
Parallel Progressive Radiosity with Adaptive Meshing

Yizhou Yu Oscar H. Ibarra Tao Yang
Department of Computer Science

University of California
Santa Barbara, CA 93106

Abstract

Progressive radiosity is widely used for realistic image synthesis in computer graphics applica-
tions. High-quality image generation usually requires radiosity with adaptive patch refinement to
account for global illumination effects from irregular objects whose proximity varies in a 3D space.
Parallelizing such an algorithm is difficult since computation cost for each object varies from one it-
eration to another depending on the location of dynamically selected shooting patches. Dynamic load
balancing is required but its overhead is high for distributed memory systems. This paper presents
an efficient parallel algorithm for progressive radiosity, which adopts a static processor assignment
strategy to take advantages of hierarchical computation structure in this problem, minimize commu-
nication and balance dynamic load. Our experiments on a Meiko CS-2 distributed memory machine
show that this algorithm has achieved good speedup for the tested cases.

Keywords: Parallel Progressive Radiosity, Adaptive Meshing, Load balancing, Octree, Processor assign-
ment of irregular objects.

1 Introduction

The main application of realistic image synthesis is to create simulated scenes of photo realistic quality.
Ray tracing or radiosity algorithms are widely used for computing global illumination effects in image
synthesis. Recently radiosity method becomes increasingly popular for determining global illumination
in lighting design, architectural modeling and virtual reality [SD+93, KPC93, TF+94, F96] because it
accurately portrays illumination effects such as shadows and interreflections in diffuse environments.
Furthermore, once a radiosity solution is calculated for a fixed geometry, a user can interactively walk
through this model to view 3D objects using virtual reality techniques.

An important application requirement is to provide real-time interaction when a user makes changes
in a computer aided design process. At the present time, radiosity can be used for such cases but they
are too time-consuming to accomplish real-time interaction. For example, the synthesis of an image with
a few hundred surfaces may take hours on a Sparc 10 workstation. A compromise solution to reduce
the radiosity time is to use progressive illumination calculation [CC+88, LTG92]. The basic idea is to
provide low-quality images at the beginning, then conduct a sequence of refinement iterations to improve
the image quality. The intermediate result after a few iterations can be used for display and a user can
revise the design based on this intermediate solution without waiting for the entire computation to end.
A further improvement to increase the image quality of radiosity in such an iterative algorithm is to
incorporate adaptive subdivision [CG+86, PJ94].
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It is important to speedup the radiosity time since it still takes a few hours to complete all iterations
for progressive radiosity and even if a user wants to view intermediate results, it takes minutes to see the
obvious improvement from one view to another. There have been several parallel algorithms proposed
in [BW90, BP94, PC94, RGG90, F96] but speedups for progressive radiosity with adaptive meshing are
still low because the computation associated with patches in a 3D space is unstructured and the cost
varies during iterations. Load balancing is the main challenge in achieving high speedups [PC94]. The
previous research [BP94, PC94] improves parallel performance by concurrentizing several iterations on
different processors. This is called to exploit control parallelism. In this scheme, synchronization is
needed when several iterations modify the same patch object and communication overhead is high on
distributed memory machines.

In this paper we propose a parallel progressive radiosity algorithm which achieves a good load bal-
ance with minimal communication overhead. Our approach is to identify the hierarchical computational
structure in this problem to exploit data parallelism instead of control parallelism. We use a static assign-
ment for all patches to minimize communication overhead. The processor assignment for irregular patch
objects uses a novel object ordering with cyclic mapping to achieve load balance even if computation
associated with patch objects changes. Our experiments show that the algorithm works efficiently on
multi-processors and significantly reduces the illumination calculation time.

This paper is organized as follows. Section 2 gives an overview of the sequential algorithm. Section 3
discusses issues in designing parallel radiosity algorithms and related work. Section 4 gives an overview
of our algorithm. Section 5 presents the processor assignment strategy of this algorithm. Section 6 gives
the experimental results on a Meiko CS-2 distributed memory machine.

2 Progressive Radiosity with Adaptive Meshing

The radiosity method assumes that a 3D space contains a set of surfaces, which are perfectly diffuse, i.e.
they reflect light with equal radiance in all directions. Each surface is further subdivided into a set of
patches and this process is called meshing. Radiosity is assumed to be constant on each patch and we
need to derive this value in order to generate a realistic image.

Let us recall the well-known radiosity equation, valid for each sample wavelength:

�� � �� � ��

��
���

����� � (1)

The constants and unknown variables are:

� � is the number of patches after meshing.

� �� is the emittance of patch � (radiosity) to be solved in the radiosity process.

� �� is the given self-emitted radiosity of patch �. If �� � �, patch � is usually called a light source.

