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Abstract. Exponential algorithms, whose time complexity is O(cn) for
some constant c > 1, are inevitable when exactly solving NP-complete
problems unless P = NP. This chapter presents recently emerged com-
binatorial and algebraic techniques for designing exact exponential time
algorithms. The discussed techniques can be used either to derive faster
exact exponential algorithms, or to significantly reduce the space require-
ments while without increasing the running time. For illustration, exact
algorithms arising from the use of these techniques for some optimization
and counting problems are given.

1 Introduction

It is a folklore that any NP-complete problem can be exactly solved in expo-
nential time via exhaustive search. Whether there is a faster way than this kind
of brute-force approach to solve any such problem is still unclear. Nonetheless,
many researchers have found exact exponential time algorithms that are faster
than trivial exhaustive search for quite many NP-hard optimization problems
such as the traveling salesman problem (TSP) [39]. The study of exact expo-
nential algorithms for NP-hard problems has received increasing attention since
the seminal survey by Woeginger [55] in 2001. As a result, some classical tech-
niques such as inclusion-exclusion (e.g. [33, 13, 11]) have been resurrected, and
some new techniques, such as fast subset convolution [14] and the algebraic
methods (e.g. [10]) have been developed. Unfortunately, for some optimization
problems, although it is possible to obtain faster exponential algorithms, expo-
nential space is required, which renders these algorithms not practical for real-life
use. This chapter presents some important recently resurrected or emerged com-
binatorial and algebraic approaches for designing faster exact exponential time
algorithms, and discusses how these techniques may be used to reduce the space
complexity while not sacrificing the time complexity.

⋆ Corresponding author (fcmlau@cs.hku.hk).
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Notation. Throughout this chapter, a modified big-O notation is used to hide
a polylogarithmic factor: for a positive real constant d and a function τ , O∗(τ)
denotes a time complexity of the form O(τ logd τ).

Structure of the chapter. The main theme of this chapter is to introduce
two classes of methods for designing either faster or space efficient exact expo-
nential time algorithms. Section 2 discusses the combinatorial methods, which
covers fast subset convolution and inclusion-exclusion based algorithms. Section
3 presents the recently emerged algebraic methods, which covers the algebraic
sieving method and the polynomial circuit based algebraic method. Each of these
two sections will first explain how to use these techniques to design faster exact
exponential time algorithms, and then discuss how they may be used to reduce
the space complexity while not increasing the running time. Various examples
to illustrate the techniques will also be given. Section 4 concludes the chapter
and Section 5 highlights the related work on these two classes of methods.

2 Combinatorial Methods

There are two well developed and commonly used combinatorial techniques—
fast subset convolution and inclusion-exclusion. The fast subset convolution can
compute the convolution of any two given functions over some subset lattice in
O∗(2n) time, whereas a direct evaluation needs Ω(3n) time. This fast algorithm
is based on fast algorithms for the zeta transform and other related transforms
which are actually accelerated dynamic programming algorithms. Thus it needs
exponential space since dynamic programming approaches have to store all the
useful auxiliary information. Surprisingly, for certain special type of input func-
tions called singletons this exponential space could be circumvented. Further-
more, several variants of subset convolution, such as the covering product and
the packing product [14], also play an important role in the design of faster
exponential time exact algorithms.

The inclusion-exclusion principle is a classical sieving method: to determine
the size of a set, the set is first overcounted, then subtract from this count, add
again, subtract again, until finally arriving at the exact number of elements.
This allows to count combinatorial objects indirectly, which is better than direct
counting which could be inefficient or even impossible. Furthermore, although
it needs to go through all subsets, the inclusion-exclusion technique is power-
ful in providing polynomial space exact algorithms. Combining it with some
dynamic programming based algorithms, such as the fast zeta transform, gives
more surprising results. In fact, the inclusion-exclusion technique solves opti-
mization problems via solving the corresponding counting problems, and hence
it is an important alternative for designing exact algorithms for counting prob-
lems.

Before the detailed descriptions of these two techniques, some essential tools
needs to be introduced—the fast zeta transform and the fast Möbius transform.
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2.1 Zeta Transform and Möbius Transform

Denote by R an arbitrary (possibly noncommutative) ring and by N a set of n
elements, n ≥ 0. Let f be a function that associates with every subset S ⊆ N
an element f(S) of the ring R.

The zeta transform of f is the function fζ that associates every S ⊆ N with
an element in R

fζ(S) =
∑
X⊆S

f(X). (1)

The Möbius transform fµ of f is defined as:

fµ(S) =
∑
X⊆S

(−1)|S\X|f(X). (2)

Given the zeta transform fζ, the original function f can be obtained by the
following formula which is often called Möbius inversion:

f(X) =
∑
S⊆X

(−1)|X\S|fζ(S). (3)

For more details of these two transforms, please refer to [27].

2.1.1 Fast Zeta Transform and Fast Möbius Transform
The straightforward way to compute the zeta transform evaluates fζ(S) at

every S ⊆ N , using O(3n) ring additions in total. This can be improved to
use only O(n2n) ring operations by applying the Yates’s method [37, 58], and
the resulting algorithm is commonly called the fast zeta transform. Without
loss of generality, assume that N = {1, 2, . . . , n}. To compute fζ, let initially
fζ0(S) = f(S) for every S ⊆ N . Then iterate for j = 1, 2, . . . , n and S ⊆ N with
the following recurrence:

fζj(S) =

{
fζj−1(S), if j /∈ X

fζj−1(S \ {j}) + fζj−1(S), otherwise.
(4)

It can be verified by induction on j that the above recurrence gives fζn(S) =
fζ(S) for any S ⊆ N in O(n2n) ring operations. The Möbius Transform can be
computed in a similar manner. Initially, let fµ0(S) = f(S) for every S ⊆ N .
Then iterate for j = 1, 2, . . . , n and S ⊆ N as follows.

fµj(S) =

{
fµj−1(S), if j /∈ X

−fµj−1(S \ {j}) + fµj−1(S), otherwise.
(5)

Similarly, it can be proved that fµn(S) = fµ(S) for any S ⊆ N .

Theorem 1. Let N be a set of n elements. Then the zeta transform and the
Möbius transform on the subset lattice of N can be computed in O(n2n) ring
operations.
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2.2 Subset Convolution

Definition 1 (Subset convolution). Given a universe set N of n elements,
f and g are functions defined on subsets of N , which associate every S ⊆ N
with an element of a ring R, respectively. The convolution f ∗ g for all S ⊆ N
is defined as follows.

f ∗ g(S) =
∑
X⊆S

f(X)g(S \X) (6)

The subset convolution can yield solutions to many hard computational prob-
lems. In particular, by embedding the integer max-sum or min-sum semiring into
the sum-product ring, the technique can be used to implement many dynamic
programming based algorithms.

2.2.1 Fast Subset Convolution
In principle, the fast subset convolution consists of several efficient dynamic

programming instances. In the fast subset convolution, the evaluation of (6)
can be achieved via the product of “ranked” extensions of the classical zeta
transforms of f and g on the subset lattice, followed by a “ranked” Möbius
transform. The fast subset convolution is summarized in Algorithm 1.

For every k = 0, 1, . . . , n and S ⊆ N , the ranked zeta transform of f is
defined as

fζ(k, S) =
∑

X⊆S,|X|=k

f(X). (7)

Based on the above defined ranked zeta transform, the inversion can be
achieved by

f(X) =
∑
S⊆X

(−1)|S\X|fζ(|X|, S). (8)

Although the above formula seems redundant, it will provide a key for fast
evaluation of the subset convolution. Note that the ranked zeta transform can be
computed in O(n22n) ring operations by carrying out the fast zeta transform (4)
independently for every k = 0, 1, . . . , n. Similarly, the ranked inversion (8) can
be computed in O(n22n) ring operations by carrying out the fast Möbius trans-
form (5) independently for each k = 0, 1, . . . , n.

For the two ranked zeta transforms, fζ and gζ, define a new convolution
fζ ~ gζ for all k = 0, 1, . . . , n and S ⊆ N by

fζ ~ gζ(k, S) =

k∑
j=0

fζ(j, S)gζ(k − j, S). (9)

Lemma 1. f ∗ g(S) =
∑

X⊆S(−1)|S\X|fζ ~ gζ(|S|, S)
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Proof.

∑
X⊆S

(−1)|S\X|fζ ~ gζ(|S|, S) =
∑
X⊆S

(−1)|S\X|
|S|∑
j=0

fζ(j, S)gζ(|S| − j, S)

=
∑
X⊆S

(−1)|S\X|
|S|∑
j=0

∑
U,V⊆X

|U |=j,|V |=|S|−j

f(U)g(V ).

(10)
Because X ranges over all subsets of S, for any ordered pair (U, V ) of subsets

of S satisfying the condition that |U | + |V | = |S|, the term f(U)g(V ) occurs
exactly once in the sum with sign (−1)|S\X| for subsets X of S iff U ∪ V ⊆
X. Then putting the terms associated with each pair (U, V ) together, by the
Binomial Theorem, the coefficient of f(U)g(V ) is

|S|∑
x=|U∪V |

(
|S| − |U ∪ V |
x− |U ∪ V |

)
(−1)|S|−x =

{
1, if |U ∪ V | = |S|
0, otherwise.

(11)

The conditions that |U |+ |V | = |S| and |U ∪ V | = |S| imply that U ∪ V = S
and U ∩ V = ∅; and it follows that∑

X⊆S

(−1)|S\X|fζ ~ gζ(|S|, S) =
∑

U∪V=S,U∩V=∅

f(U)g(V )

= f ∗ g(S).
(12)

⊓⊔

Theorem 2. The subset convolution over an arbitrary ring can be evaluated
in O(n22n) ring operations using the fast subset convolution as shown in Algo-
rithm 1.

Proof. The correctness is established by Lemma 1. In Algorithm 1, the time
is mainly consumed in lines 2, 6 and 9. By Theorem 1, the time consumed in
lines 2 and 9 is O(n22n), and the time needed in line 6 is O(n22n) according to
Formula (9). Thus the time complexity of Algorithm 1 is O(n22n). ⊓⊔

The following theorem is implied by Theorem 2.

Theorem 3. The subset convolution over the integer sum-product ring can be
computed in O∗(2n logM) time, provided that the range of the input functions
is {−M,−M + 1, . . . ,M}.

Proof. By Theorem 2, the subset convolution can be computed in O(n22n) ring
operations. Thus it suffices to note that any intermediate results, for which ring
operations are performed, are O(n logM)-bit integers. This is the case because
the ranked zeta transform of an input function can be computed with integers
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Algorithm 1 Fast Subset Convolution

Input: A universe set N of n elements and functions f, g defined on 2U

Output: The subset convolution f ∗ g for every set S ⊆ N
1: For i = 0 to n do
2: Compute the ranked zeta transforms fζ(k,X), gζ(k,X) for every X ⊆ N using the

fast zeta transform.
3: End For
4: For k = 0 to n do
5: For every X ⊆ N do
6: Compute the convolution fζ ~ gζ(k,X)
7: End For
8: End For
9: Compute the subset convolution f ∗ g for every set S ⊆ N based on Formula (12)

using the fast Möbius transform.

between −M2n and M2n, and it follows that the convolution of ranked trans-
forms can be computed with O(n logM)-bit integers. Furthermore, the ranked
Möbius tranform is computed by adding and subtracting O(n logM)-bit integers
for O(2n) times. ⊓⊔

An obvious disadvantage of the fast subset convolution algorithm is its inap-
plicability to semirings where additive inverses need not exist. For some special
semirings usually appearing in combinatorial optimization problems, e.g., the
integer max-sum and integer min-sum semirings, one can embed these semirings
into the integer sum-product ring.

Theorem 4. The subset convolution over the integer max-sum (min-sum) semir-
ing can be computed in O∗(2nM) time, provided that the range of the input
functions is {−M,−M + 1, . . . ,M}.

