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Abstract
In this paper, we presenta rigoroustheoretical formulation of the fundamental problem—indirect illumination from
area sources via curved ideal specular surfaces. Intensity and area factors are introduced to clarify this problem
and to rectify the radiance from these specular surfaces. They take surface geometry, such as Gaussian curvature,
into account. Based on this formulation, an algorithm for integrating ideal specular transfers into global illumina-
tion is also presented. This algorithm can deal with curved specular reflectorsand transmitters. An implementation
is described based on wavefront tracing and progressive radiosity. Sample images generated by this method are
presented.

Keywords: Rendering equation; Global illumination; Specular transfer; Wavefront tracing; Radiosity; Ray tracing;
Meshing

1. Introduction

Computing solutions to the global illumination problem is an
essential part of photorealistic image synthesis. Global illu-
mination effects produced by multiple surface reflections are
significant in all but the simplest environments. For instance,
indirect lighting and color bleeding can be observedin almost
all indoor scenes. In a general scene, reflectance types of sur-
faces can be classified into ideal diffuse, ideal specular and
directional diffuse components 10. Later in this paper, we will
use the word specular as a short form of ideal specular. Ka-
jiya 13 gave an equilibrium equation of radiative transfer. But
he did not give the accurate way to get radiance values from
ideal specular surfaces. People usually think the reflectance
of an ideal specular surface is independent of its geometry. A
careful study of the propagation of wavefronts 17 shows that
if the specular surfaces are curved, the Gaussian curvatures
as well as the whole path from the source emitting the light
to the receiving point via a couple of intermediate specular
surfaces need to be considered in order to get radiance out-
going from an ideal specualr surface. In this paper, We derive
a general equation governing these specular transfers and in-
tegrate it into global illumination.

There are many approaches solving this global illumina-
tion problem. One major category 2� 12� 11� 20 uses light ray-

tracing or photons emitted from the light sources. The pri-
mary difficulties with light ray-tracing involve sampling and
estimating the distribution of irradiance. Light rays arrive
at their final destinations in a nonuniform pattern. We must
use variation-reduction sampling techniques to estimate the
distribution of irradiance from photon locations and density.
The efficiency of these techniques still need to be improved.
For large area sources, we must sample the area sources as
well as the direction. These are troublesome problems which
have not been completely solved.

Another category uses radiosity-like finite-element
algorithms27� 24� 1� 25� 22� 23. Wallace et al.27 incorporated pla-
nar mirrors into classical radiosity(CR) by reflecting the
entire environment into a virtual environment. Sillion and
Puech24 extended radiosity to accommodate curved specu-
lar surfaces by introducing extended form factors. Sillion et
al.25 extended progressive radiosity(PR) to include arbitrary
reflectance distributions. But it only uses planar surfaces as
ideal specular reflectors. Aupperle and Hanrahan 1 extended
hierarchical radiosity(HR) to include glossy reflection.

The method proposed by Mitchell and Hanrahan 17 uses
wavefront tracing to compute illumination from curved spec-
ular reflectors at locations of our choosing in order to avoid
those problems arising in light ray-tracing. Elber7 approxi-
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mated the propagation of whole wavefronts. But point and
spherical light sources are the only choice. Collins5 adopted
wavefront tracking to improve the performance of light ray-
tracing.

We prefer a radiosity-like global illumination solution.
One reason is that it does not need sophisticated sampling
and estimation techniques. The other reason is that it is rel-
atively efficient. In a radiosity-like algorithm, each patch in
the scene is a potential area light source. But as we know, the
problem of illumination from area source via curved specu-
lar reflectors has not been solved well, both theoretically and
practically. Perhaps this is because it is almost impossible to
store the radiance distribution accurately over an ideal spec-
ular surface. This paper will focus on this fundamental prob-
lem and propose a radiosity-like method to combine wave-
front tracing with global illumination. In the next section, we
discuss a theoretical frame for general specular transfers. The
third section is devoted to the presentation of an algorithm
combining ideal specular transfers and global illumination,
in particular, radiosity. In Section 4, we gave some experi-
mental results. And we conclude this paper in Section 5.

