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ABSTRACT

The wavelet transform hierarchically decomposes images with pre-
scribed bases, while multilineal models search for optimal bases to
adapt visual data. In this paper, we integrate these two approaches to
compactly represent 2D images and 3D volume data. Once a wavelet
(packet) decomposition has been performed, the coef cients are sub-
divided into small blocks most of which have small energy and are
pruned. Surviving blocks usually exhibit strong redundancy among
different channels and subbands. To exploit this property, we or-
ganize the surviving blocks into small tensors, group the tensors
into clusters using an EM algorithm, and compactly approximate
each cluster using tensor ensemble approximation. Experimental re-
sults on images and medical volume data indicate that our approach
achieves better approximation quality than wavelet (packet) trans-
forms.

Index Terms— Hybrid multilinear models, multiscale analysis,
wavelet transform, adaptive bases, tensor ensemble approximation

1. INTRODUCTION

With modern digital imaging technologies, visual data such as im-
ages, videos and multidimensional medical images have been gen-
erated, processed and transmitted with tremendous rate and scale.
Much research has hence been performed to ef ciently and com-
pactly represent these data. As the rst step, most methods transform
the input dataset so that energy is concentrated in the coef cients of
a relatively small number of bases to facilitate subsequent encod-
ing/decoding or analysis.

The wavelet transform has been extensively investigated for im-
age analysis and compression [1, 2]. Using carefully designed bases,
a.k.a. scaling functions and wavelets, the input signal is decomposed
into a low-frequency subband and a hierarchy of higher-frequency
subbands. Wavelets are capable of capturing discontinuities so that
energy in those high-frequency subbands are highly concentrated.
As a generalization of the wavelet transform, a wavelet packet trans-
form decomposes both low-frequency and high-frequency subbands
recursively and searches for the best combination of different scales
to improve compactness [3, 4]. Even though the wavelet (packet)
transforms are highly effective, encoding the remaining sparse high-
energy coef cients remains an active research topic.

Multilinear models based on tensor approximation have achieved
impressive compression ratios for high-dimensional visual data
[5, 6]. Instead of using prescribed bases, they search for optimal
basis matrices speci cally tailored for the input data. Hierarchical
tensor approximation that recursively subdivides residual tensors
and approximates them as an ensemble has been proposed in [6],
further improving PSNR under the same compression ratio. Never-
theless, adaptive basis matrices need to be stored for each individual

dataset, which could impose a signi cant overhead. The compres-
sion performance of tensor approximation becomes worse than the
wavelet transform on low-dimensional datasets such as 2D images.
An additional problem exhibited by tensor approximation is that
although the basis matrices being optimal in terms of MSE, they
cannot effectively preserve sharp discontinuities and, thus, make
compressed results less visually appealing.

In this paper, we propose hybrid multilinear models in the
wavelet domain to harness the power of both wavelet (packet)
transforms and tensor approximation. Our method rst performs a
wavelet (packet) transform. The coef cients in the high-frequency
subbands exhibit strong correlation across different subbands and
color channels. Multilinear models are very effective in simultane-
ously removing redundancies across multiple modes, including spa-
tial locations, subbands and color channels. Therefore, our method
spatially subdivides the high-frequency subbands, and forms small
tensors with the aforementioned modes. Most of the formed tensors
have negligible energy and thus pruned. Non-negligible tensors are
grouped into clusters using an EM algorithm, so that tensors in each
cluster can be approximated ef ciently as an ensemble.

We have tested our new hybrid method on both natural and med-
ical images, achieving more compact approximation than wavelet
transforms, wavelet packet transforms or tensor approximations
alone. Meanwhile, our compressed data retains high visual delity
because the initial wavelet (packet) transform can well preserve
discontinuities. In addition, our method signi cantly reduces basis
overhead because we only need to approximate a small number of
surviving tensors after pruning and the tensors in the same cluster
share basis matrices.

2. BACKGROUND

As in [7], a real N th-order tensor A ∈ �n1×n2×...×nN , can be con-
sidered as an element of a composite vector space, Rn1 ⊗ Rn2 ⊗
· · ·⊗RnN , where we call each Rni an elementary vector space, and
⊗ denotes the Kronecker product of vector spaces. The dimension-
ality of the i-th elementary vector space is ni.