Proof. Here we only provide the proof for the max-sum semiring, as that for the
min-sum semiring is similar. Without loss of generality, assume that the range
of the input functions is {0, 1, . . . ,M}; otherwise, the correct output can be
obtained by first addingM to each value of both input functions, then computing
the convolution, and finally subtracting 2M from the computed values.

Let f, g be the two input functions. Let β = 2n+1 and M
′
= βM . Define new

functions f
′
= βf and g

′
= βf which map the subsets of N to {0, 1, . . . ,M ′}.

By Theorem 3, the subset convolution f
′ ∗ g′

over the integer sum-product ring
can be computed in O∗(2n logM

′
) = O∗(2nM) time. It remains to show that

for all S ⊆ N , the value for maxT⊆S{f(T )+g(S \T )} can be efficiently deduced

given the value of f
′ ∗ g′

(S). Observe that f
′ ∗ g′

(S) can be expressed as

f
′
∗ g

′
(S) =

∑
T⊆S

βf(T )+g(S\T )

= α0(S) + α1(S)β + · · ·+ α2M (S)β2M .

(13)
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Due to the choice of β, each coefficient αr(S) is uniquely determined and
equals the number of subsets T of S for which f(T ) + g(S \ T ) = r. Thus, for
each S ⊆ N , the largest r for which αr(S) > 0 corresponds to the value of
f ∗ g(S). Clearly, this can be found in O(M) time. ⊓⊔

Example 1 (Partitioning Problem). The generic problem of partitioning is to
divide an n-element set N into k disjoint subsets such that each of which satisfies
some desired property specified by an indicator function f on the subsets of
N . Given N , k, and f as input, the task is to decide whether there exists a
partition {S1, S2, . . . , Sk} of N such that f(Sc) = 1 for each c = 1, 2, . . . , k.
Many classical graph partitioning problems are of this form. For example, in
graph coloring, f(S) = 1 iff S is an independent set in the input graph with the
vertices N . Likewise, in domatic partitioning, f is the indicator of dominating
sets. Note that the number of valid partitions of N is given by f∗k(N), where
f∗k is defined as

f∗k = f ∗ . . . ∗ f︸ ︷︷ ︸
k times

Thus the valid partitions can be counted by O(log k) subset convolutions

using the doubling trick—computing only convolutions f∗2i . ⊓⊔

Example 2 (Steiner Tree Problem).
Given an undirected graph G = (V,E), a weight w(e) > 0 for each edge

e ∈ E, and a set of vertices K ⊆ V , the Steiner Tree Problem is to find a
subgraph H of G that connects the vertices in K and has the minimum total
weight

∑
e∈E(H) w(e) among all such subgraphs of G. Here we only consider the

case where the weight of each edge is bounded by a constant. Obviously, H is
necessarily a tree. A Steiner tree always refers to such an optimal subgraph. The
fast subset convolution can be used to accelerate the famous Dreyfus-Wagner
algorithm [25].

For a vertex subset Y ⊆ V , denote the total weight of a Steiner tree connect-
ing Y in G by W (Y ). The Dreyfus-Wagner algorithm is based on the following
dynamic programming called Dreyfus-Wagner recurrence: for |Y | ≥ 3, and all
q ∈ Y , X = Y \ {q}.

W ({q} ∪X) = min{W ({p, q}) + gp(X) : p ∈ V }, (14)

gp(X) = min{W ({p} ∪D) +W ({p} ∪ (X \D)) : ∅ ⊂ D ⊂ X}. (15)

The Steiner tree problem can be solved by computing the weight W (K) via
the above recursion. For the base case, observe that for |Y | = 1 the weight
W (Y ) = 0 and for |Y | = 2 the weight W (Y ) can be determined by a shortest-
path computation based on the edge weight w(e), e.g., Johnson’s algorithm [35].
A bottom-up evaluation of W (K) takes O∗(3kn+ 2kn2 + nm) time, where n =
|V |, m = |E| and k = |K|. Once the values W ({p}∪Y ) and gp(Y ) for all Y ⊂ K
and p ∈ V are computed and stored, an actual Steiner tree is easy to construct
by tracing backwards a path of optimal choices in (14) and (15).
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The fast subset convolution over the min-sum semiring can expedite the eval-
uation of the Dreyfus-Wagner recursion in (15). Here the fast subset convolution
needs to be implemented in a level-wise manner. For each level l = 2, 3, . . . , k−1,
assume the value W ({q}∪X) has been computed and stored for all X ⊂ K and
q ∈ V \X. Define the function fp for all X ⊆ K and p ∈ V as

fp(X) =

{
W ({p} ∪X), if 1 ≤ |X| ≤ l − 1

∞, otherwise.
(16)

Obviously, gp(X) = fp ∗fp(X) for all X ⊆ K and |X| = l. Then applying the
fast subset convolution over the min-sum semiring, by Theorem 4, the Steiner
tree problem can be solved in O∗(2kn2 + nm) time. ⊓⊔

2.3 Variants of Subset Convolution

2.3.1 Covering Product and Intersecting Covering Product

Definition 2. Given two functions f, g defined on 2N which associate each sub-
set of N to an element of a ring R, the covering product f ∗cg(S) for each S ⊆ N
is defined as:

f ∗c g(S) =
∑

U,V⊆S,U∪V=S

f(U)g(V ) (17)

Theorem 5. The covering product over an arbitrary ring can be evaluated in
O(n22n) ring operations.

Proof. The proof is mainly based on the following Lemma.

Lemma 2. For any S ⊆ N , the following holds:

(f ∗c g)ζ(S) = fζ(S) · gζ(S) (18)

Proof.

(f ∗c g)ζ(S) =
∑
X⊆S

(f ∗c g)(S)

=
∑
X⊆S

∑
U∪V=X

f(U)g(V )

=
∑
U⊆S

f(U)
∑
V⊆V

g(V )

= fζ(S) · gζ(S).

(19)

The third equality comes from the fact that for each U, V ⊆ X, there exists
exactly one X ⊆ S such that U ∪ V = X. ⊓⊔
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By Lemma 2, f ∗c g can be obtained by computing the Möbius transform of
fζ(S) · gζ(S). Then an O∗(2n) time algorithm for the covering product is as
follows: first compute fζ and gζ using the fast zeta transform (4), then multiply
fζ by gζ for all S ⊆ N , and finally compute f ∗c g using the fast Möbius
transform (5). ⊓⊔

Definition 3. Given two functions f, g defined on 2N which associate each sub-
set of N to an element of a ring R, the intersecting covering product f ∗ic g(S)
for each S ⊆ N is defined as:

f ∗ic g(S) =
∑

U,V⊆S
U∪V=S,U∩V ̸=∅

f(U)g(V ) (20)

An O∗(2n) time algorithm can be immediately derived from the fact that
f ∗ic g = f ∗c g − f ∗ g.
Theorem 6. The intersecting covering product over an arbitrary ring can be
evaluated in O(n22n) ring operations.

Furthermore, more precise control over the allowed intersection cardinalities
|U ∩ V | = l besides the l = 0 (f ∗ g) and l > 0 (f ∗ic g) cases can be obtained by
modifying (9).

Example 3 (Minimum Connected Spanning SubHypergraph (MCSH)). A hyper-
graph is a pair H = (V, E), where V is a finite set and E is a set consisting of
subsets of V . A hypergraph J = (W,F ) is a subhypergraph of H if W ⊆ V and
F ⊆ E . A subhypergraph is spanning if V = W . A path in a hypergraph H is
a sequence (x1, E1, x2, E2, . . . , El, xl+1) such that (a) x1, x2, . . . , xl+1 ∈ V are
all distinct, (b) E1, E2, . . . , El ∈ E are all distinct, and (c) xi, xi+1 ∈ Ei for all
i = 1, 2, . . . , l. Such a path joins x1 to xl+1. A hypergraph is connected if for all
distinct x, y ∈ V there exists a path joining x to y.

Given a hypergraph H = (V, E) and a weight w(E) > 0 for each hyperedge
E ∈ E , the minimum connected spanning subhypergraph problem is to find a
connected spanning subhypergraph of H that has the minimum total weight,
or to assert that none exists. Here the weight of every edge is assumed to be
bounded by a constant. The MCSH problem can be solved in O∗(2n) time using
the intersecting covering product over the min-sum semiring, where n = |V |.

First define the k-th power of the intersecting covering product for all k =
2, 3, . . . by

f∗k
ic = f ∗ic (f∗k−1

ic ). (21)

Here the order in which the products are evaluated matters because the
intersecting covering product is not associative. Define the function f for all
E ⊆ V by

f(E) =

{
w(E), if E ∈ E
∞, otherwise.

(22)
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Now observe that (a) an MCSH can be constructed by augmenting a con-
nected subhypergraph of H one hyperedge at a time, and (b) at most n − 1

hyperedges occur in an MCSH of H. Thus f∗k
ic(V ) < ∞ is the minimum weight

of a connected spanning subhypergraph of H consisting of k hyperedges. By

storing the function values f∗k
ic for each k = 1, 2, . . . , n − 1, the actual MCSH

can be determined by tracing back the computation one edge at a time.

2.3.2 Other Variants
Another important variant of the subset convolution is the packing product

which is defined for all S ⊆ N as

f ∗p g(S) =
∑

U,V⊆S,U∩V=∅

f(U)g(V ). (23)

Given f and g, the packing product can be evaluated in O(n22n) ring oper-
ations by first computing the subset convolution f ∗ g and then convolving the

result with vector
−→
1 with all entries being equal to 1 based on the following

fact:
f ∗p g = f ∗ g ∗ −→1 . (24)

Some further variations are possible by restricting the domain, e.g., to any
hereditary family of subsets of N . For more details, please refer to [14].

2.4 Inclusion-Exclusion

The inclusion-exclusion technique is based on a fundamental counting principle—
the inclusion-exclusion principle. Clearly, it is a natural approach for solving
counting problems. Here we mainly focus on demonstrating its power in solving
decision versions of optimization problems when direct computation is ineffi-
cient or even impossible. Another important feature of the inclusion-exclusion
technique is that it does not need exponential space in principle. Hence, this
technique is also a good choice for deriving polynomial space algorithms.

Lemma 3 (Inclusion-exclusion principle). Let B be a finite set with subsets
A1, . . . , An ⊆ B. With the convention that ∩i∈∅Ai = B, the following holds:

1. The number of elements of B which lie in none of the Ai is

|
n∩

i=1

Ai| =
∑

X⊆{1,...,n}

(−1)|X||
∩
i∈X

Ai|. (25)

2. Let w : B → R be a real-valued weight function extended to the domain
2B by setting w(A) =

∑
e∈A w(e). Then

w(|
n∩

i=1

Ai|) =
∑

X⊆{1,...,n}

(−1)|X|w(|
∩
i∈X

Ai|). (26)
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Proof. The Lemma is proved by analyzing the contribution of every element e ∈
B to both sides of the expression. If e is not contained by any Ai, it contributes
w(e) to the left hand side. To the right hand side it contributes w(e) exactly
once, namely in the term corresponding to X = ∅. Conversely, assume that e
lies in Ai for all i ∈ I ̸= ∅. Its contribution to the left hand side is 0. On the
right hand side, since e lies in the intersection ∩i∈XAi for every X ⊆ I, by the
Binomial Theorem, its total contribution is

∑
X⊆I

(−1)|X|w(e) = w(e)

|I|∑
i=0

(−1)i
(
|I|
i

)
= 0. (27)

⊓⊔

Example 4 (Set Partition). Given a set system (N,F) and an integer k, where
F ⊆ 2N , a k-partition of the given set system is a tuple (S1, . . . , Sk) over F
such that ∪k

i=1Si = N and Si ∩ Sj = ∅ for any 1 ≤ i ̸= j ≤ k. Denote Pk(F) as
the number of such k-partitions. The set partition problem is to determine the
minimum k such that there is a k-partition of (N,F), i.e., the minimum k such
that Pk(F) > 0. Clearly, this problem can be solved by computing Pk(F) for at
most n different k values. The following lemma shows how to compute Pk(F)
by making use of the inclusion-exclusion principle.