2. A Rendering Equation for Ideal Specular Transfers

In the following, we will use wavefront tracing to give a ren-
dering equation which implies more information about ideal
specular transfers. For conciseness,all equations in this paper
only take into account the radiosity or radiance contributed
by specular transfers. The idea presented here is also useful
in ray tracing algorithms.

2.1. Basics on Wavefront Tracing

Wavefront tracing is used to keep track of the Gaussian cur-
vature and intensity of the wavefront along a ray path be-
tween a chosen location and a light source via a couple of
ideal curved reflectors or transmitters. This involves three
operations:

� Transfer

� Reflection

� Refraction

The equations describing the evolution of the wavefront
for each of these situations could be found in 17 and 26. Here
we only give the equations of transfer operation:

K
�

1 �
K1

1�dK1
� K

�

2 �
K2

1�dK2
(1)

where K1�K2 are principal curvatures of the wavefront, and
d is the distance the wavefront travels. Note that these equa-
tions can also be written in terms of r which is the radius of
curvature and equal to 1

K .

A transfer operation happens between two adjacent reflec-
tion(or refraction) operations. During this operation, the in-

tensity at two different points on the ray path obeys the fol-
lowing intensity law:

I
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I
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r
�
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�
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�
dA
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(2)

where dA and dA
�

are two corresponding differential areas
sorrounding these two points. This shows the important fact
that the intensity along the ray is proportional to the Gaussian
curvature of the wavefront 1

�r1r2�
where r1 and r2 are princi-

pal radii of curvature.

The Gaussian curvature of the wavefront could change
abruptly during a reflection or refraction operation. And Eu-
ler’s Formulae and their inverse are used to compute the new
curvatures. As we know, radiance does not change during a
transfer operation. But it may change during a reflection or
refraction operation if the specular surface is not planar.

Supposethere are n transfer operations along a ray path RP
from some point on a light source L to a chosen point P. Let
I

�

i and Ii denote the intensity at the beginning and end of the i-
th transfer. Then the ratio of the intensity arriving at P to that
emitted from L(for point light source, I1 denotes the intensity
at some point on the unit sphere sorrounding the light source)
is denoted by PIF:
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where Ti��
I
�

i
Ii
� can be evaluated by the intensity law, and

Ri��
Ii�1

I�

i

� is the change of intensity caused by the i-th reflec-

tion(refraction) operation. Ri’s can be evaluated via Fresnel’s
law as a function of the angle of incidence. For ideal opaque
reflectors, there is little change in intensity during reflection
operations. Therefore Ri � 1. For reflection operations on a
transparent reflector, Ri is given by Fresnel’s coefficient for
reflection which is also the reflectance. For refraction opera-
tions, Ri is given by

�
n2

n1
�2�1�α� (4)

if the light passes through the medium M1 with refractive in-
dex n1 to the medium M2 with refractive index n2 and the
reflectance of border is α19.

2.2. Specular Transfer of Area Sources

Originally, wavefront tracing was used for point
light sources. For area sources, we have to take into account
the ratio of a differential area on the area source over its cor-
responding differential area on the specular surface, as well
as the decay of intensity. In a general environment consisting
of planar and curved surfaces, it is necessary to get a mathe-
matical equation for specular transfers of area sources. There
are no such governing equations to date. We derived such an
equation. To see how it was obtained, first look at the follow-
ing simple situation(Figure 1) where P is a point on a diffuse
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surface, S is a diffuse square light source with radiance I and
area A, and M is an ideal planar mirror parallel to S. To get
the irradiance at P from M, we first get the image S

�

of S in
M and then compute the irradiance at P from virtual source
S

�

, which approximately equals I�A
d� 2 cosθ1cosθ2 if A is small

compared to the distance d
�

between S
�

and P. Let S
��

be the
intersection of M and the pyramid formed by P and S

�

. Since

S
�

is parallel to M, S
��

is also a square and its area A
��

� d
�� 2

d� 2 A

where d
��

is the distance between P and S
��

. If we consider
S

��

as an area source with radiance I, the irradiance at P from

S
��

is also equal to I�A
��

d�� 2 cosθ1cosθ2 � I�A
d� 2 cosθ1cosθ2, which

means the effect of virtual sources S
�

and S
��

on P is the same.