� �� is the given reflectivity of patch �.

� ��� is the constant form-factor which is fraction of energy leaving patch � that arrives at patch 	.
The computation of this form-factor is discussed in Section 2.3

This system of simultaneous equations represents the energy interchange via multiple interreflections
and emissions in the environment. The solution of this system is the patch radiosities which provide
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a discrete representation of the diffuse shading of the scene. This solution is independent of the view
direction. Once the system of equations has been solved, each vertex radiosity of a patch is evaluated by
averaging the radiosities of the patches sharing it. The image of the scene is then computed by applying
Gouraud shading or ray casting.

2.1 Progressive radiosity

We first discuss the motivation of progressive radiosity as follows. Before solving the � equations in
(1), we need to compute �� form-factors ����� which involve intensive computation in visibility testing.
And it takes 
���� to solve linear system (1) by direct method using Gaussian elimination. Thus it
is extremely time-consuming to generate a realistic image with a large number of patches. Since the
radiosity matrix is diagonally dominating, the Gauss-Seidel method [CG+86] has been used to find an
approximate solution, which converges in less than � iterations in practice. [HSA91] reduced the cost
in form-factor calculation, but it is still expensive, which slows down the entire process since the partial
result cannot be displayed until the form-factor calculation has completed.

This difficulty was addressed using the progressive radiosity approach[CC+88]. This method still
uses a sequence of numerical iterative refinements but only � form-factors are needed to conduct the
refinement at each iteration. Thus the complexity of the form-factor calculation is distributed among
those iterations and the partial result can be displayed sooner than the Gauss-Seidel based method. Also
some of the form-factor computation is avoided because dark patches with low shooting energy do not
contribute light energy significantly to the environment and the form-factor computation related to these
patches can be neglected.

This progressive method is shown in Figure 1 where � is the number of patches and symbol �
�

indicates that the operation is applied on vectors. At each iteration, the patch with maximum unshot
light flux is chosen to shoot its energy. All patches will receive some part of this flux and update their
radiosity values. After each iteration the accuracy of the radiosity for each patch increases, but the change
is usually small. In practice, the partial result is usually displayed after several iterations. Note that only
a column of the system matrix (� form-factors) is calculated, which also reduces the memory storage
requirement.

2.2 Adaptive meshing

In the first paragraph of Section 2 we have assumed that each patch has a constant radiosity. That is
actually not true for each patch with a large area. To achieve a good accuracy, adaptive meshing was
integrated with radiosity in [CG+86, HSA91, LTG92, LTG93, PJ94, YP95]. In this approach, each patch
derived from the initial subdivision (meshing) might be further refined during the course of the computa-
tion if the accuracy of each patch radiosity does not meet the standard. We call the patch derived in the
initial meshing as a superpatch to distinguish other patches derived from the adaptive subdivision of the
superpatch during each iteration.

There are various criteria for such adaptive meshing. We use the following method which performs
well on parametric domain of curved or planar surfaces:

� 1) We first subdivide each surface into a triangular mesh. Each patch produced in this initial mesh-
ing is a superpatch. Each superpatch may be further adaptively subdivided into smaller patches
during iterations using the method described in 2).
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real ���� �; /*column of form-factors */
typedef real spectrum[�� � ������	
��
]; /*RGB tristimuli
are usually used */
spectrum ����;
spectrum ��� �; /*array of radiosities*/
spectrum ���� �; /*array of delta radiosities*/
spectrum SpectrumNul

�
�0.0; /*spectrum equaling 0.0 for each

sample wavelength*/
for all patches do /*Initialization:delta radiosity= self-
emittance*/
�����

�
� ��;

����
�
� ��;

/*iterative resolution process*/
while no convergence() do /*emission loop*/
�=patch-of-max-flux();
compute form-factors �����; /*form-factor loop*/
for all patches � do� /*update loop*/

����
�
� �������

�

� �����;

�����
�
� �����

�

� ����;

����
�
� ����

�

� ����;
� /*end of update loop*/
�����

�
�SpectrumNul;

� /*end of emission loop*/

Figure 1: The progressive radiosity method.

� 2) In each iteration, for each triangular patch in the current mesh as shown in Figure 2 , we compute
the radiosity received from the current shooting patch at four points �, �, � and 
 which are
centers of four smaller triangles obtained by connecting the midpoints of the edges of the larger
one.

Then we obtain the linearly interpolated radiosity at 
 from the radiosities at �, � and � , and
compare it with the previously computed radiosity at
. If the difference is larger than a threshold,
subdivide this triangle into smaller ones. Otherwise, test linearity at some sample points on ��,
�� and ��. If it is nonlinear for any of them, subdivide this triangular patch. We apply the above
process recursively on each newly generated superpatches.