Lemma 4. Let ak(X) denote the number of k-tuples (S1, . . . , Sk) over F for

which Si ∩X = ∅(1 ≤ i ≤ k) and
∑k

i=1 |Si| = n. Then

pk(F) =
∑
X⊆N

(−1)|X|ak(X). (28)

Proof. This is a direct application of Lemma 3, where B is the set of k-tuples
(S1, . . . , Sk) over F satisfying

∑k
i=1 |Si| = n, and Ai ⊆ B are those k-tuples that

avoid {i}. Then pk(F ) is exactly the number of k-tuples that lie in none of the
Ai, and | ∩i∈X Ai| = ak(X). ⊓⊔

Write fζ(l)(Y ) for the number of sets S ∈ F with |S| = l and S ⊆ Y , and
recall that it is the zeta transform of the indicator function

f (l)(S) =

{
1, if S ∈ F , |S| = l

0, otherwise.
(29)

Thus, the fast zeta transform (4) computes a table containing fζ(l)(Y ) for all l
and Y in O∗(2n) time.

Once these values have been computed, ak(X) can be obtained for any fixed
X ⊆ N by dynamic programming in time polynomial in k and n as follows.
Define g(j,m) to be the number of j-tuples (S1, . . . , Sj) for which Sc ∩ X =

∅(1 ≤ c ≤ j) and
∑j

c=1 |Sj | = m, formally

g(j,m) =
∑

l1+···+lj=m

j∏
c=1

fζ(lc)(N \X). (30)
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Then ak(X) = g(k, n), and it can be computed by the following recursion:

g(j,m) =

m∑
l=0

g(j − 1,m− l)fζ(l)(N \X), (31)

observing that g(1,m) = fζ(m)(N \X). Finally, summing up ak(X) according
to (28) gives an O∗(2n) time algorithm for computing Pk(F). ⊓⊔

Example 5. (Cover Polynomial) Denote xi = x!
(x−i)! . A Hamiltonian path of a

graph is a walk that contains all the nodes exactly once. If the walk is cyclic, it is
called a Hamiltonian cycle. The cover polynomial of a directed graph D = (V,A)
is defined as (c.f. [15][22]) ∑

i,j

CV (i, j)x
iyi. (32)

where CV (i, j) can be interpreted as the number of ways to partition V
into i directed paths and j directed cycles of D. The so called computing cover
polynomial is to compute the coefficient CV (i, j).

For X ⊆ V , denote by h(X) the number of Hamiltonian paths in D[X], and
denote by c(X) the number of Hamiltonian cycles in D[X]. Define h(∅) = c(∅) =
0. Note that for all x ∈ V , h({x}) = 1 and c({x}) is the number of loops incident
on x. Then CV (i, j) can be expressed as:

CV (i, j) =
1

i!j!

∑
X1,...,Xi,Y1,...,Yj

h(X1) · · ·h(Xi)c(Y1) · · · c(Yj), (33)

where the sum is over all (i+ j)-tuples (X1, . . . , Xi, Y1, . . . , Yj) such that it is a
partition of V .

The expression for CV (i, j) can be reformulated using the principle of inclusion-
exclusion. Let z be a polynomial indeterminate. Define for every U ⊆ V the
polynomials

HU (z) =
∑
X⊆U

h(X)z|X|, CU (z) =
∑
Y⊆U

c(Y )z|Y |. (34)

Viewed as set functions,HU (z) and CU (z) are zeta transforms of the set functions
h(X)z|X| and c(Y )z|Y |, respectively. By inclusion-exclusion,

CV (i, j) =
1

i!j!

∑
U⊆V

(−1)|V \U |{zn}HU (z)
iCU (z)

j . (35)

Based on the above formula, an O∗(2n) time algorithm can be obtained.
For S ⊆ V , let wS(s, t, l) denote the number of directed walks of length l from
vertex s to vertex t in D[S]. Define wS(s, t, l) = 0 if s /∈ S or t /∈ S. By inclusion-
exclusion again,
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h(X) =
∑
s,t∈V

∑
S⊆X

(−1)|X\S|wS(s, t, |X| − 1),

c(Y ) =
1

|Y |
∑
s∈V

∑
S⊆Y

(−1)|Y \S|wS(s, s, |X|).
(36)

Observing wS(s, t, l) can be computed in polynomial time, the fast Möbius
transform (5) can compute h(X) and c(Y ) for every X,Y ⊆ V in O∗(2n) time.
Then H and C can be evaluated using the fast zeta transform according to (34).
Finally, given H and C, (35) can be evaluated in O∗(2n) time. ⊓⊔

2.5 Space Efficient Exact Algorithms

2.5.1 Polynomial Space Algorithm Based On Subset Convolution
For some special input functions whose zeta transforms can be determined eas-
ily, polynomial space algorithms for some combinatorial optimization problems
can be derived via the subset convolution and the covering product. A particu-
lar type of input functions called singletons is used here to demonstrate how to
efficiently compute the subset convolution and the covering product values for
the element set N using only polynomial space. A function f : U → R is called
a singleton if there exists an element e ∈ U such that f(x) = 0 unless x = e.

Theorem 7. Given two functions f, g defined on 2N which associate each subset
of N to an element of a ring R, if f, g are singletons, then (1) f ∗c g(N) can be
computed in O∗(2n) time and polynomial space, and (2) f ∗g(N) can be computed
in O∗(2n) time and polynomial space.

Proof. (1) Assume that f(Xf ) = ef and g(Xg) = eg, where Xf , Xg ⊆ N and
ef , eg ∈ R. Since, f, g are singletons, f(X) = 0 for any X ⊆ N other than Xf .
The same result is also true for g and any subsets other than Xg. The following
Lemma is proved in Section 2.3.1.

Lemma 5. For any S ⊆ N , the following holds:

(f ∗c g)ζ(S) = fζ(S) · gζ(S) (37)

Note that for singletons f, g, the zeta transforms for every Y ⊆ N can be
easily given as

fζ(Y ) =

{
ef , if Xf ⊆ Y

0, if otherwise.
(38)

gζ(Y ) =

{
eg, if Xg ⊆ Y

0, if otherwise.
(39)
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Thus the zeta transform of f ∗c g for every subset Y ⊆ N can be computed
in polynomial time after getting the zeta transforms fζ and gζ. Then f ∗c g(N)
can be obtained in O∗(2n) time by computing the Möbius inversion (3). The
space used is polynomial since it is not necessary to store (f ∗c g)ζ values for
every Y ⊆ N .

(2) Denote h = f ∗ g. Define a relaxation of a function f : 2N → R as
a sequence of functions fi : 2N → R, for 0 ≤ i ≤ |N |, such that for every
0 ≤ i ≤ |N |, Y ⊆ N :

fi(Y ) =

{
f(Y ), if i = |Y |
0, if i < |Y |.

(40)

Observe that a function f can have many different relaxations, since there
are no restrictions on what fi(X) should be when i > |X|. The basic idea of
the proof is that for the input functions f and g, there exists a relaxation {hi}
of h such that the zeta transform of h|N | can be computed efficiently. Since
h(N) = h|N |(N), h(N) can be obtained by computing the Möbius inversion (3)
of hζ|N |.

For input functions f and g, define fi = f and gi = g for all i. It is easy to
verify that {fi} and {gi} are relaxations of f and g, respectively. Then define

for all i, hi =
∑i

j=0 fj ∗c gi−j .

Lemma 6. As defined above, {hi} is a relaxation of h.

Proof. By the definition of the covering product, for every X ⊆ N

hi(X) =
i∑

j=0

∑
Y ∪Z=X

fj(Y )gi−j(Z). (41)

Consider an arbitrary summand fj(Y )gi−j(Z). There are two cases:

Case 1 (|X| > i). Since Y ∪ Z = X, |Y | + |Z| ≥ |X| > i. It concludes that
either |Y | > j and fj(Y ) = 0, or |Z| > i− j and gi−j(Z) = 0, because {fi} and
{gi} both are relaxations of f and g respectively. Thus fj(Y )gi−j(Z) = 0. Since
fj(Y )gi−j(Z) is an arbitrary term in the summation for hi(X), it follows that
hi(X) = 0.

Case 2 (|X| = i). If |Y |+|Z| > i, either |Y | > j or |Z| > i−j and fj(Y )gi−j(Z) =
0 which is analogous to the first case. If |Y |+ |Z| = i, then Y and Z are disjoint.
Since {fi} and {gi−j} are relaxations of f and g respectively, only f|Y |(Y )g|Z|(Z)
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will contribute to the sum. Thus,

hi(X) =
i∑

j=0

∑
Y ∪Z=X

fj(Y )gi−j(Z)

=
∑

Y ∪Z=X,Y ∩Z=∅

f|Y |(Y )g|Z|(Z)

=
∑

Y ∪Z=X,Y ∩Z=∅

f(Y )g(Z)

= h(X).

(42)

⊓⊔
By Lemma 5 and the definition of hi in (41), it follows that hζi =

∑i
j=0 fζjgζi−j .

Thus the zeta transform of h|N |(X) for every X ⊆ N can be computed in
polynomial time given the zeta transforms for {fi} and {gi}. From (1), the zeta
transforms of {fi} and {gi} can be obtained efficiently. Similar to what is done
in (1), h(N) = h|N |(N) can be obtained in O∗(2n) time and polynomial space
by computing the Möbius inversion

h|N |(N) =
∑
X⊆N

(−1)|N\X|hζ|N |(X). (43)

Example 6 (Cover Polynomial Revisited). Define

CY (i, j) =
1

i!j!

∑
l1+···+li+j=n−i

hl1 ∗c · · ·hli ∗c cli+1 · · · cli+j (Y ), (44)

where hl(Y ) and cl(Y ) are the number of Hamiltonian paths and Hamiltonian
cycles of length l in D[Y ], respectively (here the parameter l is introduced in
order to obtain efficient computable zeta transforms). Note that paths and cycles
with l edges contain l + 1 and l nodes respectively, which follows that the sum
of the lengths of the paths and cycles in such a partition will be n− i. Moreover,
if V is covered, the paths and cycles are disjoint because of the size restriction.
The above definition for CV (i, j) is equivalent to that in Example 5. Note that
hl(Y ) can be replaced by h

′

l(Y ) which denotes the number of walks of length l

in D[Y ]. Similarly, cl(Y ) can be replaced by c
′

l(Y ) which is the number of cyclic
walks of length l. Using the technique introduced in Theorem 7, CζY (i, j) can
be computed using the following formula given hζ

′

l (Y ) and cζ
′

l (Y ),

CζY (i, j) =
1

i!j!

∑
l1+···+li+j=n−i

i∏
t=1

hζ
′

lt(Y )

j∏
p=1

cζ
′

li+p
(Y ). (45)

Finally hζ
′

l (Y ) and cζ
′

l (Y ) can be computed in polynomial time using stan-
dard dynamic programming (c.f. [44]). Then CV (i, j) can be obtained by com-
puting the Möbius inversion as described in Theorem 7 (by a similar argument
as used in proving Lemma 1, it can be proved that all extra items introduced
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in the process of relaxing hl and cl are canceled through computing the Möbius
inversion). Putting everything together will provide an O∗(2n) time and poly-
nomial space algorithm for counting cover polynomial. ⊓⊔

Combining with the algebraic method to be introduced in Section 3.2, the
technique introduced in Theorem 7 can be used to give polynomial space al-
gorithms for the traveling salesman problem, the Steiner tree problem and the
weighted set cover problem etc. without increasing the running times as have
been derived in the fastest solutions to these problems [36][14][28][13].

2.5.2 Polynomial Space Exact Algorithms based on Inclusion-Exclusion
By the inclusion-exclusion principle (25), if |

∩
i∈X Ai| can be computed in poly-

nomial time for each X ⊆ {1, . . . , n}, there exists a polynomial-space algorithm
evaluating Equation (25) in O∗(2n) time.