M

P

S

S’

S’’

Figure 1: Planar specular reflection

1

P

M
Y

X

S’’dS’’

S

dS
2 3θ θ

θ

Figure 2: Curved specular reflection

Now if M is a curved reflector as in Figure 2, we can not
easily get the image of S. But there is one thing similar. As in
Figure 1, there is also an area S

��

on M, which reflects the light
from S to P and which is not necessarily connected. That is,
if we look at M from P, S

��

is bright and the remaining part of
M is completely dark. We want to make the effect of S

��

on P
the same as that of S on P via M. If this can be done, we can

simply integrate over S
��

rather than over S, which is much
easier.

For a differential area dS
��

within S
��

, there exists a differ-
ential area dS within S such that for each point X in dS, there

exists (at least)one point Y in dS
��

such that
�

YP is the reflec-

tion ray of
�

XY. Then for each such ray path X � Y � P, ac-
cording to (3), we define the intensity factor(IF) at Y to be

IF�P�Y� �k
�

YPk2 PIF�X � Y � P� (5)

and the area factor(AF) at Y to be the ratio of effective areas

AF�P�Y� �
dScosθ3

dS��cosθ2
(6)

where θ2 is the angle between
�

YP and the normal at Y , and

θ3 is the angle between
�

XY and the normal at X .

We can verify that if the radiance at X towards Y is I,
and the radiance at Y towards P is artificially assigned to
be I � IF�P�Y� �AF�P�Y�, the irradiance at P from dS

��

is the
same as that from dS via M, which is cosθ1cosθ2

r2 I � IF�P�Y� �

AF�P�Y�dS
��

where θ1 is the angle between
�

PY and the nor-
mal at P and r is the distance between P andY . So I � IF�P�Y� �
AF�P�Y� is called the virtual radiance at Y with respect to P.
If radiance is assigned in this way to every point within S

��

,
illuminating P by S

��

has the same effect as illuminating P by
specular transfer of S via M. So we finally arrive at the equa-
tion for computing specular transfers of area sources,

B�P� � ρ
Z

S��

cosθ1cosθ2

r2 I�X� � IF�P�Y� �AF�P�Y�dS
��

(7)

This equation is for ideal diffuse receivers. B�P� is the radios-
ity contributed by M at a chosen point P on the receiver and
its albedo is ρ.

If there are several other reflectors(transmitters) in the
middle of the ray path from X to Y in Figure 2, the ray path
X �Y � P in (5) should be replaced with a longer path. But
(6) is left unchanged. We further define I

�

�P�Y� � I�X� if S is

hit at some point X by ray tracing
�

PY for �Y �M; otherwise,
I

�

�P�Y� � IF�P�Y� � AF�P�Y� � 0. Let

VIS�P�Y� �

�
1� if Y is visible from P;
0� otherwise.

We can obtain the following equation for a general environ-
ment,

B�P� � ρ
Z

M

cosθ1cosθ2

r2 I
�

�P�Y� � IF�P�Y� �AF�P�Y�

�VIS�P�Y�dS
��

(8)

For directional diffuse receivers, let ρ�
�

v �

�

w� be the re-
flectance distribution of the receiver. Then (8) becomes

I�P��� �
Z

M
ρ�
�

YP���
cosθ1cosθ2

r2 I
�

�P�Y� � IF�P�Y�
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�AF�P�Y� �VIS�P�Y�dS
��

(9)

where I�P��� denotes the radiance distribution at point P.

2.3. Computation of Area Factor

In (8) and (9), we need to compute I
�

�P�Y�, IF�P�Y� and
AF�P�Y�. I

�

�P�Y� and IF�P�Y� could be evaluated easily by

wavefront tracing. If we trace the ray
�

PY (Figure 2) and ul-
timately hit S at X via a couple of intermediate reflections
and/or refractions, I

�

�P�Y� � I�X� and IF�P�Y� can be eval-
uated with (5) and (3) by propagating a light wavefront from
X to P along the ray path. But the evaluation of AF�P�Y� is
not that obvious. We will show it can still be computed by
wavefront tracing.