A rank-(r1, r2, ..., rN ) approximation of A is formulated as

Ã = B ×1 U(1) ×2 U(2) × · · · ×N U(N), (1)

where each basis matrix U(i) ∈ �ni×ri , the core tensor B ∈
�r1×r2×···×rN , and ×k represents k-mode product of a ten-
sor by a matrix 1. The column vectors of each U(i) are or-
thonormal to each other. Once the basis matrices are known,

1The k-mode product of a tensor A by a matrix U ∈Jk×nk ,
denoted by A ×k U, is de ned as a tensor with entries: (A ×k

U)i1...ik−1jkik+1...iN
=

∑
ik

ai1...iN
ujkik

.
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B = A×1 U(1)T ×2 U(2)T ×· · ·×N U(N)T

. When r1, r2, . . . , rN

are suf ciently small, the core tensor and the basis matrices to-
gether give rise to a compact representation. The Alternative Least
Square (ALS) algorithm was used in [8, 7] to solve the optimal basis
matrices given their reduced ranks.

Note that existing tensor approximation techniques [7, 5, 6] di-
rectly operate on the original input data while our new method in
this paper applies tensor approximation to the coef cients resulting
from a multi-level wavelet (packet) transform. As discussed earlier,
such an approach can harness the power of both wavelet (packet)
transforms and tensor approximation.

3. SUBBAND DATA ORGANIZATION

The wavelet transform decomposes a N -dimensional image into one
low-frequency subband and a hierarchy of levels consisting of 2N−1
high-frequency subbands each. We subdivide the subbands along
spatial axes into small blocks and approximate surviving blocks af-
ter pruning. Since corresponding blocks within different subbands or
color channels have strong correlation, they usually exhibit similar
patterns. Therefore, we form third-order tensors within each level of
a wavelet transform by placing together corresponding blocks from
all subbands and color channels at that level. Note that the tensors we
form in this paper are always third-order: the rst mode represents
different spatial locations within a block, the second one represents
different subbands, and the third one represents different color chan-
nels. The third mode could be degenerate for single-channel inputs.

For example, if the input is a 256 × 256 × 256 RGB volume
dataset and we rst decompose it using a 3-level wavelet transform,
for each channel we obtain one 32×32×32 low-frequency subband,
seven 32×32×32 third-level high-frequency subbands, seven 64×
64×64 second-level high-frequency subbands and seven 128×128×
128 rst-level high-frequency subbands. If we subdivide each high-
frequency subband into 2 × 2 × 2 blocks and atten these blocks
into 8-dimensional vectors, we obtain 4096 8 × 7 × 3 tensors for
the third level before pruning, and 32768 and 262144 tensors of the
same size for the second and rst levels, respectively.

In terms of wavelet packet transforms, since subbands are adap-
tively selected from a full subband tree, each level contains a variable
number of subbands which come from the same level of the tree and
have the same size. The rest of the data organization steps are similar
to those for wavelet transforms. Note that one level could be entirely
missing in a wavelet packet hierarchy. For example, if we decom-
pose the input dataset into a 3-level subband tree and the adaptive
algorithm chooses all (and only) subbands on the third level, then
the wavelet packet hierarchy contains no subbands on the rst and
second level.

4. HYBRID MULTILINEARMODELS

4.1. Tensor Approximation
After pruning, tensors with signi cant energy are approximated us-
ing rank-(r1, r2, ..., rN ) approximation. Determining optimal re-
duced ranks in tensor approximation is in general nontrivial and has
not been well addressed in previous work. In this paper, we use
an error threshold ε to control the reduced ranks. Suppose we have a
tensorAnb×ns×nc , where nb represents the number of pixels/voxels
in a block, ns denotes the number of high-frequency subbands on
each level, and nc indicates the number of channels. The tensor is
rst decomposed using an N -mode SVD [9]:

Anb×ns×nc = Bnb×ns×nc ×1 U
(b)
nb×nb

×2 U
(s)
ns×ns

×3 U
(c)
nc×nc

(2)

In 2D cases, the core tensor is a diagonal matrix with large singular
values at the top left corner. In higher-dimensional cases, the core
tensor is not sparse, but most signi cant coef cients still concentrate
near the top left corner. As a result, we choose the ranks (rb, rs, rc)
by performing the following minimization of the total number of bits
in the reduced data so that approximation MSE is controlled by ε2

and basis overhead is minimized:

min
rb,rs,rc

(nbrb + nsrs + ncrc)qb + rbrsrcqc, s.t.

rb∑

i=1

rs∑

j=1

rc∑

k=1

B2
ijk ≥

nb∑

i=1

ns∑

j=1

nc∑

k=1

B2
ijk − nbnsncε

2,

1 ≤ rb ≤ nb, 1 ≤ rs ≤ ns, 1 ≤ rc ≤ nc, (3)

where qb and qc represent the number of quantization bits for basis
matrix entries and core tensor coef cients, respectively. In the above
optimization, we need to choose an optimal rank for each mode,
and for the i-th mode we have ni possible ranks (1, 2, ..., ni) to
choose from. So the complexity of an exhaustive search is

∏N

i=1
ni.