Example 7 (Counting Hamiltonian Paths). Given a graph G = (V,E), a Hamil-
tonian path is a walk that contains each node exactly once. The Counting Hamil-
tonian Path problem is to count the number of Hamiltonian paths. The following
inclusion-exclusion based algorithm is due to Karp [36]: define the universe B
as all walks of length n − 1 in G, and define Av as all walks of length n − 1
containing v for each v ∈ V . By the inclusion-exclusion principle, the number of
Hamiltonian paths is

h =
∑
X⊆V

(−1)|X||
∩
v∈X

Av|. (46)

For X ⊆ V and s ∈ X, let wk(s,X) be the number of walks from s of length k
in G[X]. Then

|
∩
v∈X

Av| =
∑

s∈V \X

wn−1(s, V \X). (47)

For fixed X ⊆ V , wk(s,X) can be computed in polynomial time using the
following recurrence.

wk(s,X) =

{
1, if k = 0∑

t∈N(s)∩X wk−1(t,X), otherwise.
(48)

Notice that wk(s,X) is at most O(nn) which needs polynomial bits to rep-
resent. Thus |

∩
v∈X Av| can be computed in polynomial space and time, which

provides an O∗(2n) time and polynomial space algorithm to evaluate Equa-
tion (46).

Example 8 (Counting Perfect Matchings). Given two undirected graphs F and
G, let sub(F,G) denote the number of distinct copies of a graph F contained
in a graph G. Clearly, if F is a matching of n/2 edges, where n is the vertex
number of G, then sub(F,G) is the number of perfect matchings in G.
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A homomorphism from F to G is a mapping from the vertex set of F to that
of G such that the image of every edge of F is an edge of G. Let hom(F,G) and
inj(F,G) be the numbers of homomorphisms and injective homomorphisms from
F to G respectively. Furthermore, let aut(F, F ) denote the number of automor-
phisms, i.e., bijective homomorphisms, from F to itself. The following equation
switches the focus to computing inj(F,G), since aut(F, F ) for a graph F on nF

vertices can be computed in subexponential time [2].

sub(F,G) =
inj(F,G)

aut(F, F )
(49)

Let S be a given subset of V (G), then a homomorphism f from F to G is
called S-saturating if (a) S ⊆ f(V (F )) and (b) for all v ∈ S, |f−1(v)| = 1.
Let S − hom(F,G) denote the number of S-saturating homomorphisms. By the
inclusion-exclusion principle,

inj(F,G) =
∑

W∈V (G)\S

(−1)|W |S − hom(F,G[V (G) \W ]). (50)

Note that if F is a matching of n/2 edges, S − hom(F,G[V (G) \W ]) can be
computed in polynomial time and polynomial space using the following equation,
which gives rise to an O∗(2n) time polynomial space algorithm for counting the
number of perfect matchings in G. Let S = {v1, . . . , va}, then

S−hom(F,G[V (G)\W ]) =

(n
2

a

)
a!(

a∏
i=1

(2degV (G)\W (vi))|2E(G[V (G)\(W∪S)])|n2 −a,

(51)
where degV (G)\W (vi) is the number of vertices adjacent to vi in V (G) \W .

2.5.3 Linear Space Exact Algorithms based on Linear Space Fast
Zeta Transform
As shown before, inclusion-exclusion together with the fast zeta transform can
provide efficient exact algorithms for many hard problems, e.g., the covering
problem, the partitioning problem and the packing problem (also c.f. [13, 11,
40]). However, all these algorithms need O∗(2n) space to carry out the fast zeta
transform. The following linear space fast zeta transform (Algorithm 2) can help
these algorithms achieve a linear space bound without increasing the running
time.

Theorem 8 (Linear Space Zeta Transform). Suppose f vanishes outside a
family F of subsets of N and the member of F can be listed in time O∗(2n) and
space O∗(|F|). Then the values fζ(X), for every X ⊆ U , can be listed in time
O∗(2n) and space O∗(|F|) using Algorithm 2.

Proof. Partition U into U1 and U2 such that |U1| = n1, |U2| = n2, where n2 =
⌈log |F|⌉ and n1 = n− n2. The correctness of Algorithm 2 is established by the
following Lemma.
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Lemma 7.

fζ(X1 ∪X2) = h(X2) (52)

Proof.

h(X2) =
∑

Y2⊆X2

g(Y2)

=
∑

Y2⊆X2

∑
Y ∈F

[Y ∩ U1 ⊆ X1][Y ∩ U2 = Y2]f(Y )

=
∑
Y ∈F

[Y ∩ U1 ⊆ X1][Y ∩ U2 ⊆ X2]f(Y )

=
∑

Y ∈F,Y⊆X1∪X2

f(Y )

=
∑

Y⊆X1∪X2

f(Y )

= fζ(X1 ∪X2).

(53)

⊓⊔

Observe that the algorithm runs in O∗(2n1(2n2 + |F|)) time and O∗(2n2) space.
By the assigned values of n1 and n2, the algorithm thus runs in O∗(2n) time and
O∗(|F|) space.

⊓⊔

Algorithm 2 Linear Space Algorithm for Zeta Transform

Input: A universe set N of n elements and a functions f defined on a family F of
subsets of N

Output: The zeta transform fζ for all sets in 2N

1: For each X1 ⊆ U1 do
2: For each Y2 ⊆ U2 do
3: set g(Y2)← 0
4: End For
5: For each Y ∈ F do
6: If Y ∩ U1 ⊆ X1, then
7: set g(Y ∩ U2)← g(Y ∩ U2) + f(Y )
8: End For
9: Compute h← gζ using the fast zeta transform on 2U2

10: For each X2 ⊆ U2 do
11: output the value h(X2) as the value fζ(X1 ∪X2)
12: End For
13: End For

In Algorithm 2, because the computations are independent for each X1 ⊆ U1,
they can be executed in parallel on O∗(2n/|F|) processors.
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Example 9 (Counting k-Partitions). The problem and the notations are defined
in Example 4. It is convenient to express the k-partitions in terms of generating
polynomials. Based on the principle of inclusion-exclusion, (28) can be reformu-
lated as follows in which ak(X) is replaced by a polynomial over an intermediate
z:

dk(F) =
∑
X⊆N

(−1)|N\X|(
n∑

i=0

ai(X)zi)k, (54)

where the coefficient aj(X) is the number of subsets Y ⊆ X that belong to F
and are of size j. Now dk(F) is a polynomial whose coefficient of the monomial
zn is the number of k-partitions. To evaluate this expression, note that the
polynomial a(X) =

∑n
i=0 ai(X)zi is equal to the zeta transform gζ(X), where

g(Y ) = [Y ∈ F ]z|Y |. Now the linear space fast zeta transform operating in a
ring of polynomials lists the polynomials a(X) for all X ⊆ N in O∗(2n) time
and O∗(|F|) space. ⊓⊔

Similar ideas to that used in the linear space fast zeta transform can give
space efficient algorithms for other elementary transforms and problems, e.g.,
the intersection transform, the disjoint sum and the chromatic polynomial. An
important feature of this type of algorithms is that they admit efficient paral-
lelization as discussed before. In particular, some algorithms [19] of this type
can achieve a trade-off between time and space complexities by adjusting the
number of processors executing the algorithm in parallel.

2.6 Faster Exact Algorithms in Bounded Degree Graphs

For bounded-degree graphs, faster exact algorithms can be derived for certain
hard problems. The basic idea is to exploit some special properties so that only a
special set of subsets of the vertex set, but not all subsets, need to be considered;
then based on a projection theorem presented by Chung et al. [23], which can
be used to bound the size of the special set, the running time can be reduced for
bounded-degree graphs. In this section, an inclusion-exclusion based algorithm
will exemplify how to derive faster exact algorithms for bounded-degree graphs.
This method is not only applicable to inclusion-exclusion based algorithms, but
also to some other types of algorithms. The following lemma is the key to employ
this method.

Lemma 8. ( [23]) Let V be a finite set with subsets A1, A2, . . . , Ar such that
every v ∈ V is contained in at least δ subsets. Let F be a family of subsets of V .
For each 1 ≤ i ≤ r define the projections Fi = {F ∩Ai : F ∈ F}. Then,

|F|δ ≤
r∏

i=1

|Fi|. (55)

Example 10 (TSP in bounded-degree graphs). Given a graph G with nodes V
and distant function d : V × V → N , the Traveling Salesman Problem (TSP) is
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to find a minimum weighted Hamiltonian cycle based on the distance function
that minimizes the total distance. Assume that the maximum degree of G is
∆ = O(1). A set W of vertices is a connected dominating set if every vertex
v ∈ V is either in W or adjacent to a vertex in W and the induced subgraph
G[W ] is connected. Denote by CD the family of connected dominating sets of G.

The starting point is the algorithm by Karp [36], and, independently, by
Kohn et al. [39]. Assume that the distance function is bounded by a constant,
i.e., d(u, v) ∈ {0, 1, . . . , B} ∪ {∞} for any pair of vertices u, v, where B = O(1).

The algorithm can be conveniently described in terms of generating polyno-
mials. Select an arbitrary reference vertex s ∈ V , and let U = V \ {s}. For each
X ⊆ U , denote by q(X) the polynomial over the indeterminate z for which the
coefficient of each monomial zw counts the directed closed walks (in the com-
plete directed graph with vertex set V and edge weights given by d) through s
that (i) avoid the vertices in X, (ii) have length n, and (iii) have finite weight w.
Then q(X) can be computed in time polynomial in n by the following recurrence
and setting q(X) = p(n, s) for a fixed X ⊆ U . Initialize the recurrence for each
vertex u ∈ V \X with

p(0, u) =

{
1, if u = s

0, otherwise.
(56)

For convenience, define z∞ = 0. For each length l = 1, 2, . . . , n and each
vertex u ∈ V \X, let

p(l, u) =
∑

v∈V \X

p(l − 1, v)zd(v,u). (57)

Here note that due to the assumption on bounded weights, each p(l, u) has at
most a polynomial number of monomials with nonzero coefficients.

By the principle of inclusion-exclusion, the coefficients of the monomials in
the polynomial

Q =
∑
X⊆U

(−1)|X|q(X) (58)

count, by weight, the number of directed Hamiltonian cycles. It follows immedi-
ately that the traveling salesman problem can be solved in time O∗(2n).

For bounded-degree graphs, faster algorithms can be derived by analyz-
ing (58) in more details. It will be convenient to work with a complemented
form of (58). For each S ⊆ U , let r(S) = q(U \ S). Then (58) can be rewritten
as

Q = (−1)n
∑
S⊆U

(−1)|S|r(S). (59)

Observe that the induced subgraph G[{s} ∪ S] need not be connected. As-
sociate with each S ⊆ U the unique f(S) ⊆ U such that G[{s} ∪ f(S)] is the
connected component ofG[{s}∪S] that contains s. It follows that r(S) = r(f(S))
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for all S ⊆ U . This observation enables the following partition of the subsets of
U into f -preimages of constant r-value. For each T ⊆ U , let f−1(T ) = {S ⊆ U :
f(S) = T}. Then rewrite (59) in the partition form

Q = (−1)n
∑
T⊆U

r(T )
∑

S∈f−1(T )

(−1)|S|. (60)

Lemma 9.

∑
S∈f−1(T )

(−1)|S| =

{
(−1)|T |, if {s} ∪ T ∈ CD
0, otherwise.

