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Abstract

Projective texture-mapping is a powerful tool for image-based rendering. However, visibility information must be
obtained in order to project correct textures onto the geometric sturcture. This paper presents a novel visibility
algorithm for determining which polygons are visible from each camera position. It has object-space precision,
but operates in both image-space and object-space to get better performance. It generates much less polygons than
traditional object-space algorithms to help accelerate the speed of texture-mapping. The techniques used to achieve
these are conservative image-space occlusion testing and object-space shallow clipping. This algorithm has been
successfully used to generate large-scale image-based rendering of a whole university campus, and image-based
rendering of architectures under dynamic lighting.

1 Introduction

Projective texture mapping was first introduced in [1] and now has been implemented in OpenGL graphics package
on SGI machines. Although it was only for shadows and lighting effects in the original paper, people have found it
extremely useful in the fast developing field of image-based rendering because projective texture mapping simulates
the setting of taking photographs with a camera. In order to do projective texture mapping, the user needs to
specify a virtual camera position and orientation, a virtual image plane with the textures. The texture is then cast
onto a geometric model using the camera position as the center of projection. In image-based rendering, real
photographs with calibrated camera positions are often used to re-render a scene. If there are also some recovered 3D
geometric structures for the same real scene, these photographs can be texture-mapped onto the recovered structures
by projective texture mapping to generate extremely realistic renderings. 3D geometric models can be reconstructed
from laser range data [2] or multiple photographs [3]. The system in [3] implemented this projective texture mapping
in software. However, the hardware implementation on SGI machines are much faster.
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Figure 1: The current hardware implementation of projective texture mapping on SGI workstations let the texture
pierce through the geometry and get mapped onto all backfacing and occluded polygons on the path of the ray

For a complex scene, multiple photographs taken at different camera positions are often needed to cover the whole
scene. We want to texture-map those real images onto the recovered structure. For a fixed image, we only want to
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map this image onto the polygons visible to the camera position where we took this image. We should not erro-
neously map it onto those occluded polygons. The current hardware implementation of projective texture mapping
on SGI workstations cannot do this in hardware. It let the texture pierce through the geometry and get mapped onto
all backfacing and occluded polygons on the path of the ray(Fig. 1). So parts of the geometry that are occluded in
the original image still receive legible texture coordinates and are incorrectly texture mapped instead of remaining
in shadow. This indicates we need to obtain visibility information before texture-mapping.

We could solve this visibility problem in image-space using ray tracing or item buffer. But that means if we want
to render a large number of frames for an animation or do a real-time demonstration, we need to compute visibility
in image-space for each frame, which would be impractically slow. Hardware texture-mapping can be done in real-
time if all the visibility information is known, which means we need a visibility preprocessing step in object-space
to fully exploit the hardware performance. For any sequence of animation, this object-space preprocessing needs to
be done only once. It also allows the view point to be changed dynamically during a real-time demonstration.

In an object-space visibility preprocessing, we should subdivide partially visible polygons so that we only map the
current image to their visible parts. If a polygon is invisible from this camera position, it can still be visible from
other camera positions since we have multiple images. So we need to feed a list of visible camera positions for each
polygon to the rendering program and let it choose dynamically which ones should be used for the current view
point.

Since the whole scene is covered by multiple images which may have overlapping areas and gaps, the object-space
visibility preprocessing also needs to deal with the image boundary problem. If a polygon is partially covered by
multiple images, we need to clip the polygon against the image boundaries so that different parts of the polygon get
textures from different images.

Figure 2: Users can pick a desired texture region from each image by drawing a convex polygon inside the image
frame. The chosen texture region may be either the interior or the exterior of the polygon.

It is also desirable to allow users to pick a part of each image as the texture in texture mapping instead of forcing
them to use every pixel from each photograph. In our algorithm, a convex planar polygon can be specified inside
each image and the user can pick either the interior or the exterior of this polygon as the desired texture(Fig. 2). This
gives rise to the necessity to clip polygons in the scene against the edges of this texture region.