D
CA

B

Figure 2: Testing and subdividing within a triangular patch.
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2.3 Form-factor calculation

We discuss how each form-factor is computed for the above sequential algorithm. Recall the form-factor
expression:

��� �
�

���

�
��

�
��

����������
��

� ������ ��������� (2)

where �� is a point on patch �, and �� is the surface area of this patch. The term � ������ ��� expresses
the visibility between a point of patch � and a point of patch 	. �� is the angle between the normal of

patch � at �� and
�

���� , and �� is the angle between the normal of patch 	 at �� and
�

����. � is the distance
between �� and �� . The cosine functions and visibility testing, � ������ ���, in (2) are very expensive to
evaluate. That is why form-factor calculation is the main concern in radiosity algorithms.

A2

r

dA1

θ 1

θ 2

Figure 3: Form-factor from an area to a differential area.

Given area �� in the receiving patch and �� in the shooting patch, as shown in Figure 3, [WEH89]
proposed a disk formula for approximating the form-factor from an area �� to a differential area ���:

��������
� ���

����������
��� ���

� (3)

The accuracy can be improved by ray tracing more sample points on ��. The resulting formula for
radiosity at ��� due to illumination by �� is

�� � ������
�

�

��
���

Æ�
������������
���� �����

(4)

where

� � the number of the sample points on ���

and

Æ� �

�
1 if the sample point is visible to ���;
0 if occluded.

We adopt this formula because it is desirable to obtain the radiosity at some sample point with a
known normal on a curved patch rather than the radiosity received by the whole patch. In our algorithm,
the radiosity of each triangular patch is approximated by the radiosity at its center. Thus, in the progressive
radiosity algorithm, the first statement inside the innermost ��� loop should be modified to: �Rad= the
radiosity received by the center of patch 	 from patch � obtained by using (4).
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3 Issues in Parallel Radiosity

The most important problem which arises when parallelizing radiosity is the data access. Data access
determines the amount of communication involved, the type of parallelism that can be used, scalability
and the necessity of static or dynamic load balancing. Another important point to be accounted for
is the level at which the parallelism must be exploited in a parallel algorithm. Indeed, a coarse grain
partitioning reduces the cost of managing the parallelism, but it generates less parallelism than a fine
grain one. Moreover, data locality has to be exploited to keep the amount of communication between
processors as low as possible. In the radiosity algorithm, choosing a coarse grain parallelism would not
allow full exploitation of data locality. Therefore, a tradeoff between selecting a grain size and exploiting
the data locality has to be decided.

Several parallel radiosity algorithms have been proposed in the literature, e.g. [BW90, BP94, PC94,
RGG90, F96]. Baum et. al.[BW90] have obtained interesting results on a shared memory machine with
8 processors supplied with a hardware Z buffer; however, scalability results on a larger of numbers of
processors have not been demonstrated. In [RGG90, F96], a master-slave approach is proposed. At
each computation stage, each processor obtains a part of the work to process. Since patch distribution
is not fixed, data re-distribution is needed. In [RGG90], to avoid excessive communication cost for
data-redistribution, they replicate all geometrical data to all processors. But still the master processor
needs to collect and broadcast new updates. Communication overhead and memory requirement are high.
[TF+94] and [F96] gave a relatively fast approach for huge scenes. But it needs visibility preprocessing
and surface grouping. In this paper, we focus on parallel algorithms that allow real-time interaction on
distributed memory machines.

Another approach is to evenly distribute data among all nodes [PC94, BP94]. The question is how
to exploit the parallelism. Control-oriented parallelization is used in [PC94, BP94]. In this scheme,
several iterations, corresponding to the while loop in Figure 1, can be started concurrently in different
processors. Notice that the parallel algorithm result is slightly different from the sequential algorithm
since unsynchronized radiosity updating is used. Since a processor may need non-local data, managing
communications between processors is important [PC94]. Also since concurrent iterations may update
the radiosity of the same patch, these updates must be synchronized. The other problems which are not
well addressed are load balancing and adaptive meshing for high quality image synthesis. If adaptive
meshing is considered, the cost of communication and keeping data consistent will be higher because the
mesh refinement results also need to be communicated.

Our approach is to follow the sequential algorithm semantics, exploit irregular data parallelism instead
of control parallelism. Adaptive meshing required at each iteration may worsen the load balance because
patch subdivision may increase the number of patches on some processors dynamically. Therefore, we
keep the hierarchical subdivision tree on each superpatch and provide a carefully designed processor
assignment strategy to map superpatches for load balancing. We only allow the owner processor of a
patch modifying its radiosity value to avoid unnecessary synchronization overhead.