(61)

Proof. Consider an arbitrary T ⊆ U . The preimage f−1(T ) is clearly empty if
G[{s} ∪ T ] is not connected. Thus in the following assume that G[{s} ∪ T ] is
connected. For a set W ⊆ V , denote N(W ) the set of vertices in W or adjacent
to at least one vertex in W . Observe that f(S) = T holds for an S ⊆ U iff
T ⊆ S and S ∩N({s} ∪ T ) = T . In particular, if V \N({s} ∪ T ) is non-empty,
then f−1(T ) contains equally many even- and odd-sized subsets. Conversely, if
V \N({s} ∪ T ) is empty (which means that {s} ∪ T is a dominating set of G),
then f−1(T ) = {T}. ⊓⊔

Using the above lemma to simplify (60), we have

Q = (−1)n
∑

T⊆U,{s}∪T∈CD

(−1)|T |r(T ). (62)

To arrive at an algorithm with running time |CD|nO(1), it suffices to list the
elements of CD with delay bounded by nO(1). Observe that CD is an up-closed
family of subsets of V , that is, if a set is in the family, then so are all of its
supersets. Furthermore, whether a given W ⊆ V is in CD can be decided in
polynomial time. These observations enable listing the sets in CD in a top-down,
depth-first manner. Thus the only remaining task is to bound the size of CD.

Lemma 10. Let V be a finite set with r elements and with subsets A1, A2, . . . , Ar

such that every v ∈ V is contained in exactly δ subsets. Let F be a family of
subsets of V and assume that there is a log-concave function f ≥ 1 and 0 ≤ s ≤ r
such that the projections Fi = {F ∩ Ai : F ∈ F} satisfy |Fi| ≤ f(|Ai|) for each
s+ 1 ≤ i ≤ r. Then,

|F| ≤ f(δ)r/δ
s∏

i=1

2|Ai|/δ. (63)

Proof. Let ai = |Ai| and note that
∑r

i=1 ai = δr. By Lemma 8,

|F|δ ≤
s∏

i=1

2ai

r∏
i=s+1

f(ai) ≤
s∏

i=1

2ai

r∏
i=1

f(ai). (64)
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Since f is log-concave, Jensen’s inequality gives

1

r

r∑
i=1

log f(ai) ≤ log f((
r∑

i=1

ai)/r) = log f(δ). (65)

Taking exponential and combining with (64) gives |F|δ ≤ f(δ)r
∏s

i=1 2
|Ai|, which

yields the claimed bound. ⊓⊔

In order to bound the size of CD, we need only to consider the special case
where Ai are defined in terms of neighborhoods of the vertices of G. For each
v ∈ V , define the closed neighborhood N(v) by N(v) = {v} ∪ {u ∈ V :
u and v are adjacent in G}. Begin by defining the subsets Av for v ∈ V as
Av = N(v). Then, for each u ∈ V with degree d(u) < ∆, add u to ∆ − d(u)
of the sets Av not already containing it (it does not matter which ones). This
ensures that every u ∈ V is contained in exactly ∆+1 sets Av. Combining with
the following given bound on the size of CD, an O∗(βn

∆) time algorithm can be
obtained as described above, where β∆ = (2∆+1 − 2)1/(∆+1).

Lemma 11. An n-vertex graphs with maximum vertex degree ∆ has at most
βn
∆ + n connected dominating sets, where β∆ = (2∆+1 − 2)1/(∆+1).

Proof. Let CD
′
= CD \ {{v} : v ∈ V }. Then for every C

′ ∈ CD
′
and every Av,

C
′ ∩ Av ̸= {v}. Thus the number of sets in the projection CD

′

v = {F ∩ Av :

F ∈ CD
′
} is at most 2|Av| − 2, since F ∩ Av ̸= ∅ for any F ∈ CD

′
. To obtain

the bound, apply Lemma 10 with the log-concave function f(x) = 2x − 1 and
s = 0. ⊓⊔

3 Algebraic Methods

The application of algebraic methods in designing exact algorithms can be dated
back to the famous paper by Kohn et al. [39] on solving the traveling salesman
problem using the generating polynomials (for details, please refer to Exam-
ple 10), in which by involving an intermediate x, a polynomial G(x) =

∑
aix

ei

is produced, where ei denotes the cost of a possible tour and ai denotes the
number of tours having this cost. Then the minimal tour cost, i.e., the smallest
exponent, can be extracted by evaluating G(x) at a specific value close to 0 and
using a logarithmic technique. In this section, two recently developed algebraic
methods are introduced—algebraic sieving method and polynomial circuit based
algebraic method.

3.1 Algebraic Sieving

Sieving methods are commonly used in designing exact and parameterized al-
gorithms, and have a long history. For example, the inclusion-exclusion princi-
ple is a typical sieving method by which all possibilities are first counted, and
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then false contributions are cancelled out. Here a new algebraic sieving method
which makes use of determinants over a field of characteristic two to achieve
sieving is introduced. The basic idea is to construct a polynomial in the under-
lying variables over a finite field in which at least one unique monomial exists
for each required structure (e.g., Hamiltonian cycle) and no monomials results
from unwanted structures (e.g., non-Hamiltonian cycle covers). The existence
of structures being looked for ultimately emerges as a polynomial testing prob-
lem. Then the old fingerprint idea, often attributed to Freivalds (c.f. [43]), is
applied in which the polynomial is evaluated in a randomly chosen point in a
finite field. The fingerprint result is used to judge whether the constructed poly-
nomial is zero polynomial or not. The Schwartz-Zippel Lemma (c.f. [43]) ensures
that such judgement will be correct with high probability. The key point of this
method is how to sieve the unwanted monomials to obtain the final required
polynomial. So far only determinants over a finite field is taken advantage of to
achieve sieving. Whether there exists some other more powerful tools that can
be used for sieving under the algebraic framework needs further studying. Before
going into the details, some notations need to be defined.

The determinant of an n×n matrix A over an arbitrary ring R can be defined
by the Leibniz formula:

det(A) =
∑

σ:[n]→[n]

sgn(σ)
n∏

i=1

Ai,σ(i), (66)

where the summation is over all permutations of n elements, and sgn is a function
called the sign of the permutation which assigns either 1 or -1 to a permutation.
The permanent of A is defined by

per(A) =
∑

σ:[n]→[n]

n∏
i=1

Ai,σ(i). (67)

Denote GF (2k) as a finite field of characteristic two. It is well known that
the determinant of A over GF (2k) coincides with the permanent, since in such
a field every element serves as its own additive inverse, in particular the ele-
ment 1; the sgn function identically maps 1 to every permutation. Moreover,
although the determinant is a sum of an exponential number of terms, it can be
computed in polynomial time using for instance LU-factorization of the matrix
which can be found in any textbook on linear algebra. In fact, to compute the
determinant is not harder than square matrix multiplication (c.f. [21]). Hence
the determinant can be computed in O(nω) field operations where ω is the
Coppersmith-Winograd exponent [24]. The following properties and lemma will
be used in deriving algebraic sieving algorithms.

Property 1. A is a matrix over GF (2k), then per(A) = det(A).

Property 2. For a given n×n matrix A, det(A) can be computed in O(nω) time.
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Lemma 12 (Schwartz-Zippel). Let P (x1, . . . , xn) be a non-zero n-variate
polynomial of total degree d over a field F . Pick r1, . . . , rn ∈ F uniformly at
random, then

Pr(P (r1, . . . , rn) = 0) ≤ d

|F |
. (68)

3.1.1 k-Dimensional Matching
A hypergraph H = (V,E) consists of a set V of n vertices and a multiset E

of hyperedges which are subsets of V . In particular, hyperedges may include
only one (or even no) vertex and may appear more than once. In a k-uniform
hypergraph each edge e ∈ E has size |e| = k. Given a vertex subset U of V , the
projected hypergraph of H on U , denoted as H[U ] = (U,E[U ]), is a hypergraph
on U where there is one edge eU ∈ E[U ] for every e ∈ E, defined by eU = e∩U .

Definition 4 (k-Dimensional Matching). Given a k-uniform hypergraph H =
(V1 ∪ V2 · · · ∪ Vk, E), with E ⊆ V1 × V2 × · · · × Vk, where |Vi| = n for 1 ≤ i ≤ k,
the k-dimensional matching problem asks whether there exists a k-dimensional
matching S ⊆ E such that ∪e∈Se = V1∪V2 · · ·∪Vk and ∀e1 ̸= e2 ∈ S: e1∩e2 = ∅.

In the following, each hyperedge e is associated with a variable xe over
GF (2m) for some m ≥ log n + 1. The next lemma shows how to construct a
polynomial only consisting of monomials representing k-dimensional matchings
by sieving unwanted monomials.

Lemma 13. Denote M as the family of all k-dimensional matchings. Let V =
∪k
i=1Vi and U = V1 ∪ V2, then∑

X⊆V \U

P (H,U,X) =
∑

M∈M

∏
e∈M

xe, (69)

where the computation is over a multivariate polynomial ring over GF (2m), and

P (H,U,X) =
∑

M ′∈M′

∏
e∈M ′

xe, (70)

where M′
is the family of all perfect matchings in H[U ] avoiding X, i.e., for

every e ∈ M
′
, e ∩X = ∅.

Proof. For every M ∈ M, M only avoids ∅. Thus the monomial
∏

e∈M xe for ev-
ery k-dimensional matching M emerges in the constructed polynomial precisely
once. For a non-k-dimensional matchingM

′
, it avoids all subsets of V \(∪e∈M ′ e).

Then the monomial
∏

e∈M ′ xe for M
′
will be considered in P (H,U,X

′
) for every

X
′ ⊆ V \ (∪e∈M ′ e). It is well known that a non-empty set has even number of

subsets. Hence, all of these
∏

e∈M ′ xe cancel each other since the operations are
in a field of characteristic two. ⊓⊔



Faster and Space Efficient Exact Exponential Algorithms 25

¿From Lemma 13,
∑

X⊆V \U P (H,U,X) consists of monomials representing

k-dimensional matchings of H. Thus, by evaluating
∑

X⊆V \U P (H,U,X) on

a randomly chosen point r1, . . . , r|E| ∈ GF (2m), the result is non-zero with

probability at least 1
2 if there exists at least one k-dimensional matching in

H by Lemma 12. If repeating the evaluation for polynomial times, the error
probability can be exponentially small. The remaining work is how to efficiently
compute P (H,U,X) on a randomly chosen point r1, . . . , r|E| ∈ GF (2m) for every
X ⊆ V \ U .

Clearly,H[U ] is a bipartite multigraph. Define its Edmonds matrixA(H,V1, V2)
as

A(H,V1, V2)ij =
∑

e=(i,j)∈E[U ],i∈V1,j∈V2

xe. (71)

Denote M as the family of all perfect matchings in H[U ]. Then the following
lemma generalizes Edmonds’ work [26] for the case of bipartite multigraphs.

Lemma 14. det(A(H,V1, V2)) =
∑

M∈M̂
∏

e∈M xe, where the computation is
over a multivariate polynomial ring over GF (2m) and the summation is over all
perfect matchings M̂ in H[V1 ∪ V2].

Proof. By the definition of determinant, the summation is over all products of
n of the matrix elements in which every row or column is used exactly once. In
terms of the bipartite graph, this corresponds to a perfect matching in the graph
since rows and columns represent the two vertex sets respectively. Furthermore,
the converse is also true. For every perfect matching there is a permutation
describing it. Hence the mapping is one-to-one. The inner product counts all
choices of edges producing a matching described by a permutation σ since

n∏
i=1

Ai,σ(i) =
n∏

i=1

∑
e=(i,σ(i))

xe =
∑

M∈M(σ)

∏
e∈M

xe, (72)

where M(σ) is the set of all perfect matchings {e1, . . . , en} such that ei =
(i, σ(i)).

Let HX [U ] denote the projected hypergraph of H on U by only projecting
edges disjoint to X in H on U . Based on the above Lemma, P (H,U,X) on a ran-
domly chosen point r1, . . . , r|E| ∈ GF (2m) for every X ⊆ V \U can be computed
by first constructing the Edmonds matrix of HX [U ], with the variables replaced
by the random sample points r1, . . . , r|E|, and then computing its determinant.
Putting everything together generates a Monte Carlo algorithm with exponen-
tially small error probability for the k-dimensional matching problem. The run-
time bound is easily seen to be O∗(2(k−2)n) since |U | = |V1| + |V2| = 2n and
P (H,U,X) for every X ⊆ V \ U can be evaluated in O(nω) time by Lemma 14
and Property 2.