This visibility problem is for a number of fixed camera positions. If we consider the visibility subproblem at one
camera position, it is similar to the traditional problem of visible surface determination [12]. But object-space
preprocessing means previous image-space algorithms are not appropriate. Previous object-space algorithms [12, 7]
were designed only for one viewpoint. They do a lot of needless polygon clipping on completely and partially
invisible polygons, therefore, increase the number of polygons dramatically. If we repeatedly applied them on the
recovered geometry view by view, the size of the final polygon set would be unmanagable. We wish to minimize the
number of polygons resulted from visibility processing because a large number of polygons will significantly slow
down the speed of hardware texture mapping.

There is another class of visibility algorithms [10, 11]. They try to analyze visibility for all pairs of surface patches
in an environment so that shadows and/or global illumination can be computed efficiently for area sources. They are
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also object-space preprocessing. Since these algorithms deal with area sources while we are concerned about fixed
camera positions, they are not suitable for our problem.

We will introduce our visibility algorithm in the next section. In Section 3, we will give the performance of our
algorithm and compare it with some existing algorithm. In Section 4, we will introduce some interesting applications
we have done. Section 5 has the conclusions.

2 The algorithm

What we need to do is to decide in which photographs a particular polygon from the geometric model is visible. If a
polygon is partially visible in a photograph, we should clip it so that each resulting polygon is either totally visible
or totally invisible. After this visibility processing, we can correctly and efficiently assign radiance values from the
photographs to the visible polygons.

This algorithm is operated in both image space and object space. It is summarized as follows.

1. Give each original polygon an id number. If a polygon is subdivided later, all the smaller polygons generated
share the same original id number.

2. If there are intersecting polygons, subdivide them along the intersecting line.

3. Clip the polygons against all image boundaries and user-specified planar polygons so that any resulting poly-
gon is either totally inside or totally outside the desired texture regions.

4. Set each camera position as the viewpoint in turn, and render the original large polygons from the geometric
model using their id numbers as their colors and Z-buffer hardware.

5. At each camera position, scan-convert each frontfacing polygon in software so we can know which pixels are
covered by it. If at some covered pixel location, the retrieved polygon id from the color buffer is different
from the id of the polygon currently under consideration, a potentially occluding polygon is found and it is
tested in object-space whether it is really an occluding polygon.

6. Clip each polygon with its list of occluders in object-space.

7. Associate with each polygon a list of photographs to which it is totally visible.

Clipping in object-space does not take much time because we use the original large polygons in the hardware Z-
buffering step, which results in a very small set of occluders for each polygon. So this algorithm has nearly the
speed of image-space algorithms and the accuracy of object-space algorithms as long as the original polygons in the
model are all larger than a pixel. Using identification(id) numbers to retrieve objects from Z-buffer is similar to the
item buffer technique introduced in [8].

There are some variants of this algorithm. First, we can replace scan conversion with object-space uniform sampling.
On each polygon, draw uniform samples and project these sample points onto the image plane to check if there are
any occluding polygons. But scan-conversion is obviously faster. Second, under some circumstances, we need some
data structure to maintain the connectivity of the polygons and T intersections are not allowed.

The objective of this algorithm is to minimize the number of polygons resulted from clipping to accelerate texture
mapping at a later stage while safely detect all occluding polygons so that texture mapping are done correctly. To
achieve this goal, the following two techniques are introduced, conservative testing and shallow clipping.

3



2.1 Conservative Image-space Occlusion Testing

From the hardware Z-buffering results, we want to safely detect all occluding polygons. We donot want to miss
any occluding polygons. But if a nonoccluding polygon is erroneously reported, that is fine because we can do
object-space testing to verify if it is really an occluding polygon and get rid of it if it is not.

Figure 3: In the original scan-conversion of a polygon, only pixels whose centers are within the projected polygon
are rendered, which is shown on left; our conservative occlusion testing checks all pixels with some overlap with
the projected polygon, which is shown on right.