It is indicated in [BP94] that the form-factor calculation and the radiosity update require an access
to the information regarding all patches. This is due to the use of hemicube-based algorithms. Actually,
hemicube is seldomly used in recent sequential algorithms because the hemicube method has aliasing
effects. It is not necessary to access all patches. One good method for the form-factor calculation is
discussed in Section 2.3.
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4 A Parallel Solution for Progressive Radiosity with Adaptive Meshing

Our approach is to parallelize the for loop in the algorithm of Figure 1. We distribute the superpatches
evenly among processors and the processor mapping method is discussed in Section 5. After selecting
a global shooting patch, each processor only has to work on those patches owned by itself. The calcu-
lation for each patch needs all surface information but does not need knowledge about patches on other
processors.

4.1 Initialization and data distribution

At the beginning, the albedo and geometrical information of all surfaces making up the objects in a scene
are replicated to all processors. After each processor computes the bounding box for each surface, it
sets up an octree-based space partition which will be used in the data distribution. The octree partition
can accelerate ray casting in form-factor calculation which will be elaborated later. Then each processor
subdivides each surface into a number of large triangular superpatches of approximately the same size
and orders all superpatches used for the processor assignment. Notice that the result of this partitioning
process is used for the rest of the iterations, and it takes about 1 second. There is no need to parallelize
this process.

Octrees are the 3D counterpart of quadtrees. The octree-based space partition initially has only one
node representing a large cube containing all the surfaces. Then we check the number of surfaces in
the current tree node. If it is more than a threshold, the current node is subdivided into eight smaller
nodes and all surfaces intersecting the current node are distributed into its child nodes. This process is
recursively repeated for each of its children.

In the superpatch distribution stage, the algorithm distributes superpatches cyclically on the given �
processors based on their ordering numbers. This is done by letting each processor scan all superpatches
in all surfaces, preserve those superpatches distributed to itself and deleting all the others. We discuss the
superpatch ordering and distribution strategy in Section 5.

Now we have two hierarchies of data. The upper level contains the octree partitioning and geometrical
information about all surfaces. The lower level contains radiosity and geometrical information on all
patches. After data distribution, each processor only owns a subset of superpatches and it keeps a copy
of upper level information to reduce communication in form-factor calculation. Duplicating the data in
upper level has little impact on memory requirement. This is because usually we have several hundred of
surfaces in a scene which has not been premeshed, but the number of patches after the initial and adaptive
meshing is very large.

4.2 Iterative radiosity computation

At the beginning of each iteration, each processor picks up the superpatch with the maximum unshot light
flux in its own dataset. Then a global MAX reduction operation which costs about 
��	
 �� is conducted
to select the superpatch with the global maximum unshot light flux. Then each processor only works on
its own patches to receive radiosity from the shooting patch. It may subdivide a patch into smaller ones
by using the adaptive meshing technique discussed in Section 2.2. Notice that a shooting patch is always
a superpatch. At the end of each iteration, a barrier is called to synchronize the processors and start the
next iteration.

We use a hierarchical strategy in improving load balance as well as reducing computation cost. By
observation, we find that the lightness of objects in a scene is contributed mainly by a small number of
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light sources. After they finish shooting, the changes of lightness in this environment are not substantial.
On the other hand, the existence of these light sources causes the adaptive subdivision of other patches.
But the resulting fine mesh is only useful when these sources possess a large amount of unshot flux. After
shooting from bright light sources completes, this fine subdivision may not be necessary because the
dark light sources do not lead to significant changes of radiosity values in destination patches. Thus we
maintain the hierarchical structure of subdivision. When a shooting patch is selected, we start to compute
the impact of this shooting patch on radiosities of a set of patches represented hierarchically in a top-down
fashion. We first start from the superpatch and apply the procedure to its child nodes recursively. When
the computation at an internal node � shows that the radiosity distribution for subtree nodes rooted at �
is smooth enough, the computation can stop at this point.

This hierarchical computing strategy can improve load balance because given a set of superpatches
after initial meshing, uneven run-time subdivision of each superpatch is the major reason causing load
imbalance. The hierarchical computing method eliminates unnecessary computation on a superpatch
with a large subdivision tree, prevents unbalanced load from propagating to subsequent iterations, and
thus smoothes cost difference between different patch subdivision trees. We will show the effectiveness
of this hierarchical strategy in our experiments.