Theorem 9. The k-dimensional matching problem on kn vertices can be solved
by a Monte Carlo algorithm with an exponentially small failure probability in n
and O∗(2(k−2)n) runtime.
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3.1.2 Hamiltonicity
An undirected graph G = (V,E) on n vertices is said to be Hamiltonian if it

has a Hamiltonian cycle, a vertex order (v0, v1, . . . , vn−1) such that vivi+1 ∈ E
for all i. The indices are enumerated modulo n, i.e., vn−1v0 is also an edge.
The problem of detecting if a graph is Hamiltonian is called the Hamiltonicity
problem. Clearly, this problem is a special case of the traveling salesman problem.

Before the algebraic sieving algorithm for the Hamiltonicity problem was
derived, the dynamic programming recurrence that solves the general TSP in
O(n22n) time introduced by Bellman [7][5] and independently by Held and
karp [30] in the early 1960’s was the strongest result for this special problem.
The algebraic sieving for the Hamiltonicity problem is obtained by reducing the
problem to a variant of the cycle cover counting problem called Labeled Cycle
Cover Sum, and then making use of the sieving algorithm to solve this variant.
The algorithm will be described after introducing some useful notations.

In a directed graph D = (V,A), a cycle cover is a subset C ⊆ A such that
for every vertex v ∈ V , there is exactly one arc av1 ∈ C starting from v and
exactly one arc av2 ∈ C ending in v. The graphs considered have no loops.
Denote cc(D) as the family of all cycle covers of D, and hc(D) ⊆ cc(D) as
the set of Hamiltonian cycle covers. A Hamiltonian cycle cover consists of one
big cycle passing through all vertices. The remaining cycle covers (which have
more than one cycle in cc(D) \ hc(D)) are called non-Hamiltonian cycle covers.
For undirected graphs, hc(G) includes the Hamiltonian cycles with orientation,
i.e., traversed in both directions. For a Hamiltonian cycle H ∈ hc(G) for an
undirected graph G, an arcs uv ∈ G infers that the cycle is oriented from u to v
along the edge uv. Denote g : A → B as a surjective function from the domain
A to the codomain B and denote the preimage of every b ∈ B as g−1(b), i.e.,
g−1(b) = {a ∈ A : g(a) = b}. For a matrix A, denote by Ai,j the element at row
i and column j. The labeled cycle cover sum problem is defined as follows:

Definition 5. Given a directed graph D = (V,A), a finite set L of labels, and a
function f : A× 2L → R on some codomain ring R, the labeled cycle cover sum
problem is to compute the following defined term over R.

Λ(D,L, f) =
∑

C∈cc(D)

∑
g:L→C

∏
a∈C

f(a, g−1(a)), (73)

where the inner sum is over all surjective functions g.

In the above definition, f is introduced to make all non-Hamiltonian cycle
covers cancel out in the sum. To do this, as before, the computations will be
done over GF (2k) denoting a finite field of characteristic two. In what follows,
a directed graph is bidirected if for every arc uv it has an arc in the opposite
direction, i.e., vu. In order to make sure that the Hamiltonian cycle cover will not
be canceled as well, an asymmetry around an arbitrarily chosen special vertex
s is defined. A function f : A × 2L → GF (2k) is an s-oriented mirror function
if f(uv, Z) = f(vu, Z) for all Z and all u ̸= s, v ̸= s. The following lemma
captures how the non-Hamiltonian cycle covers vanish, which also implies the
non-existence of false positives in the resulting algorithms.
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Lemma 15. Given a bidirected graph D = (V,A), a finite set L, and a special
vertex s ∈ V , let f be an s-oriented mirror function with codomain GF (2k).
Then

Λ(D,L, f) =
∑

H∈hc(D)

∑
g:L→H

∏
a∈H

f(a, g−1(a)). (74)

Proof. By the definition of the labeled cycle cover sum, a labeled cycle cover is a
tuple (C, g) with C ∈ cc(D) and g : L → C. The labeled non-Hamiltonian cycle
covers can be partitioned into dual pairs as follows such that both cycle covers in
every pair contribute the same term to the sum. For a labeled non-Hamiltonian
cycle cover (C, g), let C be the first cycle of C not passing through s (note that
such cycle must exist since the cycle cover consists of at least two cycles and
all cycles are vertex disjoint). Here “first” is w.r.t. any fixed order of the cycles.
Then the dual cycle cover of (C, g) is defined as R(C, g) = (C

′
, g

′
), where C

′
= C

except for the cycle C which is reversed in C
′
, i.e., every arc uv ∈ C is replaced

by the arc in the opposite direction vu in C
′
, and g

′−1 is identical to g−1 on C\C,
and is defined by g

′−1(uv) = g−1(vu) for all arcs uv ∈ C. In other words, the
reversed arcs preserve their original labeling. Note that such a dual cycle cover
always exists since D is bidirected and (C, g) ̸= R(C, g),(C, g) = R(R(C, g)).
Hence the mapping uniquely pairs up the labeled non-Hamiltonian cycle covers.

Since f is an s-oriented mirror function and has f(uv, Z) = f(vu, Z) for all
arcs uv not incident on s, (C, g) and R(C, g) contribute the same product term
to the sum for computing Λ(D,L, f). Finally, since the computations are done
in a field of characteristic two, all these terms will be canceled. ⊓⊔

When limiting the computations over GF (2k), the labeled cycle cover sum
can be computed efficiently via determinant. Permanent has a natural interpre-
tation as the sum of weighted cycle covers in a directed graph. Formally, let
D = (V,A) be a directed graph with weights w : A → GF (2k), and define a
|V | × |V | matrix with rows and columns representing the vertices V

Ai,j =

{
w(ij), if ij ∈ A

0, otherwise.
(75)

Then
per(A) =

∑
C∈cc(D)

∏
a∈C

w(a). (76)

By Property 1 and Property 2, per(A) is identical with det(A) and can be com-
puted in O(nω) time. Define a polynomial in an indeterminate r as follows, with
r aiming at controlling the total rank of the subsets used as labels in the labeled
cycle covers:

p(f, r) =
∑
Y⊆L

det(
∑
Z⊆Y

r|Z|Mf (Z)), (77)

where

Mf (Z)i,j =

{
f(ij, Z), if ij ∈ A

0, otherwise.
(78)
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Lemma 16. For a directed graph D, a set L of labels, and any function f :
A× L → GF (2k),

[r|L|]p(f, r) = Λ(D,L, f), (79)

where [r|L|]p(f, r) denotes the coefficient of r|L| in p(f, r).

Proof. p(f, r) can be rewritten as

p(f, r) =
∑
Y⊆L

∑
C∈cc(D)

∑
q:C→2Y \{∅}

∏
a∈C

r|q(a)|f(a, q(a))

=
∑

C∈cc(D)

∑
q:C→2L\{∅}

∑
∪a∈Cq(a)⊆Y⊆L

∏
a∈C

r|q(a)|f(a, q(a)).
(80)

For functions q : C → 2L \ {∅} such that ∪a∈Cq(a) ⊂ L, i.e., whose union
over the elements do not cover all of L, the innermost summation is executed an
even number of times with the same term (there are 2|L−∪a∈Cq(a)| equal terms).
Since the computations are over GF (2k), these cancel. Then

p(f, r) =
∑

C∈cc(D)

∑
q:C→2L\{∅}
∪a∈Cq(a)=L

r
∑

a∈C |q(a)|
∏
a∈C

f(a, q(a)), (81)

in which the coefficient of r|L|

[r|L|]p(f, r) =
∑

C∈cc(D)

∑
q:C→2L\{∅}
∪a∈Cq(a)=L

∀a̸=b:q(a)∩q(b)=∅

∏
a∈C

f(a, q(a)), (82)

since ∪a∈Cq(a) = L,∪a∈C |q(a)| = |L| implies ∀a ̸= b : q(a)∩q(b) = ∅. Invert-
ing the function q will give the labeled cycle cover sum as defined in Definition 5.

⊓⊔

The above lemma is the base identity that enables a relatively efficient algorithm
for computing the labeled cycle cover sum.

Lemma 17. The labeled cycle cover sum Λ(D,L, f) over a field GF (2k) on
a directed graph D on n vertices, and with 2k > |L|n, can be computed in
O((|L|2n + |L|n1+ω)2|L|) arithmetic operations over GF (2k), where ω is the
Coppersmith-Winograd matrix multiplication coefficient.

Proof. The labeled cycle cover sum is evaluated via the identity in Lemma 16.
Observing that p(f, r) as a polynomial in r has maximum degree |L|n, to recover
one of its coefficients (the one for r|L|), one needs to evaluate the polynomial for
|L|n choices of r and to use interpolation to solve for the coefficient being sought.
This can be done for instance by using a generator g of the multiplicative group
in GF (2k) and evaluating the polynomial in the points r = g0, g1, . . . , g|L|n−1.
The requirement 2k > |L|n assures the distinctness of these points, and hence



Faster and Space Efficient Exact Exponential Algorithms 29

the interpolation is possible. For every fixed r, the algorithm begins by tabulat-
ing T (Y ) =

∑
Z⊆Y r|Z|Mf (Z) for all Y ⊆ L through the fast zeta transform (4)

in O(|L|2|L|) field operations. Then p(f, r) =
∑

Y⊆L det(T (Y )) can be evalu-

ated in O(nω2|L|) operations by Property 2. Once all values are computed, the
polynomial time Lagrange interpolation can be used to compute the coefficient.
Summing up the number of field operations required over all |L|n values of r,
the lemma follows. ⊓⊔

Next, f will be defined to associate the argument arc and label set with a
non-constant multivariate polynomial such that f(su,X) and f(us,X) will not
share variables for any su, us ∈ A to ensure that the Hamiltonian cycles oriented
in opposite directions will contribute different terms to the sum. Based on the
definition of f , the labeled cycle cover sum is represented by a polynomial in the
underlying variables with one unique monomial per oriented Hamiltonian cycle
and without monomials resulting from non-Hamiltonian cycle covers, which is a
consequence of Lemma 15. Then the fingerprint idea is employed to evaluate the
polynomial in a randomly chosen point and the Schwarz-Zippel Lemma ensures
that with high probability, it can be detected whether the polynomial resulting
from the labeled cycle cover sum is identically zero (i.e., no Hamiltonian cycles)
or not (there is at least one Hamiltonian cycle) by identifying the evaluating
result with the polynomial. For simplicity of analysis, assume that n is even.

For a uniformly randomly chosen partition V = V1∪V2 with |V1| = |V2| = n/2
and a fixed Hamiltonian cycle H = (v0, . . . , vn−1) in G. An arc vivi+1 is called
unlabeled by V2 if both vi and vi+1 belong to V1, and the set of all unlabeled arcs
is denoted as U(H). The remaining arcs are referred to as labeled by V2, and
denote the set of all labeled arcs as L(H). Define hc(G,V2,m) as the subset of
hc(G) of Hamiltonian cycles which have precisely m unlabeled arcs by V2. Assign
every edge uv ∈ E two variables xuv and xvu, and xuv and xvu are identified
except when u = s or v = s.

Consider a complete bidirected graph D = (V1, F ) and use V2 as some of the
labels. In addition to V2, a set Lm of size m of extra labels aiming at handling
arcs unlabeled by V2. For each edge uv in G[V1] and every element d ∈ Lm, new
variables xuv,d and xvu,d are introduced. And xuv,d coincides with xvu,d except
when u = s or v = s. For two vertices u, v ∈ V , and a subset X ⊆ V , define
Pu,v(X) as the family of all simple paths in G from u to v passing through
exactly the vertices in X. For uv ∈ F and X ⊆ V2, define

f(uv,X) =
∑

P∈Pu,v(X)

∏
wz∈P

xwz. (83)

For every arc uv ∈ F such that uv is an edge in G[V1], and d ∈ Lm, define
f(uv, {d}) = xuv,d. In other points f is set to zero.