Fortunately, no matter what dimensionalities the input dataset has,
we always subdivide the subbands to form small third-order tensors.
Thus, we nd optimal reduced ranks by an exhaustive search of all
possible combinations.

With the optimal reduced ranks, we can truncate the basis ma-
trices and the core tensor accordingly to obtain the optimal approxi-
mation:

Anb×ns×nc ≈ Brb×rs×rc ×1U
(b)
nb×rb

×2U
(s)
ns×rs

×3U
(c)
nc×rc

(4)

4.2. Tensor Ensemble Approximation
Although most tensors are pruned before approximation, it is still
inef cient to approximate the surviving tensors individually, which
requires three basis matrices for each tensor. An ef cient way is
to pack all tensors together and approximate them as an ensemble
[6], so that all tensors share the same basis matrices, and an ad-
ditional basis matrix can be introduced to further remove the re-
dundancies among the tensors. Speci cally, if we have nt tensors
A1,A2, ...,Ant , we build a new 4D tensor Anb×ns×nc×nt so that
A:,:,:,i = Ai, 1 ≤ i ≤ nt, and perform a rank-(rb, rs, rc, rt) ap-
proximation:

A ≈ B ×1 U
(b)
nb×rb

×2 U
(s)
ns×rs

×3 U
(c)
nc×rc

×4 U
(t)
nt×rt

(5)

Similarly, rb, rs, rc, rt are determined by:

min
rb,rs,rc,rt

(nbrb + nsrs + ncrc)qb + ntrt + rbrsrcrtqc, s.t.

rb∑

i=1

rs∑

j=1

rc∑

k=1

rt∑

h=1

B2
ijkh ≥

nb∑

i=1

ns∑

j=1

nc∑

k=1

nt∑

h=1

B2
ijkh

−nbnsncntε
2

1 ≤ rb ≤ nb, 1 ≤ rs ≤ ns, 1 ≤ rc ≤ nc, 1 ≤ rt ≤ nt. (6)

Since nb, ns and nc are all small, it is again feasible to perform an
exhaustive search for the reduced ranks.

4.3. Clustering
The above multilinear model works well if the tensors follow a uni-
modal distribution. In a general case, it is more reasonable to group
them into clusters and approximate every cluster as an ensemble.
Tensors in the same cluster must have strong correlations so that
they can share basis matrices.
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Clustering is a typical ”chicken-and-egg” problem. If we know
the membership of the tensors, the basis matrices could be found
using N -mode SVD and exhaustive rank search; and conversely, if
we know the basis matrices for each cluster, the tensors could easily
be assigned to the cluster where the approximation error is minimal.
For example, if U(b)

i ,U
(s)
i ,U

(c)
i ,U

(t)
i are basis matrices for cluster

i, the approximation MSE of tensor Aj is computed using the rst
three basis matrices:

MSE = ‖Aj − Bj ×1 U
(b)
i ×2 U

(s)
i ×3 U

(c)
i ‖2 (7)

where Bj = Aj ×1 U
(b)T

i ×2 U
(s)T

i ×3 U
(c)T

i .
This type of problems are typically solved with Expectation

Maximization [10, 11]. In our scenario, an initial classi cation is
speci ed and basis matrices are computed for each initial cluster
with respect to Eq. (5). Then we iteratively optimize the classi-
cation and the basis matrices. In each iteration, all tensors are

re-classi ed into the cluster with the minimum approximation MSE
(Eq. (7)), and the basis matrices are updated using the new classi -
cation. The EM algorithm is described in Algorithm 1.