In Figure 2, for any differential area dS
��

within S
��

, there
is a corresponding differential area dS within S. From the
definition of dS and reversibility of ray path, for any point
Y � dS

��

, we will hit some point X in dS if we trace the ray
�

PY . Assume P is a point light source and a spherical wave-
front W originates from it. When W reaches Y , there must be
a differential area dA

�

onW which sourroundsY and matches
the effective area of dS

��

. dA
�

will propagate to X , become an-
other differential area dA and match the effective area of dS.
So

AF�P�Y� �
dA

dA�
(10)

Along with (2), we can arrive at a formula similar to (3) for
AF�P�Y�. And we can see that intensity and area factors can
be evaluated by propagating two wavefronts from P and X ,
respectively. Thus we have an efficient way to get these fa-
tors. There is no change of differential area on the wavefront
during a reflection operation because the incident and outgo-
ing directions are symmetrical to the normal of the surface.
During a refraction operation, differential area on the wave-
front is changed by a factor, cost

cosi , where i is the angle of in-
cidence and t is the angle of refraction.

For the simple case in Figure 1, IF�P�Y� �AF�P�Y� � 1 for
�Y � S

��

. But in general, it is not. An ideal transmitter is such
a counterexample.

From the point of view of light ray-tracing, each photon
carries an equal amount of energy. Larger AF�P�Y�means the

probability, that a photon reaches P along a path near
�

YP, is
relatively large for the same intensity factor. Small IF�P�Y�
means the probability, that a photon emitted from dS reaches

P along a path near
�

YP, is small. From these discussion, we
can see that light ray-tracing, which has slow rate of conver-
gence, is a purely stochastic model used to solve (8) or (9).

2.4. Some Comments on Ray Tracing

Conventional ray tracing—only tracing rays from the view
point—has produced some of the most impressive realistic

images to date. But from the above discussion, we can see it
is not physically accurate for curved reflectors or transmitters
if it does not consider the effects on radiance causedby the lo-
cal geometric properties, suchas Gaussiancurvature, of these
reflectors or transmitters. Given the location of a viewpoint
V and an image frame, we need to evaluate the incident radi-
ance at each pixel within the frame. In Figure 3, T is a trans-
mitter, D is (directional)diffuse, P

��

is the center of a pixel,
P and P

�

are the intersections between D, T and the ray path.
We can consider the image frame as a planar transmitter with
the same refractive index on both sides. If we do not consider
reflection ray path here, the incident radiance at P

��

should
be I�V�P

��

� � I�P� � IF�V�P
��

� �AF�V�P
��

� �� I�P�. So the com-
putation of rectifying factor IF�V�P

��

� �AF�V�P
��

� should be
added into conventional ray tracing algorithms. But for thin
objects, conventional ray-tracing still gives a good approxi-
mation. In order to reduce aliasing, we may wish to compute
the incident radiance at several points within each pixel and
then take the (weighted)average.

View Point

Image
FrameP’’

P’T

P
D

Figure 3: Rectifying radiance in ray tracing

Since we are able to wavefront trace any implicit surface17,
the additional computation of intensity and area factors does
not put more restrictions on the original ray tracing algo-
rithm.

3. A solution for Parametric Surfaces

Equations (8) and (9) do not put any restriction on the repre-
sentation of the surfaces. In this section, we propose an effi-
cient solution based on these equations to integrate specular
transfers into global illumination for environments consist-
ing of bivariate parametric surfaces. We will discuss the so-
lution for (8), and the solution for (9) can be obtained simi-
larly. Our solution also has two passes. The first pass com-
putes the radiosity of each surface, including the radiosity
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contributed by ideal specular surfaces. The second pass uses
ray(wavefront) tracing to generate the image. The radiance
contributed directly by diffuse surfaces is retrieved from the
radiosity stored in the first pass. The radiance contributed by
ideal specular transfers is obtained by recursively following
reflected and/or refracted rays. Two passes seem necessary to
environments with ideal specular surfaces since it is difficult
to store radiance distribution on them. The lumigraph 8 and
light field 14 can be used for planar specular surfaces. But it
is not so straightforward to use them for curved specular sur-
faces.