Lemma 18. With G,D, V2, U(·), L(·),m,Lm and f defined as above,
(i) Λ(D,V2∪Lm, f) =

∑
H∈hc(G,V2,m)(

∏
uv∈L(H) xuv)(

∑
σ:U(H)→Lm

∏
uv∈U(H) xuv,σ(uv));

(ii) Λ(D,V2 ∪ Lm, f) is a zero polynomial iff hc(G,V2,m) = ∅.
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Proof. (i) SinceD is bidirected and f is s-oriented mirror function, by Lemma 15,

Λ(D,V2 ∪ Lm, f) =
∑

H∈hc(D)

∑
g:V2∪Lm→H

∏
a∈H

f(a, g−1(a)), (84)

where the inner sum is over all surjective functions g. In order to prove the
claim, it needs to expand the Hamiltonian cycles in D into Hamiltonian cycles
of G. Note that the arcs of a Hamiltonian cycle in D in the sum above are
labeled either by an element of Lm or by a non-empty subset of V2, since only
in such cases f is non-zero. Next the definition of labeled and unlabeled arcs are
extended (which were defined previously for Hamiltonian cycles in G only). For a
Hamiltonian cycleH ∈ hc(D) labeled by the surjective function g : V2∪Lm → H,
an arc uv ∈ H is called labeled by V2 if g−1(uv) ⊆ V2, and unlabeled by V2 if
g−1(uv) ∈ Lm.

Since every arc uv unlabeled by V2, g
−1(uv) is an element of Lm, only the

Hamiltonian cycles in D with exactly m arcs unlabeled by V2 leave a non-zero
contribution. Then

Λ(D,V2 ∪ Lm, f) =
∑

H∈hc(D)

∑
HL∪HU=H
HL∩HU=∅
|HU |=m

(
∑

g:V2→HL

∏
a∈HL

f(a, g−1(a))) · (
∑

σ:HU→Lm

∏
a∈HU

f(a, σ(a))),

(85)
where the summation is over all surjective functions g and one-to-one functions
σ. Replace f in the above expression, then

Λ(D,V2 ∪ Lm, f) =
∑

H∈hc(D)

∑
HL∪HU=H
HL∩HU=∅
|HU |=m

∀a∈HU :a∈E

(
∑

g:V2→HL

∏
a∈HL

∑
P∈Pu,v(g−1(uv))

∏
wz∈P

xwz)

· (
∑

σ:HU→Lm

∏
uv∈HU

xuv,σ(uv)),

(86)
Every vertex in V2 is mapped to precisely one arc in F on a Hamiltonian

cycle H in D by g. Moreover, such a cycle H leaves a non-zero result iff there
are precisely m arcs in the cycle not being mapped to by g (i.e. unlabeled by V2)
and they are also edges in G. Rewriting the expression as a sum of Hamiltonian
cycles in G,

Λ(D,V2 ∪ Lm, f) =
∑

H∈hc(G,V2,m)

(
∏

uv∈L(H)

xuv)(
∑

σ:U(H)→Lm

∏
uv∈U(H)

xuv,σ(uv)).

(87)
(ii) If the graph G has no Hamiltonian cycles, the sum is clearly zero. For the

other direction, each Hamiltonian cycle contributes a set of m! different mono-
mials per orientation of the cycle (one for each permutation σ), in which there is
one variable per edge along the cycle. Monomials resulting from different Hamil-
tonian cycles are different since for each of two different Hamiltonian cycles,
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one has an edge that the other does not have. Every pair of opposite directed
Hamiltonian cycles along the same undirected Hamiltonian cycle also traverse s
through opposite directed arcs. Since the variables tied to the opposite directed
arcs incident on s are different, these are also unique monomials in the sum. ⊓⊔

The above Lemma describes how to transform the input graph G given m,
V1, V2 into a symbolic labeled cycle cover sum Λ(D,V2 ∪ Lm, f) on a bidirected
graph D on n/2 vertices and n/2 + m labels V2 ∪ Lm. The next lemma shows
that only the cases m ≤ n/4 need to be considered.

Lemma 19. Let G = (V,E) be a Hamiltonian undirected graph. For a uniformly
randomly chosen equal partition V1 ∪ V2 = V , |V1| = |V2| = n/2,

Pr(

n/4∑
i=0

|hc(G,V2, i)| > 0) ≥ 1

n+ 1
. (88)

Proof. Consider one Hamiltonian cycle (v0, . . . , vn−1) in G. Let X denote the
random variable representing the number of unlabeled arcs by V2. Clearly, Pr(vi) =
1
2 for any i, and Pr(vi, vi+1 ∈ V1) <

1
4 since the events vi ∈ V1 and vi+1 ∈ V1

are almost independent. Hence the expected number of arcs unlabeled by V2,
E(X) < n/4. By Markov’s inequality, Pr(X > (1 + 1/n)E(X)) < 1

1+1/n , and

the lemma follows.

Before discussing the algorithm, the only remaining problem is how to cal-
culate f for all subsets of V2. This can be achieved by running a variant of the
Bellman-Held-Karp recursion. Formally, let f̂ : (V × V ) × 2V → GF (2k) be
defined by

f̂(uv,X) =
∑

P∈Pu,v(X)

∏
wz∈P

xwz. (89)

Then f(uv,X) = f̂(uv,X) for u, v ∈ V1, X ⊆ V2, and the recursion

f̂(uv,X) =

{
xuv, if |X| = 0∑

w∈X,uw∈E xuwf̂(wv,X \ {w}), otherwise.
(90)

can be used to tabulate f(·, X) on X ⊆ V2. The running time is O∗(2|V2|).
Next the algorithm is described in detail. First, pick a partition V1 ∪ V2 = V

uniformly at random with |V1| = |V2| = n/2. Then the algorithm loops over m,
the number of edges unlabeled by V2 along a Hamiltonian cycle from 0 to n/4.
For each value of m, by Lemma 18, the problem is transformed to determine
whether the symbolic labeled cycle cover sum Λ(D,V2 ∪ Lm, f) is a non-zero
polynomial. As described in Lemma 17, Λ(D,V2 ∪ Lm, f) will be evaluated in a
randomly chosen point over the field GF (2k) with 2k > cn for some c > 1. By
Lemma 12, with probability at least 1 − 1/c it will result in a non-zero answer
iff Λ(D,V2 ∪ Lm, f) was a non-zero polynomial (i.e., G has a Hamiltonian cycle
with m edges unlabeled by V2). Then repeat the algorithm for every m ≤ n/4,
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and by Lemma 19, with probability at least (1 − 1/c)/(n + 1), the presence
of a Hamiltonian cycle can be detected if it exists. Running the algorithm a
polynomial number of times in n, the probability of failure will be reduced to
exponentially small. The runtime is bounded by a polynomial factor in m and n
of the runtime in Lemma 17. The worst case occurs for m = 4/n in which case
the time bound is O∗(23n/4).

Theorem 10. There is a Monte Carlo algorithm detecting whether an undi-
rected graph with n vertices is Hamiltonian or not in O∗(23n/4) time, with no
false positives and no false negatives with probability exponentially small in n.

3.2 Polynomial Circuit based Algorithms

This method only needs polynomial space. The problems to be solved will be
translated into polynomials represented by polynomial circuits, where the trans-
lation is done in such a way that the instance considered is a “yes”-instance iff
the coefficient of a special monomial in the polynomial is non-zero; this allows
us only to compute the coefficient of the special monomial. A discrete Fourier
transform based technique provides an efficient way to achieve the goal.

3.2.1 Coefficient Interpolation
Given a set R and a set of variables X, an arithmetic circuit C over (R,+, ∗) is
a directed acyclic graph in which each source gate is labeled by a variable x ∈ X
or an element of R and other gates are either an addition gate or a product gate.
The size |C| of a circuit C is the number of gates in C. The depth ∆(C) of a
circuit C is the length of a longest directed path in C. Denote by N and C the
naturals and the complex numbers, respectively.

Computing the coefficient of some special monomial can be abstracted as the
following Coefficient Interpolation problem which can be solved efficiently based
on the discrete Fourier transform.

Definition 6 (Coefficient Interpolation). Given an arithmetic circuit C over
(N,+, ∗) and variables x1, x2, · · · , xβ over N that computes a polynomial P (x1, . . . , xβ),
together with β integers t1, t2, . . . , tβ, the problem is to compute the coefficient

of the term xt1
1 xt2

2 · · ·xtβ
β .

Denote the coefficients of P as a β-dimensional array {cn1,n2,...,nβ
}. Further-

more, assume that the coefficients of any polynomial outputted by a gate of C
are bounded by m and any exponent of xi in the terms of P is bounded by
Ni − 1 for i ≤ β. Note that P can also be interpreted as a polynomial over the
complex numbers. The discrete Fourier transform of the β-dimensional array
{cn1,n2,...,nβ

} is the array {Cn1,n2,...,nβ
} given by the following formula

Ck1,k2,...,kβ
=

1

N1N2 · · ·Nβ

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nβ−1∑
nβ=0

cn1,n2,...,nβ

β∏
i=1

ωkini

Ni

= P (ωk1

N1
, ωk2

N2
, . . . , ω

kβ

Nβ
),

(91)
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where ωNi
is the i-th complex root of unity, given by e−2πi/Ni . Then the

inverse discrete Fourier transform can give the coefficient cn1,n2,...,nβ
, as follows.

ct1,t2,...,tβ =
1

N1N2 · · ·Nβ

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nβ−1∑
nβ=0

Cn1,n2,...,nβ

β∏
i=1

ω−tini

Ni

=
1

N1N2 · · ·Nβ

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nβ−1∑
nβ=0

P (ωn1

N1
, ωn2

N2
, . . . , ω

nβ

Nβ
)

β∏
i=1

ω
(Ni−ti)ni

Ni

(92)
Thus by evaluating the polynomial P for N1N2 · · ·Nβ different arrays of

values, which can be done using the arithmetic circuit C, ct1,t2,...,tβ can be
computed based on the above formula. Hence ct1,t2,...,tβ can be computed with
O(N1N2 · · ·Nβ |C|) real multiplications and additions and only O(β + |C|) real
numbers need to be stored at any point of the calculation.

In order to overcome the problem that the real number can not be exactly
stored and worked with, the binary representations of the numbers with the
bits after the l most significant bits truncated will be used instead during the
execution of the algorithm. Here the number l is chosen such that if rounding
the resulting estimate c

′
of ct1,t2,...,tβ to the nearest integer, ct1,t2,...,tβ can be

correctly obtained. Observe that addition of these estimates can be done in
time O(l), and that multiplication can be carried out in O∗(l) time using a fast
algorithm for integer multiplication, such as the Fürer’s algorithm [29]. Hence
the total time spent by the algorithm is O∗((N1N2 · · ·Nβ)l) and the total space
is O((β + |C|)l). The following lemma makes sure the existence of such a choice
for l.

Lemma 20 ([42]). Let C be an arithmetic circuit over (C,+, ∗) computing a
polynomial P (x1, x2, . . . , xβ) such that (a) all constants of C are positive in-
tegers, (b) all coefficients of P are at most m, and (c) P has degree d (d) C
has depth α. Let x1, x2, . . . , xβ ∈ C, x′

1, x
′

2, . . . , x
′

β ∈ C be such that for every

i, ∥xi∥ = 1 and ∥xi − x
′

i∥ ≤ ϵ. Let p
′
be the result of applying the circuit C

to x
′

1, x
′

2, . . . , x
′

β using the floating point arithmetic, truncating intermediate re-

sults after l bits. Suppose (ϵ+ 2 · 2−l)(4md)α ≤ 1. Then ∥p′ − P (x1, . . . , xβ)∥ ≤
(ϵ+ 2 · 2−l)(4md)α.

