quadruped models,
see Figure 3 (b)). This mixed dataset was designed to be more chal-
lenging and practical than the SHREC’11 nonrigid track dataset
because it contains multiple similar meshes from each category of
models, such as bipeds, dinosaurs and quadrupeds. Distinguishing
similar models from the same category requires a retrieval tech-
nique to be more discriminative and stable. We have performed
retrieval tests on the 200 deformed meshes in the mixed dataset
with a total of 840 (200+40+600) meshes.

We applied the same evaluation methodology of the SHREC’11
contest to evaluate our method. It is based on the Precision-Recall
curve and five quantitative measures: Nearest Neighbor (NN), First
Tier (FT), Second Tier (ST), E-measure (E), and Discounted Cumu-
lative Gain (DCG). We refer to [19] for detailed definitions. In our
method, we use Normalized Euclidean distance to measure similar-
ity among R-BiHDM signatures (see eq. (7)).

We have compared the retrieval performance of our method with
that of Shape-DNA (OrigM-n12-norm1) [17], meshSIFT [12], and
SD-GDM [20]. These are the best performing non-hybrid methods
in the nonrigid track of the SHREC’11 contest4. The parameters in
these methods were set empirically to produce best performance.
We have also compared our method, i.e. R-BiHDM, with pairwise

4A hybrid technique combining SD-GDM and meshSIFT in
SHREC’11 did achieve a better performance, but it falls out of
scope in our state-of-art evaluation.



METHOD NN FT ST E DCG

shape-DNA 0.985 0.841 0.906 0.666 0.954

MeshSIFT 0.995 0.790 0.890 0.650 0.950

SD-GDM 1.000 0.929 0.986 0.731 0.991

BiHDM-n25 1.000 0.930 0.983 0.722 0.990

R-BiHDM-n30 1.000 0.970 0.996 0.739 0.997

R-BiHDM-n25 1.000 0.975 0.997 0.742 0.998

R-BiHDM-n23 1.000 0.976 0.997 0.742 0.998

R-BiHDM-n20 1.000 0.975 0.997 0.742 0.998

R-BiHDM-n15 1.000 0.970 0.994 0.739 0.997

Table 2: Retrieval performance evaluated using five standard

measures on the mixed dataset.
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Figure 4: Precision-recall curves of R-BiHDM, SD-GDM and

shapeDNA on the mixed dataset.

biharmonic distance matrix (BiHDM). Detailed comparison results
on the mixed dataset are shown in Table 2 and Figure 4.

According to the statistics, our method achieves better perfor-
mance than all of these methods. In particular, our method has
obvious improvements in the 1-Tier precision. And according to
the PR curves, our method achieves higher precision when recall is
above 50%. Furthermore, the retrieval performance is stable when
the number of chosen eigenvalues ranges from 15 to 30. The pri-
mary goal of shapeGoogle [14] is to achieve a high level of robust-
ness in the presence of partial shapes and topological noises. How-
ever, it does not address the identical problem as ours. In our exper-
iments (based on implementation provided by authors), its retrieval
performance is not comparable to the other methods we compared
with. The results indicate that our method exhibits strong discrim-
inative power on datasets with very similar shape instances.

5. CONCLUSIONS
In this paper, we have first given a brief introduction to existing

methods for nonrigid 3D shape retrieval, and paid special atten-
tion to global structure coding. We have further proposed a novel
method for building shape signatures. Our method uses biharmonic

distance to construct a context-aware integral kernel operator on a
manifold, then applies modal restriction to project this operator into
a low-frequency representation, and finally computes its spectrum.
Our method is isometry-invariant, discriminative, and numerically
stable with respect to multiple types of perturbations. Our current
implementation is based on FEM. We have evaluated our newly
proposed method on representative datasets. Evaluation results in-
dicate our method is surprisingly promising as a structural descrip-
tor.

Our method has a few limitations that need further investigation.
Although it has strength in identifying global non-rigid structures,
how to enhance our method for retrieving meaningful partial shapes
still remains unknown. Furthermore, it assumes the surface, which
is a 2D manifold, is connected. It is unclear how to extend our
method for matching and retrieving complicated models with many
disconnected parts.
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