For the version using scan-conversion, if we consider each pixel is a tiny square, conservative testing is done by
checking all pixels overlapping with the projected area on the image plane of the currently considered polygon
instead of only checking the pixels whose centers are within the projected area as in the original version of scan
conversion(Fig. 3). If any of these pixels have an id number different from the polygon’s own id number, a poten-
tially occluding polygon is found.

We can not use hardware Z-buffering for this scan-conversion because we have to check all pixels overlapping with
the projected area of a polygon to see whether the considered polygon is completely or partially visible and which
polygons occlude it. However, Z-buffering only gives the visible polygon at each pixel, and cannot directly tell us
which pixels overlap with the polygon. Without software scan-conversion, we need to check the whole color buffer
to obtain these pixels. Repeating this for every polygon is obviously impractical.

For the version using uniform object-space sampling, at the image-plane projection of each sample point, check all
pixels in its neighborhood for occluding polygons rather than check only one pixel corresponding to the projected
location.

The purpose of this image-space testing step is to quickly obtain the list of potentially occluding polygons.

2.2 Accurate Object-space Occlusion Testing

We assume all polygons are convex here since nonconvex polygons need to be tessellated before rendering with
Z-buffer.

To test in object-space if a polygon really occludes another polygon from a camera position, we should first test
if they are coplanar because Z-buffer only gives one id number at each pixel despite the fact that there might be
coplanar polygons at the same depth. If the polygons are coplanar, we consider them both visible. Otherwise, we
should form a viewing pyramid for the first polygon with the apex at the camera position and check if the second
polygon is outside this pyramid(Fig. 4). Each bounding face of the pyramid has two edges which are half lines
extending to infinity. The semi-infinite bounding faces are called wedges. Each wedge lies on a plane. We can
check if a polygon falls totally inside a pyramid by using the plane equations of its wedges. To test if the polygon
falls outside the pyramid, we need to check each wedge with the polygon. Using the plane equations are not safe
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Figure 4: To verify if a polygon really occludes another one in object-space, we need to form a pyramid for the first
polygon with the apex at the camera position and check if the second polygon is outside this pyramid

any more, see Fig. 5 for a counterexample. We have the following conditions to verify whether a wedge intersects a
polygon.

Theorem A wedge intersects a polygon if there are vertices of the polygon on both sides of the plane to which the
wedge belongs, and either of the following two conditions is satisfied

i) one of the edges of the wedge goes through the interior of the polygon,

ii) one of the edge segments of the polygon intersects the interior of the wedge.

Fig. 6 shows all the cases that a polygon can intersect a wedge. We can consider it as a simple proof of the above
theorem.

If a polygon is in front of another one and its corresponding pyramid intersects the other polygon, it becomes a real
occluder. We need to clip the occluded polygon against the occluding polygon.

2.3 Polygon Shallow Clipping

The method of clipping a polygon against image boundaries is the same as that of clipping a polygon against a real
occluding polygon. In either cases, one should first form a viewing pyramid as in Section 2.2, and then clip the
polygon with the bounding faces of the pyramid. Before clipping with each bounding face, we should also verify if
that bounding face really intersects the polygon using the above theorem.

Our algorithm does shallow clipping in the sense that if polygon � occludes polygon �, we only use � to clip
�, and any polygons behind � are unaffected(Fig. 7). Only partially visible polygons are clipped. Those totally
invisible ones are left intact. This is the major reason that our algorithm can minimize the number of resulting
polygons.

If a polygon � has a list of occluders � � ���� ��� ���� ���, we use a recursive approach to do the clipping. Obtain
the overlapping area on the image plane between each member of � and polygon � and choose the polygon � in �
with maximum overlapping area to clip � into two parts � � and � where � � is the part of � that is occluded by �,
and � is a set of convex polygons which make up the part of � not occluded by �. Recursively apply the algorithm
on each member of �, i.e. first detect its occluders and then do clipping.
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Figure 5: To test if the polygon falls outside the pyramid, we need to check each wedge with the polygon. Using
the plane equations are not safe any more. This is a counterexample. Polygon � is actually outside the pyramid for
polygon �. But it has two intersections 	 and 
 with the planes defining two sides of the pyramid.