Algorithm 1 Cluster(A1,A2, ...,Ant , m)

1: Initially classify A1,A2, ...,Ant into m clusters
C1, C2, ..., Cm;

2: repeat
3: for i = 1 to m do
4: Compute ranks for each dimension using Eq. (6);
5: Compute basis matrices U

(b)
i ,U

(s)
i ,U

(c)
i ,U

(t)
i for

Ci using ALS;
6: end for
7: for i = 1 to nt do
8: for j = 1 to m do
9: Compute approximation error of Ai in Cj using

Eq. (7);
10: end for
11: Move Ai into the cluster corresponding to the mini-

mum MSE;
12: end for
13: until classi cation is unchanged
14: return C1, C2, ..., Cm;

Note that m should not be large, otherwise the basis overhead
could still be signi cant because we need a set of basis matrices for
each cluster. In our experiments we try m = 1, 2, ..., 8 and choose
the one having highest compactness. For initialization, we vector-
ize all the tensors and use GPCA [12] to obtain a more reasonable
classi cation than a random scheme.

5. EXPERIMENTAL RESULTS

We have implemented the hybrid models with both wavelet trans-
forms and wavelet packet transforms. For wavelet packet transforms,
high-frequency subbands with the same size are collected to form
one level in the decomposed hierarchy. In our experiments, we have
tested our method on 2D images and 3D medical datasets, and com-
pared PSNR with wavelet transform, wavelet packet transform and
hybrid multiscale linear models, at the same representation compact-
ness. Compression ratio is de ned as the ratio between the total
number of bits in the original input data and the number of bits for
representing coef cients plus bases in the compressed data:

Compression Ratio =
Nelement · Nchannel · qe

Ncoef · qc + Nbasis · qb
, (8)
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Fig. 1. PSNR versus compression ratio curves for wavelet transform,
wavelet packet transform, and our method coupled with wavelet
transform and wavelet packet transform, respectively. The four di-
agrams correspond to images, SCENE and BABOO, and Visible Hu-
man datasets, HEAD and ABDOMEN.

where Ncoef , Nbasis, Nelement and Nchannel denote the number of
coef cients we retain, the number of entries in basis matrices which
is zero for wavelet (packet) transforms, the number of elements in
the input data and the number of channels associated with each ele-
ment, respectively, qc, qb and qe denote the number of quantization
bits used for coef cients, matrix entries and input elements, respec-
tively. In the experimental results shown in this paper, we use uni-
form quantization with qc = 8, qb = 12 and qe = 8.

Our method has achieved signi cantly better approximation in
terms of PSNR in most of these datasets. Fig. 1 shows the curves
of PSNR versus compression ratio for two images, SCENE and BA-
BOO, and two 3D datasets, HEAD and ABDOMEN. In most scenarios,
our hybrid multilinear models coupled with wavelet transforms or
wavelet packet transforms achieve higher PSNR than existing meth-
ods. Performance measurements for pure multilinear tensor approx-
imation are not shown in Fig. 1 because the PSNR they can achieve
are typically 3DB lower than the PSNR of our method. Fig. 2 shows
the reconstructed images using different approximation methods. In
our experiments, hybrid multilinear models coupled with wavelet
packet transform improve PSNR by at least 1DB under the same
compression ratio over wavelet transforms and wavelet packet trans-
forms. The Visible Human datasets are created and maintained by
the United States National Library of Medicine. They are complete,
anatomically detailed, three-dimensional representations of the nor-
mal male and female human bodies. The images in Fig. 3 show
corresponding cross sections extracted from reconstructed datasets.
Our wavelet packet based hybrid multilinear models have clear vi-
sual and numerical advantages over existing methods.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we have developed hybrid multilinear models based
on wavelet (packet) transforms. By exploiting redundancies across
multiple modes using hybrid multilinear models, our approach can
compactly represent sparse high-energy coef cients resulting from
wavelet (packet) transforms. Furthermore, our approximation re-
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(a) Original (b) Multilinear
PSNR=19.18

(c) Wavelet (d) Wavelet+Hyb Multilinear
PSNR=20.95 PSNR=22.01

(e) Wavelet Packet (f) WavePack+Hyb Multilinear
PSNR=22.12 PSNR=23.11

Fig. 2. A comparison on the BABOO image. Hierarchical methods
decompose the image into 3 levels of subbands. (b)-(f) share the
same compression ratio, which is 50.

tains high visual delity because the initial wavelet (packet) trans-
form can well preserve discontinuities. In addition, our method sig-
ni cantly reduces basis overhead by collectively approximate sur-
viving tensors after pruning. In future, we are interested in improv-
ing the performance and scalability of our clustering algorithm.
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