Now we show some quantitative analysis for this technique. Suppose we want to achieve a global
relative error � on each patch, and the radiosity contributed by those bright light sources is  �
, the
radiosity contributed by all other patches is ! �
 where ! is usually less than �. Instead of using the
same error tolerance � in numerical computation for each shooting patch, we use the error tolerance �� for
those light sources and �

�	 for the other shooting patches. Now the total accumulated error is

�

�
 �
 �

�

�!
! �
 � � �
 �

The total accumulated radiosity is
�� � !� �
 �

So the global relative error is
� �


�� � !� �

�

�

� � !
� � �

Thus, we can achieve the same global error tolerance by using a smaller one for light sources and a
much larger one for others. For example, if ! � ���, �

�	 would be ��. Since there are only a small
number of light sources which contribute most of the radiosity, the computation cost for other patches
dominates the total cost. By using a larger error tolerance for those, we can make computation more
efficient without losing necessary accuracy. A larger error tolerance also means smaller subdivision trees
and smaller difference between different subdivision trees, which smoothes the computation and makes
it more balanced.

4.3 Form-factor calculation

In [BP94], the parallel algorithm needs to access information regarding all patches. That is actually
not necessary. We only need the radiosity and geometrical information of the shooting patch, the albedo
and geometrical information of the receiving patches and occluding surfaces which are distributed in the
nodes of the octree. Thus each processor only accesses local patch information and the replicated surface
data. No interprocessor communication is needed during the form-factor calculation.

For the method discussed in Section 2.3, visibility testing only uses surface geometry. It is done
by casting rays from the current receiving patch to some sample points on the shooting patch. [HW91]
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proposed shaft culling to accelerate visibility testing and [TH93] adopted a more accurate visibility pre-
processing. We use an octree to accelerate this test by letting the rays go through some leaf nodes in the
octree between the receiving patch and the shooting patch[MB90]. In this way, occlusion test is done only
against those surfaces intersecting these leaf nodes. Octrees also support dynamic environments which
exist in interactive design.

Since a shooting patch is chosen from the initial mesh, it may contain many tiny patches. To accelerate
form-factor calculation, we can fit a coarser mesh for the shooting patch by combining some of the tiny
patches. And a larger patch takes the average radiosity of the smaller ones.

4.4 Rendering and display

The image rendering and display usually cost a few seconds on a workstation, which is acceptable with
most computer aided design applications. There is some research work on parallel rendering [MC+94,
OHA93, W94] for larger data sets, which we have not considered in this paper.

5 Processor Assignment for Superpatches

Our goal is to distribute the amount of dynamic computation evenly among all processors. Since the
amount of computation differs for different patches, it is not sufficient only to make each processor have
an equal number of patches.

The problem of partitioning irregular data space has been studied in other scientific application ar-
eas, for example n-body simulations [SHG95]. Usually the quadtree partitioning method is used and
neighboring leafs are directly mapped to the same processor. This is because neighboring particles have
intensive communications. We call this method the quadtree-based block mapping. This method can be
generalized to a 3D space. We call it octree based block mapping. The octree based block mapping may
not be effective for our problem because there is no significant difference in terms of communication vol-
ume between neighboring superpatches and non-neighboring superpatches. Also each superpatch may be
subdivided dynamically, which leads to uneven patch distribution.

Dynamic load balancing that migrates patches between processors looks reasonable. But in practice it
suffers high communication overhead on a distributed memory machine. We will use a static assignment
for all superpatches to avoid patch migration overhead: each superpatch and its possible child patches
generated during adaptive meshing are assigned to the same processor. We design a mapping strategy
which considers the possible increase of computation associated with each superpatch. The key idea is
to identify superpatches with similar cost even after adaptive meshing and distribute these superpatches
evenly among different processors.

We study the computation requirement associated with each super or non-super patch. At an itera-
tion, each patch receives radiosity from the shooting patch, and most of the computation is spent on the
numerical integration for form-factor calculation (Equations (2) and (4)), whose complexity depends on
many factors, such as the distance between the shooting and receiving patches, the relative orientation of
the patches, and the area and unshot flux of the shooting patch. The following are some facts that we need
to exploit in the design of processor assignment to achieve load balance.

� F1: Adjacent patches on the same surface have similar orientation because a surface is usually
represented by a continuous mathematical function which has continuous normals;

� F2: Patches close to each other have approximately the same distance to the shooting patch;

9



� F3: Most subdivision happens at shadow boundaries. If a patch contains a shadow boundary,
another patch nearby is also likely to contain a shadow boundary since shadow boundaries are
continuous curves. So both these patches are likely to be subdivided into many smaller patches.

Based on these facts, in addition to make processors have the approximately equal number of super-
patches, we propose the following strategies for processor mapping.

� S1: Adjacent superpatches on the same surface should be distributed to different processors based
on F1 and F2. This will not incur additional communication because adjacent patches have no extra
dependence on each other.

� S2: Superpatches in different surfaces close to each other should be distributed to different proces-
sors based on F2. This heuristic will be applied after S1 because S2 has less constraints.