3.1. Integral Equations for Parametric Surfaces

Suppose f
�

xij i � 1� � � �ng denotes the set of surfaces in the
environment, and f

�

xij i � SSg is the subset of surfaces with
ideal specular component. It is convenient to express the ra-
diant distribution and surface geometry in the same paramet-
ric domain. The principal curvatures of surface

�

x �s�t� can
be obtained from the first and second fundamental forms in
differential geometry. If written in parametric form, (8) be-
comes

Bi�s�t� � ∑
j�SS

Z Z
ρi�s�t�Ki j�s�t�u�v�Ii j�s�t�u�v�

�dudv (11)

where

Ii j�s�t�u�v� � I
�

i j�s�t�u�v�IFi j�s�t�u�v�AFi j�s�t�u�v�

is the virtual radiance and I
�

i j�s�t�u�v� has the same meaning

as I
�

�P�Y� in (8), and

Ki j�s�t�u�v� � Fi j�s�t�u�v�VISi j�s�t�u�v�A j�u�v�

where

Fi j�s�t�u�v� �
�
�

li j �
�

ni �s�t����
�

li j �
�

n j �u�v��

k
�

li jk4
(12)

Aj�u�v� �k
∂ �x j �u�v�

∂u
	

∂ �x j �u�v�

∂v
k (13)

where
�

li j�
�

x j �u�v��
�

xi �s�t� (14)

We can see this equation is very similar to radiosity integral
equation. Equation (9) becomes

Ii�s�t��� � ∑
j�SS

Z Z
ρi j�s�t�u�v���Ki j�s�t�u�v�

�Ii j�s�t�u�v�dudv (15)

In Ii�s�t���, �s�t� determines the location of the chosen point.

In ρi j�s�t�u�v���, �s�t� and �u�v� determine
�

li j in (14), there-
fore the incident direction.

Details about the first pass are given below.

3.2. Global Iterations

We want to combine (11) into progressive radiosity. In or-
der to make further adaptive meshing convenient, we initially
triangulate the parametric domain of each surface. Accord-
ingly, each surface is subdivided into a number of triangular
curved patches. The final triangular mesh will be interpolated
in the second pass to generate the final image. In each itera-
tion, one diffuse shooting patch is chosen. One simple way
to combine (11) is to compute the irradiance contributed by
specular transfers for each receiving patch after the normal
computation for direct diffuse illumination in each iteration.
From Figure 2, we can see when we integrate over mirror M,
only a small part S

��

has nonzero radiance if there is only one
patch shooting. In order to increase accuracy, we must detect
the boundary of S

��

, which means subdividing M. And this
kind of subdivision is different for different shooting patches.
So it is not efficient.

We must change our notion of shooting patch. That is, an
ideal specular surface can also be an independent shooting
surface. We say a diffuse iteration if the shooting surface is
diffuse and a specular iteration if it is specular. The unshot
radiosity of a specular surface is distributed in the whole en-
vironment. A new variable, called unshot specular rad, can
be created on each diffuse patch or vertex. In a diffuse iter-
ation, the shooting energy is accumulated into this variable
because it is not specularly transferred immediately. When a
specular surface M is shooting and a chosen vertex P is re-

ceiving, for a sample point Q on M, ray trace
�

PQ and sup-
pose some surface with diffuse component is hit. The value
of unshot specular rad at the hit point is retrieved and used
to evaluate the virtual radiance at Q. In this way, any point
on M has a virtual radiance for each receiving point, and
specular surfaces are treated just like diffuse patches. But all
specular surfaces must shoot simultaneously or one immedi-
ately after another; otherwise, each diffuse patch must hold
distinct variables like unshot specular rad for each specular
surface. That is not space efficient. Figure 4 shows the algo-
rithm for global iteration where rad and unshot rad are vari-
ables to store total and unshot radiosity in conventional pro-
gressive radiosity.