2.4 Thresholding Polygon Size

By experiments, we found most polygons resulting from clipping are tiny polygons. To further reduce the number
of polygons, we set a threshold on the size of polygons. If the object-space area of a polygon is below the threshold,
it is not subdivided any more and is assigned a constant color based on the textures on its surrounding polygons. If a
polygon is very small, it is not noticable whether it has a texture on it or just a constant color. The rendered images
can still maintain good quality.

Figure 6: All possible situations that a polygon can intersect a wedge
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Figure 7: Our algorithm does shallow clipping in the sense that if polygon � occludes polygon �, we only use � to
clip �, and any polygons behind � are unaffected.

3 Experimental Results

Fig. 8(a) shows the texture-mapping result if we do not obtain visibility information of the geometric model. The
backfacing and occluded faces obtained incorrect textures.

We have implemented the above visibility algorithm on SGI machines. Although it operates in both image-space
and object-space, it actually outputs object-space geometric data which are the polygons after subdivision and a
list of camera views to which each polygon is visible. These data can be used to generate real-time projective
texture-mapping.

To demonstrate our algorithm’s efficiency in both polygon clipping and running time, we compare it with a pure
object-space algorithm which is a modified version of Weiler-Atherton hidden surface removal algorithm [7, 12].
The hierarchical Z-buffer algorithm in [9] is good for complex models. But it is essentially an image-space algorithm
and is not appropriate for our purpose. Since we have more than one camera positions in our situation, we apply
Weiler-Atherton algorithm repeatedly at each camera position and the input data for the processing at each camera
position is the output data from the processing at the previous camera position.

The comparison was performed on three data sets. One is a very detailed model of a bell tower(Fig. 8(b)). Another
is a coarse model of a university campus, including both the buildings and the terrain(Fig. 8(c)). These two models
were recovered by the system in [3]. The third data set is a cluster of polygons uniformly distributed in a bounding
box. The polygons have random sizes and orientations. They do not give any obvious object shape. The number of
polygons in the original models and the number of camera views used for visibility processing are shown in Table
1.

For fair comparison, in both algorithms we only process those frontfacing polygons falling into field of view at each
camera position. The visibility processing results for the first two models are shown in Fig. 9. Both the running time
on a SGI �� workstation and the number of polygons generated after visibility processing are compared in Table 2-4
where our algorithm is named Hybrid. The comparison is done for three thresholds on polygon size. Any polygon
smaller than the threshold is no longer subdivided as proposed in Section 2.4. From these results, we can see our
algorithm is significantly better in both running time and the number of polygons generated. The running time of
each part of our algorithm is shown in Table 5. The time spent on Z-buffering is ignorable. Scan-conversion is the
most time-consuming part which keeps the time spent on object-space operations much lower than it should be for
an algorithm with object-space precision. We can speed up this part by identifying all the completely or partially
visible polygons from the hardware Z-buffering results, performing scan-conversion only on these polygons and
ignoring those completely invisible polygons. However, as preprocessing, the compactness of the final polygon set
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is much more important than speed.

Model I Model II Model III

# polygons 2409 660 1000
# views 24 10 16

Table 1: Statistics for three geometric data sets: number of polygons and number of camera positions for visibility
processing.

Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 19018 7511 3584
WA 62556 12461 4779

Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 112.14s 81.15s 61.47
WA 875.40s 234.97 175.53

Table 2: Comparison between the Hybrid and Weiler-Atherton(WA) algorithms on Model I with three different
thresholds on polygon size. The first half shows the number of polygons generated. The second half shows the
running time in seconds on a SGI �� workstation.

Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 5623 5541 5255
WA 10194 9878 8675

Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 14.36s 14.63s 13.96s
WA 22.85s 21.60s 18.64s

Table 3: Comparison between the Hybrid and Weiler-Atherton(WA) algorithms on Model II with three different
thresholds on polygon size. The first half shows the number of polygons generated. The second half shows the
running time in seconds on a SGI �� workstation.

4 Applications

We designed this visibility algorithm in terms of the demand from real-time image-based rendering. So far, we
have successfully used this algorithm to process data in two applications. The first is for view-dependent projective
texture-mapping. By visibility processing and projecting the real images like those shown in Fig. 10(a)-10(d), we
are able to have a recovered large-scale 3D model covered with seamless textures, and re-render the model from
novel view points(Fig. 11). This application has produced a fly-by animation for UC Berkeley campus [5]. Since
our algorithm generates much less polygons than previous algorithms, we are able to produce a corresponding real-
time(60Hz) demonstration on SGI Onyx2 InfiniteReality Engine. The second application uses visibility processing
to assign correct radiance values from photographs to their corresponding geometric surfaces and then recover the
reflectance of the surfaces [4]. Thus we are able to re-render the model under novel lighting conditions such as a
novel solar position for an outdoor scene(Fig. 10(e)).
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Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 15745 8596 6573
WA 40973 16238 9040

Th = 0.0001 Th = 0.001 Th = 0.01

Hybrid 90.43s 62.96s 47.23s
WA 239.74s 182.32s 141.92s

Table 4: Comparison between the Hybrid and Weiler-Atherton(WA) algorithms on Model III with three different
thresholds on polygon size. The first half shows the number of polygons generated. The second half shows the
running time in seconds on a SGI �� workstation.

Th = 0.0001 Th = 0.001 Th = 0.01

HW Z-buffering 0.69s 0.68s 0.72s
Scan-conversion 61.92s 50.80s 44.34s
Object-space ops 49.53s 29.67s 16.41s

Th = 0.0001 Th = 0.001 Th = 0.01

HW Z-buffering 0.09s 0.08s 0.09s
Scan-conversion 8.16s 8.30s 7.84s
Object-space ops 6.11s 6.25s 6.03s

Table 5: Statistics of the running time of each part of the Hybrid algorithm on Model I and II, including Z-buffering
time, scan-conversion time and time for object-space testing and clipping operations.

5 Conclusions

This paper presents a novel visibility algorithm for projective texture-mapping which is a powerful tool for image-
based rendering. It is a hybrid algorithm operating in both image-space and object-space. It has object-space
precision, but part of it operates in image-space in order to get better performance. It generates much less polygons
than traditional object-space algorithms to help accelerate the speed of texture-mapping. The techniques used to
achieve these are conservative image-space occlusion testing and object-space shallow clipping. This algorithm
has been successfully used to generate large-scale image-based rendering of a whole university campus, and image-
based rendering of architectures under dynamic lighting.
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(a) (b) (c)

Figure 8: (a)Viewing the model from a viewpoint far from the original produces artifacts unless proper visibility
pre-processing is performed, (b)A detailed bell tower model, (c)A model for a university campus, including both
the buildings and the terrain.

(a) (b)
Figure 9: Visibility results for a bell tower model with 24 camera positions and for a university campus model with
10 camera positions. The color of each polygon encodes the number of camera positions from which it is visible:
white= 0, red= 1, green= 2, blue= 3, yellow= 4, cyan= 5, magenta= 6 and unsaturated colors for larger numbers.
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(a) (b) (c) (d) (e)

Figure 10: (a)-(d) Some of the photographs of the university campus and bell tower used for projective texture-
mapping, (e) A re-rendering of the bell tower under a new lighting condition with the sun directly behind it so the
frontfacing side is shaded and has a light blue tint.

(a) (b)

Figure 11: Two re-rendered images of the university campus at two novel view points. The textures are actually
from different photographs, but they seamlessly cover the geometry using visibility processing.
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