To achieve the goal of S1 and S2, we order all superpatches linearly, and then cyclically distribute
superpatches to processors based on this order. Thus the superpatch ordering plays an important role in
achieving the load balance using S1 and S2.

Since all surfaces are distributed irregularly in a 3D space, there is no obvious order among them. We
first introduce an ordering for superpatches on the same surface, then for those on different surfaces.

5.1 Ordering of superpatches within the same surface

Each surface is assumed to be bivariate and its parametric domain is a square. A triangular superpatch
is always subdivided into two or three smaller ones if the length of its longest edge is above a threshold
during each step of the initial meshing. If another superpatch shares with it the edge where the subdivision
happens, that superpatch is also divided at the same edge. The ordering of superpatches within a surface
is defined recursively during initial meshing using the following three rules:

1. Initially a surface is subdivided into four superpatches. Their ordering is clockwise as depicted in
Figure 4(a).

2. If a superpatch is subdivided, the two newly generated superpatches should be inserted into the
ordering at the position occupied by the original superpatch. So if superpatch � in Figure 4(a) is
subdivided, the ordering is shown in Figure 4(b).

3. Given the ordering for the current mesh, there exists a route traversing all superpatches following
the ordering. As the directed cycle shown in Figure 4(a), each superpatch has an entry and an exit
edge. An entry edge is the one where the route enters the superpatch. An exit edge is the one where
the route leaves the superpatch. If a superpatch in the current mesh is subdivided, the relative order
of the two new superpatches is defined as below,

(a) If the subdivision happens at the entry edge, the new ordering is shown in Figure 5(a);

(b) If the subdivision happens at the exit edge, the new ordering is shown in Figure 5(b);

(c) If the subdivision happens at the third edge, the new ordering is shown in Figure 5(c).

(d) If we have the route shown in Figure 5(d) where the diagonal edge is subdivided, do not use
the above rules. The subdivision and the new ordering are shown in Figure 5(e).

Example:. The ordering for a surface using the above rule is shown in Figure 5(f).
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Figure 4: (a)The initial order of the superpatches on a surface, and (b)the positions of the new patches in
the order after a subdivision.

Theorem 5.1.1 A closed continuous route traversing all superpatches following the above ordering al-
ways exists after each step of the subdivision.

Proof by induction. The route for the basis is shown in Figure 4(a).
Suppose at $-th step, a patch � is subdivided and the subdivision happens at its entry edge with

respect to the current route. There must exist another patch � whose exit edge coincidents with �’s
entry edge. So both these two patches should be subdivided. If the case in Figure 5(d) happens, use the
provided solution; otherwise, there are four new smaller patches. Let the two new patches generated from
� be �� and ��, the two generated from � be �� and ��. The ordering of �� and �� should observe
Figure 5(a); The ordering of �� and �� should observe Figure 5(b). A new route can be set up. Only the
part of the old route between � and � should be changed. �’s entry edge becomes ��’s entry edge. The
common edge between �� and �� becomes ��’s exit edge and ��’s entry edge. ��’s exit edge is a part
of �’s exit edge. �’s exit edge becomes ��’s exit edge. The common edge between �� and �� becomes
��’s exit edge and ��’s entry edge. ��’s entry edge is a part of �’s entry edge.

We can give similar proof for the cases where the subdivision happens at �’s exit edge or the third
edge.

We can see that two consecutive superpatches in the ordering must be adjacent to each other, which
means they have a common edge. This is important because it is most likely that two adjacent super-
patches share the same properties, such as there is one shadow boundary on both of them. However,
since we are trying to fit a linear ordering onto a 2D or 3D space, we can not guarantee any two adjacent
superpatches will be close to each other in the ordering. But this ordering scheme surely can increase
this kind of possibility significantly. This recursively defined ordering has another appealing property—
the superpatches within the same larger superpatch are close to each other in the ordering. This means
that these superpatches in the same local region, which share the same local properties, are likely to be
distributed to different processors.

5.2 Ordering of superpatches on different surfaces

Now we can define the ordering for superpatches on all surfaces using an octree partitioning defined in
Section 4.3.

� Traverse the octree recursively. If a leaf node %� is met before %�, all superpatches on surfaces
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Figure 5: (a)(b)(c)(d)(e)Rules to order the new patches after a subdivision. (f) An ordering example on a
single surface.

intersecting %� are ordered before those on surfaces intersecting %�. If a surface intersects more
than one leaf, it is only considered the first time it is encountered.

� If more than one surfaces intersect the same leaf node, they are ordered randomly. But if one
surface �� is put before ��, all superpatches on �� are also before those on �� in the ordering.

Once an ordering of all superpatches is given, they can be distributed to the processors cyclically in
the data distribution phase. Each processor has an approximately same number of superpatches.