This approach decouples specular transfers from diffuse
iterations and only has a small number of additional specular
iterations in order to compute diffuse-specular-diffuse trans-
port. So it is very efficient.
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while( Not converged )
if(the total flux obtained from unshot specular rad

is not large enough)
begin

pick up the diffuse patch with
maximum unshot rad as the shooting patch;
for each receiving diffuse patch or vertex
begin
compute received radiosity drad;
rad=rad+drad;
unshot rad=unshot rad+drad;
unshot specular rad+=drad;

end
clear unshot rad of the shooting patch;

end
else
begin
for each specular surface

�

xi � i � SS
for each receiving diffuse patch or vertex
begin

compute radiostiy drad received from
�

xi;
rad=rad+drad;
unshot rad=unshot rad+drad;
tmp specular rad+=drad;

end
for each diffuse patch
begin
unshot specular rad=tmp specular rad;
tmp specular rad=0;

end
end

Figure 4: The iterative algorithm

3.3. Approximation of the Integral

To obtain the value of integral in (11), we use quadtree parti-
tion to subdivide the parametric domain of each specular sur-
face into a number of subdomains. (11) becomes

Bi�s�t� � ∑
j�SS

Nj

∑
k�1

Z Z
Dj

k

ρi�s�t�Ki j�s�t�u�v�

�Ii j�s�t�u�v�dudv (16)

Then some quadrature rule is applied over each subdomain
Dj

k to evaluate the integrals in (16). Each sample value of
Ii j�s�t�u�v� is obtained by wavefront tracing. And at each
sample point on a subdomain, there is a corresponding ray
tree which is set up during recursive wavefront tracing.
Each subdomain can also be recursively subdivided into four
smaller subdomains under some criteria. The criteria that can
be used to guide subdivision are

1)whether the solid angle at the receiving vertex spread by
the curved patch correspondingto current subdomain is small
enough;

2)whether the normal of the curved patch corresponding
to current subdomain does not vary too much;

3)whether the patches hit by the first a few levels of two
adjacent ray trees match or are adjacent to each other;

4)whether
the quadrature over current subdomain achieves a specified
accuracy;

5)whether wavefront tracing over current
subdomain missed some important diffuse patches, such as
those bright area light sources.

Area
Source 0

123

4

5 6 7

Figure 5: Regions around a rectangular area light source

For the last criterion, how can we know something is miss-
ing ? We can set up some counters for each such area source.
For a rectangular light source (Figure 5), there are eight re-
gions around it and each region is given a corresponding
counter. Once a ray hits some region, the counter of that re-
gion is incremented. Finally, we get a subset NZ of these
regions whose counter is nonzero. If the area source is not
hit by rays sampled over current subdomain, there are three
cases:

i)if NZ 
 f1�2�3g or f3�4�5g or f5�6�7g or f7�0�1g, we
know wavefront tracing over current subdomain almost has
no chance to hit this area source;

ii)if NZ � f0�4g or f2�6g, we know it is most likely for
some ray to hit this area source if we continue subdividing
current subdomain;

iii)otherwise, we are not sure and may wish to subdivide
one more time to get more information.

Of course, the regions in Figure 5 can be subdivided and
more reliable test can be resulted in. For curved area sources,
we can fit a simple polygon or polytope to its boundary and
do some similar tests. Some sample Fermat Paths17 between
some sample points on the area source and current receiving
vertex are also useful information telling the region where
subdivision should be done.

If current parametric subdomain is small enough, but there
is still some criterion unsatisfied, we can disturb the current
receiving vertex and repeat the evaluation of (16) at some
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point very close to the previous one, or we can switch to
stochastic sampling over current subdomain. For stochas-
tic sampling, given a distribution function for those sample
points, the weight of each sample value is reciprocal to the
value of distribution function at that sample point. This kind
of sampling is much easier than those in light ray-tracing
since it is over a square parametric subdomain.

3.4. Recursive Wavefront Tracing

If all reflectors in the environment are opaque and specular
reflectors have no diffuse component, ray trees degenerate
into linear trees. The computation of intensity and area factor
is straightforward by propagating two wavefronts along the
ray path in opposite directions. A recursive function can be
written to do this task. The evaluation of area factor is car-
ried out as the function traces the ray path from one object to
another, and is done when a diffuse surface is hit. Then the
function returns along the previous ray path and the evalua-
tion of intensity factor is carried out.