5.3 Performance analysis

It is difficult to provide an analytic result on the effectiveness of load balancing for an arbitrary irregular
object distribution in a 3D space and our strategy is a heuristic. We analyze the performance of our
algorithm in the following two scenarios to demonstrate the effectiveness of our design strategy. We also
compare our approach with the octree-based block mapping. The following parameters will be used in
this analysis.

� � is the number of processors.

� ' is the number of superpatches for each surface.

� ( is the total number of sample points used for all numerical integrations using (4) for a receiving
superpatch in one iteration.

� � is the average cost for each sample point when (4) is evaluated.

� ) is the ratio of the number of radiosity updates and patch subdivisions over the total number of
sample points for numerical integrations. So ) ** �.
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� � is the maximum amount of time needed for each radiosity update or patch subdivision. It is less
expensive than each form-factor calculation.

Scenario 1: Loosely distributed light source-pairs. Suppose there are + pairs of object surfaces
���� �

�

�� ��� �
�

�� � � � � �
� �
�


� as shown in Figure 6. These surfaces are exactly the same except for their
spatial positions and orientations. We assume there is no light occlusion between any two surfaces in the
space. Surfaces are flat so that the patches on the same surface have no interaction with each other. The
two surfaces in the same pair are placed face-to-face very close to each other.

Each surface is subdivided into the same number (' ) of superpatches. We assume that � ** + and if
the shooting superpatch and the receiving superpatch are on the same pair but different surfaces, we need
at least (� sample points for the numerical integrations to achieve the desired accuracy. We also assume
that the surface pairs are placed far away from each other so that if the shooting patch and the receiving
patch are on different pairs, we need at most (� sample points for numerical integrations. Notice that
(� ** (�.

Figure 6: An example of surface configuration in Scenario 1 when + � �.

For one iteration, let the shooting patch be on �� . Based on Equation (4), the sequential time for
form-factor calculation in one iteration is:

�&,��

 � �(�' ��(���+� ��'�

where the first term is for those superpatches on �
�

� and the second term is for those receiving superpatches
on other surface pairs.

The sequential time for radiosity updates and patch subdivisions at each iteration is about

�&,������ � ��)(�' � ��)(�' ��+� ���

So the total sequential time for each iteration is approximately

�&, � �&,��

 � �&,������ � �� � ��)�(�' � �� � ��)�(�' ��+� ���

When our method is used, we let ! be the cost of communication for each iteration. Then the parallel
time for each iteration is approximately equal to:

�� � ��)�(�
'

�
� �� � ��)�(�

��+� ��'

�
� !
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So the speedup of - iterations is

-��� � ��)�(�' � �� � ��)�(���+� ��' �

-��� � ��)�(�
�
�
� �� � ��)�(�

��
����
�

� !�
� �

if the cost of communication (! ) is very low. Our experiments show that the communication overhead is
small.

If we use octree-based block mapping, then superpatches on the same light source pair are assigned
to the same processor. Each processor has 


�
pairs of surfaces. At each iteration, the processor in which

the shooting patch is selected will have the heaviest CPU load which is:

�� � ��)�(�' � �� � ��)�(��
�+

�
� ��'�

Since (� ** (� and � ** +, the speedup is at most

-��� � ��)�(�' � �� � ��)�(���+� ��' �

-��� � ��)�(�' � �� � ��)�(��
�

�
� ��' � !�

�
(�' � (���+� ��'

(�' � (��
�

�
� ��'

�
�



�
�
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There is an area light source above this point

Figure 7: An example of surface configuration in Scenario 2 when � � � and , � �.

Scenario 2: Single light source above a planar surface. The second case has one planar surface.
There is a small area light source hanging above the center of the upper left quarter of the planar surface
and the position of this light source is very close to that surface. We assume the reflectivity of the light
source is close to zero, and that initial meshing divides the surface into � blocks. And each block is further
divided into ,� superpatches. Thus ' � ,��. An example with , � � and � � � is depicted in Figure 7.
Notice that since there is no other surfaces, the reflected lights from the planar surface do not affect other
patches.

Assume that we need (� sample points for superpatches directly under the light source. Denote the
set of those superpatches by . . For Figure 7, . contains superpatches 1, 2, 3, 4, 29, 30, 31, and 32. Also
assume that we need at most (� sample points for other superpatches to achieve a specified accuracy.
Notice that (� �� (� because the distance between the light source and the patches in . is close to zero,
which will make (� extremely large. There is a lower bound on the distance between the light source and
those patches not in . , which means there is an upper bound on (�. Thus ��

��
is large.
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The total sequential time for one iteration is about

�' � ,���� � ��)�(� � ,��� � ��)�(��

When our mapping method is used, each processor has about , patches in . . The CPU time on each
processor is approximately

�
'

�
� ,��� � ��)�(� � ,�� � ��)�(�

Again, if the cost of communication is low, we can get nearly perfect speedup for this case.
If octree-based block mapping is used, all patches in . are placed onto processor 0 and other patches

are distributed to other processors. Processor 0 has the heaviest load

,��� � ��)�(��

Thus the speedup for computing radiosity distribution contributed by the area light source is at most

�' � ,���� � ��)�(� � ,��� � ��)�(�
,��� � ��)�(�

� ��� ��
(�
(�

� � ** ��

Through the above analysis, we can see that our method balances the load and obtains the near optimal
solutions for the above scenarios. And it outperforms the octree-based block mapping.

6 Experimental Results

We implemented the parallel radiosity algorithm presented in the previous two sections on a Meiko CS-2
distributed memory machine. Each Meiko node is SUN Sparc Viking with a peak performance 40MFLOP
per second and nodes are connected by a fat-tree like fast network with a peak bandwidth 40MB per
second. An octree is set up on each processor for data distribution and the acceleration of ray-object
intersection. We will report the speedups for each tested case and analyze the effectiveness of our proces-
sor mapping strategy for irregular objects and impact of our hierarchical calculation strategy discussed in
Section 4.2.

We tested our algorithm on three indoor scenes. Two scenes are shown in Figure 8. The number of
surfaces in each scene is between 200 and 300. The number of superpatches after the initial meshing
for each scene is around 10,000. 400 iterations were executed for each scene, which is reasonable for
interactive design. In the worst case, the number of total patches generated at the end is nearly 100,000.

Scalability. The parallel time speedup for each test scene is shown in Figure 9. This result is compa-
rable to the recent results for progressive radiosity[BP94] without adaptive meshing, and is much better
than previous results for both adaptive and non-adaptive progressive radiosity[PC94]. As we already men-
tioned in Section 3, some difficulties arise from adaptive meshing, the above experimental result shows
that our algorithm deals with irregular and adaptive load variation very well.

Distribution of computation time, idle time and communication overhead. We will show that
the load among processors is approximately the same during the radiosity computation. We measure the
CPU time used for arithmetic computation for each processor and we call it workload. The workload
distribution on 16 processors for 400 iterations in processing the first scene is shown in Figure 10. It can
be seen that our algorithm has achieved a good load balance. The workload distribution for other scenes
is similar.
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Figure 8: The left is a room with a lamp, chair and window. The right is a room with tables, stools and
some other objects. Some of these are invisible from this view point.

We have not reached the perfect speedup when � � 
� because we lose some performance due to
communication overhead and some processor idles caused by small load imbalance. Table 1 lists the
average time among all processors spent on communication and the standard deviation of total amount
of workload on 32 processors. The communication cost is extremely low, used for selecting the shooting
patch and broadcasting the data for the shooting patch. The load imbalance factor is within 10%. That
is probably the best we can achieve for a static assignment in responding to the dynamically-changing
workload. The previous work [PC94] using dynamic balancing does not have a good speedup because of
high communication overhead.

Scene 1 Scene 2 Scene 3

Communication 0.87% 1.21% 1.65%
SDev. of workload 9.94% 7.40% 9.78%

Table 1: Cost of communication and standard deviation of workload.

Effectiveness of the hierarchical calculation strategy. We have examined the impact of our hi-
erarchical calculation method which is discussed in Section 4.2. Table 2 shows the improvement ratio
� �����������
��������������

� �� when p=32. Here ��&&�/�������� is the speedup without using this strategy and
��&&�/����� is the speedup using our method. The improvement is around ��� and that is another
reason we can obtain a much better performance compared to [PC94].

7 Conclusions

We presented an efficient parallel progressive radiosity algorithm with adaptive patch refinement using
a hierarchical computing and octree-based cyclic mapping scheme. This algorithm can significantly re-
duce the time in generating high-quality realistic images for real-time interaction. Our parallel algorithm
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Figure 9: Speedup for three test scenes.

Scene 1 Scene 2 Scene 3

Improvement ratio 22% 16% 24%
Speedup of NH 18.6 22.4 21.7

Table 2: Our hierarchical method vs. a non-hierarchical method (NH).

efficiently exploits irregular and adaptive data parallelism using a carefully designed object assignment
method. Our experiments show that it has low communication cost and promising scalability.

Our future work is to study the possibility of obtaining better speedup by incorporating limited dy-
namic load balancing. However, we believe that our static distribution should still play an important role
in balancing since a fully dynamic strategy is too expensive in terms of communication overhead.

The stage of image rendering can also be parallelized to get a faster rate of interaction and currently
we can make use of some of the existing parallel polygon rendering algorithms [MC+94, OHA93, W94].
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