If some reflectors have both specular and diffuse compo-
nents, a user stack should be used to save intermediate results
of each recursive call. During wavefront tracing, any inter-
mediate reflector with diffuse component has partial contri-
bution to the virtual radiance of the first reflector. Once such a
reflector is encountered, the function traverses the user stack
from top to bottom to compute its intensity factor and partial
contribution to the final virtual radiance.

If surfaces with both specular reflection and transmission
are present, ray trees are no longer linear. Each path from root
to leaf should be traversed and the use of user stack is still
inavoidable.

3.5. Meshing

Discontinuity meshing15 and backprojection6 can work very
well for polygonal scene. Other meshing techniques can
hardly compete with them. But since we have curved sur-
faces, at least curved specular surfaces, we should come up
with something else to catch shadow boundaries and caus-
tics. Two kinds of adaptive meshing used in our algorithm.
Quadtree partition is used for specular component because it
is convenient to perform quadrature. Triangular mesh is used
for diffuse component because it is easy to interpolate and
eliminate T-intersection. We use linear interpolation and it
will be used as a criterion for mesh refinement. If a surface
has both diffuse and specular component, there will be two
meshes on its parametric domain. We elaborate on triangular
meshing below.

Initially each surface is subdivided into triangles of ap-
proximately the same size. This initial mesh will be refined
in each iteration. In eachiteration, after shooting surface(s)—
diffuse or specular— are chosen, the following algorithm is
executed for mesh refinement. There are two constants in the

algorithm. One is the minimum edge length. If an edge in the
mesh has length less than or equal to this constant, no more
subdivision and test will be done on this edge. The other is for
the shape of triangles in the mesh. If the ratio of the sum of
the two smaller edge length to the largest one is less than this
constant, the longest edge should be subdivided first before
any other subdivision of the triangle. We use 3D object-space
Euclidean distance, not the distance in parametric domain, al-
though all subdivision are made there.

Meshing algorithm

1)Compute incremental radiosity for each vertex in the
mesh;

2)For each edge in the mesh with length larger than a
threshold, search for the break point on this edge by the
following Break-point searching algorithm. If there exists
such a break point, subdivide the two triangles sharing this
edge(Figure 6) into four smaller onesat the break point(if any
of these triangles is in bad shape, subdivide its longest edge
first), and then recursively check the newly generated edges.

Break

Point

Figure 6: Subdivision of an edge in the triangular mesh

Break-point searching algorithm

1)If only one vertex of current edge is in the umbra of
current shooting patch(otherwise, go to step 2), use binary
search on the edge for a point lying very close to the boundary
of the shadow but not in shadow and test linearity at this point
as in step 2); if the test fails, return this point as the break
point; otherwise

2)choose some sample points on current edge—the num-
ber of sample points is determined by its length; compute the
radiosity at each sample point by nemerical integration and
linear interpolation, respectively; if their difference at any
sample point is larger than a threshold, use Fibonacci search,
a kind of one dimensional search to find the maxima(or min-
ima), for the break point where the above-mentioned differ-
ence is maximum and return this point; otherwise, no break
point.
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To reduce the number of patches, binary search and Fi-
bonacci search are used to find the right position for subdi-
vision in the above algorithm. In step 2) of the meshing al-
gorithm, the edges can be checked in the order of decreas-
ing length. This meshing algorithm can be easily extended to
higher order interpolation. We can also incorporate two di-
mensional search within each triangle for break points. But
that will need much more time. A diffuse shooting patch is al-
ways picked up from the initial mesh. So it may include many
smaller patches. To accelerate the algorithm, we can fit a low
order polynomial to the radiosity distribution on the shooting
patch. We can also use a smaller minimum edge length in the
meshing algorithm if the shooting patch is a part of a bright
light source and a larger one for other shooting patches.

So far we have presented the details of the solution for
(11). Except for adaptive meshing algorithm which should be
further investigated for directonal diffuse component, the so-
lution for (15) is similar because a global illumination algo-
rithm very similar to progresive radiosity was introduced by
Sillion et al.25, who used spherical harmonics to store direc-
tional radiance distributions, and we can easily combine our
algorithm for specular component into that one.

4. Experimental Results

Our specular transfer equations are correct by derivation. But
we still did some experiments to show their effectiveness. In
one situation, we tried to get the radiosity distribution when
the shooting surface and the receiving surface are in two
different media where the boundary between the media is a
curved surface defined below

��
�

x � x0 � lx�s�0�5�
y ��h � cos�3π�s�0�5��cos�3π�t�0�5��
z � z0 � lz�t�0�5�
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Figure 7: One testing configuration

Figure 7 gives a configuration we tested, where M is the
surface defined by (17), S is a square light source and R is a

square diffuse receiver. M only has ideal transmission. The
refractive index of the medium under M is about 1.4 and that
of the medium above M is 1.0.

Figure 8: Radiosity distribution on the receiver for the con-
figuration shown in Figure 7

Figure 8 shows the picture of the radiosity distribution on
the receiver for this configuration and for lx � lz � 100 and
h � 5 which are coefficients in (17). In this experiment, we
did not use stochastic sampling. When the quadrature over
some parametric subdomain is hard to converge, we simply
disturb the receiving vertex to avoid division by a very small
number. This is because intensity factor may become very
large near some point where the Gaussian curvature of the
wavefront tends to infinity. That’s why there is some noise in
Figure 8. Although this result is for a hypothetical situation, it
shows the power of our method which is not only useful in re-
alistic image synthesis, but also useful in visualizing special
effects of ideal specular transfers, which might be interesting
to mathematical physicists.

We have implemented our algorithm for combining wave-
front tracing and radiosity. Among the criteria in section 3.3,
we implemented 1),4) and 5). We used octree space-partition
to accelerate wavefront tracing, and also adaptive quadrature
as in the paper by Yu et al.30.

Figure 9(a) and 9(b) show two pictures for an indoor scene.
There is a concave mirror before the wall facing us in Figure
9(a). Despite some overexposure of the film, we can still see
bright regions on the floor and the desktop causedby this mir-
ror. Figure 9(b) is the meshing result for 9(a). There are many
tiny triangles around shadow boundaries and there is a dark
area on the wall facing us, which is the part of the wall behind
the mirror. The color of each triangle was assigned by adding
a random component to the radiosity distribution. This figure
shows the effectiveness of our techniques, such as integrat-
ing specular transfers into radiosity and meshing, introduced
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(a)

(b)

Figure 9: (a) An indoor scene with a concave mirror,
(b) meshing result for (a)

in section 3. There are no obvious effects of using wavefront
tracing like those in Figure 8 because the concave mirror is a
simple curved reflector.

We also examined the effectiveness of shooting specular
and diffuse surfaces separately, which was introduced in Sec-
tion 3.2, in several test scenes similar to that in Figure 9 on
a Sparc-10 machine. We compared the running time of our
method with jointly computing specularly transferred energy
in each diffuse iteration. The speedup was fairly obvious.
If we compute specularly transferred energy in each diffuse
iteration, most of the time is spent there. But these specu-

larly transferred energy has relatively small contribution to
the whole environment. If we accumulate these energy for
later specular shooting, we may save large amount of time.

5. Conclusions and Future Directions

Theory and algorithms were presented for the fundamen-
tal problem in graphics: simulation of illumination from
area light sources via curved specular surfaces, including
ideal reflection and transmission. Three important concepts–
intensity factor, area factor and virtual radiance–were in-
troduced. They helped to give general equations for spec-
ular transfers. A solution for parametric environment was
proposed. Wavefront tracing and numerical integration were
used in the solution, along with a meshing technique on para-
metric domains. We also let a specular surface shoot just as
a normal diffuse patch. As a side product, a new version of
ray tracing was also proposed.

One problem is whether surface curvature should also be
taken into account for directional diffuse transfers. Efforts
should also be made to find out situations where the product
of intensity and area factor becomes one, in which case the
computation for intensity and area factor is unnecessary.

A few other problems should also be investigated, such as
the possibility of combining wavefront tracing and hierarchi-
cal method1, the possibility of solving (8) and (9) for surfaces
defined by implicit functions, and faster numerical integra-
tion techniques suitable for (11) and (15).
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