For a fixed value of l one can compute for every i ≤ β an estimate of ωNi

whose distance ϵ to ωNi is at most 2·2−l. Now, given n1, . . . , nβ , t1, . . . tβ , N1, . . . , Nβ ,

based on the circuit C for computing P , a circuit C
′
can be constructed for com-

puting

P
′
= P (xn1

1 , xn2
2 , . . . , x

nβ

β )

β∏
i=1

x
(Ni−ti)ni

i . (93)

Clearly, the depth of C
′
is α+logN+log β, where N = maxi Ni. Furthermore

the degree of C
′
is at most d + βN and the largest coefficient is at most md.
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Choose l such that 10 · 2−l(4(d+βN)md)α+logN+log β ≤ 1. Applying Lemma 20
on C

′
yields an estimation error for

P
′
(ωn1

N1
, ωn2

N2
, . . . , ω

nβ

Nβ
) = P (ωn1

N1
, ωn2

N2
, . . . , ω

nβ

Nβ
)

β∏
i=1

ω
(Ni−ti)ni

Ni
, (94)

which is less than 1
2 . The total estimation error for ct1,t2,...,tβ is less than

N1N2···Nβ

2N1N2···Nβ
=

1
2 . Thus c

′
rounded to the nearest integer is ct1,t2,...,tβ . Finally, observe that

l = ((α+ log d)(logm+ log d)), which yields the following concluding theorem.

Theorem 11. The coefficient interpolation problem can be solved in O∗(N1 · · ·Nβ(∆(C)+
log d)(logm+ log d)) time and O(β + |C|(∆(C) + log d)(logm+ log d)) space.

Remark 1. Here it is necessary to point out that the indegree of the constructed
circuit C is implicitly required to be bounded by a constant.

By transforming the problems to polynomials, the above technique can pro-
vide pseudo-polynomial time polynomial space algorithms for several hard prob-
lems, e.g., the knapsack problem.

Example 11 (Knapsack Problem). Given a set S = {s1, . . . , sn} of n items each
of which has positive integer weight wi and value vi, and two positive integers w
and v, the Knapsack problem asks whether there exists a subset S

′
of items whose

total weight is at most w and total value is at most v. It may further assume
that all items have weight at most w and value less than v, since otherwise
this problem is trivial. The Knapsack problem can be reduced to Coefficient
Interpolation as follows.

Define the polynomial PS(x, y) =
∑nw

i=0

∑nv
j=0 cijx

iyj , where cij is the number

of item sets S
′ ⊆ S whose total weight is exactly i and the total value of the

items not in S
′
is exactly j. The Knapsack problem is equivalent to checking

whether there exists a weight w
′ ≤ w and value v

′ ≤ (
∑

si∈S vi) − v such that
cw′v′ is nonzero. Clearly, this can be done by solving coefficient interpolation for

each pair of possible values for w
′
and v

′
, but this would incur an unnecessary

overhead of vw in the running time. Instead, define the polynomial P
′

S(x, y) =

pS(x, y)(
∑nw

i=0 x
i)(

∑nv
j=0 y

j) and set c
′

ij to be the coefficient of the term xiyj in

P
′

S . Then it suffices to check whether c
′

wv∗ is nonzero, where v∗ =
∑

si∈S vi − v.

The remaining task is to construct a polynomial circuit C
′
for P

′

S such that
faster polynomial space algorithms can be obtained by applying Theorem 11.

Note that PS(x, y) can be fractorized into PS(x, y) =
∏n

i=1(x
wi + yvi) which

yields a circuit of size O(n logw+n log v) and depth O(logw+ log v+ log n) for
computing PS . Based on the following given circuit of size and depth O(log n+
logw) for computing

∑
si∈S xwi and circuit of size and depth O(log n + log v)

for computing
∑

si∈S yvi , a circuit C
′
of size O(n logw + n log v) and depth

O(logw + log v + log n) for computing P
′

S can be constructed.
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Lemma 21. There exists a circuit of size and depth O(logm) that computes∑m
i=0 x

i.

Proof. The following recurrence can be turned into a circuit for computing∑m
i=0 x

i.

p∑
j=0

xj =

{
(xp/2 + 1)

∑p/2
j=0 x

j , if p is even

x(x⌊p/2⌋ + 1)
∑⌊p/2⌋

j=0 xj + 1, otherwise.
(95)

To make the circuit it needs to construct gates evaluating x⌊p/2⌋, x⌊p/4⌋, x⌊p/8⌋,
etc. This can be done using an identical trick to the one above by observing that
xp = (xp/2)2 if p is even and xp = x(x⌊p/2⌋)2 if p is odd. ⊓⊔

Finally, note that the coefficients of pS are at most 2n and hence the coef-
ficients of P

′

S are at most 2nwvn2. Also note that the degree of P
′

S is at most
2nv+2nw. Then applying Theorem 11, one can get an algorithm for the Knap-
sack problem with time complexity O∗(n4vw(log v+logw)2) and space complex-
ity O∗(n2(log v + logw)2). ⊓⊔

3.2.2 Combination with Subset Convolution
By introducing some special gates (e.g., the subset convolution gate and the

covering product gate introduced in Section 2.2) in the constructed polyno-
mial circuits, some polynomial space algorithms for many other problems can
be derived, e.g., the TSP problem, the weighted Steiner tree problem and the
weighted set cover problem. Based on the polynomial space result for the subset
convolution and the covering product (Theorem 7 in Section 2.5.1) and using
the embedding technique (introduced in Section 2.2), the following result can
be obtained by Theorem 11. Whether some other operations and a wider range
of input functions can be involved in the polynomial circuit framework to give
polynomial space algorithms or faster exponential space algorithms for hard
problems, as well as whether this approach can be applied to a wider range of
problems, need further studies.

Theorem 12 ([42]). Let C be a circuit over {f : 2V → M} with operation
gates including subset convolution, covering product, addition and product gates.
Let Ĉ be the circuit over {ĝ : 2V → N} obtained by interpreting C over (N,+, ∗),
and let u be such that u ≥ h(Y ) where h is the output of any gate of Ĉ and
Y ⊆ V . If the input function is a singleton and is bounded by W , then it can be
decided whether fout(V ) ≤ k in O∗(2|V |W log u) time and O∗(log u logW ) space.

Example 12 (Weighted Set Cover). Given a set U , a family F = {S1, . . . , Sl} ⊆
2U , a weight function w : F → N, and an integer t. A set cover of U is a family
C ⊆ F such that U ⊆

∑
S∈C S. The weight w(C) =

∑
S∈C w(S). The weighted

set cover problem is to decide whether there exists a set cover of U with weight
at most t. Define mi(Y ) as the minimum weight of a set cover C of Y such that
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|C| = i. Then the problem is to determine whether mn(U) ≤ t. mi(Y ) can be
computed using the following recurrence:

mi(Y ) =


0, if i = 0, Y = ∅
∞, i = 0, Y ̸= ∅
min1≤j≤l m⌈i/2⌉(Y ) ∗m⌊i/2⌋(Y ) ∗ [Y ⊆ Sj ], otherwise,

(96)

where ∗ denotes the subset convolution operation. By replacing the min opera-
tion by max and making use of the embedding technique (in Section 1) to turn
the operations over the max-sum semiring to be done over the product-sum ring,
it can be proved that the input function is a singleton and the above recurrence
can be turned into a circuit of depth O(log |U |). Applying Theorem 12, a poly-
nomial space algorithm with running time O∗(2|U |W ) can be obtained, where
W is the maximum weight assigned to sets in F .

4 Conclusion

This chapter summarizes some recently resurrected or newly developed combi-
natorial and algebraic techniques for designing either faster or space efficient
exact exponential time algorithms for NP-hard problems. Detailed examples to
illustrate these techniques have been given. Despite significant progresses in the
past few years, the area is still largely unexplored with many open problems,
and new techniques for solving these problems are very much in need. For ex-
ample, can the graph coloring problem be exactly solved in time faster than
O∗(2n)? Can a deterministic O∗(cn) time exact algorithm be derived for TSP
where c < 2? It appears that using the inclusion-exclusion technique alone can
not break the O∗(2n) barrier of the graph coloring problem since it needs to
go through all the subsets. As Example 12 shows, one promising avenue along
which to design either faster or space efficient exact algorithms is to combine
multiple techniques. For graph coloring, by combining the combinatorial meth-
ods and the algebraic methods, an O∗(cn) (c < 2) time exact exponential time
algorithm might eventually be obtained. More specifically, it is worthwhile to try
applying some efficient combinatorial computing tools such as fast zeta trans-
form in an algebraic framework. Furthermore, as Alan Perlis once said [41], “for
every polynomial-time algorithm you have, there is an exponential algorithm that
I would rather run”, exponential time exact algorithms with a small constant
base would be preferable to polynomial time algorithms for some problem in-
stances of moderate or reasonably large sizes. For example, an O∗(1.01n) exact
algorithm may run much faster than a polynomial time algorithm with running
time O(n3) for relatively large values of n, such as 2000. Besides designing faster
exact algorithms, designing space efficient (in particular polynomial or even lin-
ear space) exact algorithms is also very important since compared to exponential
time consumption, exponential space consumption could be more costly from the
standpoint of computing resource usages. All in all, developing practical polyno-
mial space exact algorithms for real-life use will need more devoted effort in the
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future. Although some of the open problems listed in Woeginger’s survey [55]
have been solved, many other ones remain open, some of which can be found
in [56, 57].

5 Notes

The fast zeta transform comes from Yates’s work [58]. The general theory of
Möbius inversions on posets is developed by Rota [51]. Björklund et al. in-
troduced the linear space fast zeta transform in [19]. A variant of fast zeta
transform—trimmed zeta transform is introduced in [16], which is used to give
faster exact algorithms for the important algorithmic tool Disjoint Sum in the
design of parameterized algorithms [18]. For details on Yates’s algorithm and
Möbius inversion, please refer to Knuths’s book [38] and Fedor and Kratsch’s
book [27].

The fast algorithm for subset convolution comes from Björklund et al. [14].
There is also an FFT based implementation for the fast subset convolution [27].
The fast algorithms for covering product and intersecting covering product are
introduced by Björklund et al. [14], whereas the proof of Lemma 2 comes from
Nederlof’s paper [44]. The exact algorithms for Examples 1, 2, and 3 are due
to Björklund et al. [14]. The fast subset convolution has also been used to de-
rive faster exact algorithms for counting spanning forests [44], computing Tutte
polynomial [15], computing f -width and rank-width [46]. For more information
on applications of the fast subset convolution, please refer to [27]. The polyno-
mial space algorithms for the covering product and the subset convolution are
based on Nederlof’s work [44] and Lokshtanov and Nederlof’s work [42]. The
exact algorithm for computing cover polynomial in Example 6 is due to [44].
Subset convolution can also be used to derive faster parameterized algorithms.
For example, van Rooij, Bodlaender, and Rossmanith [49] gave an O(2tn) time
parameterized algorithm for counting perfect matchings in graphs of treewidth
at most t based on a generalized fast subset convolution algorithm. Vassilevska
and Williams [54] introduced a new approach for computing permanent of rect-
angular matrix based on the fast subset convolution.

The application of inclusion-exclusion to combinatorial optimization goes
back to Ryser’s formula for the permanent [52], which remains the most ef-
fective way to count the number of matchings in a bipartite graph. The first
explicit reference to combinatorial optimization is for TSP by Kohn, Gottlieb,
and Kohn [39], and a concise paper by Karp [36] applying the idea to a number
of hard problems. Karp’s paper is very compact and has probably gone slightly
unnoticed, as it focuses on cases where the technique offers reduction in space as
compared to a dynamic programming algorithm, but at the expense of a possi-
ble slight increase in running time. Later, Bax and Franklin [3, 4, 6] used similar
methods to count paths and cycles in general graphs. These techniques provide
an O∗(2n) time algorithm for counting Hamiltonian paths [36, 4].

The proof of the inclusion-exclusion principle comes from Björklund et al.’s
paper [13]. Exact algorithms for the set partition problem in Example 4 and
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for computing cover polynomial in Example 6 are due to Björklund et al. [13,
15]. In the conference versions [11, 40] of [13] and some other papers [12, 32, 33,
31], exact algorithms using inclusion-exclusion for other partitioning and cov-
ering problems are given. The inclusion-exclusion technique is also used to give
a faster exact algorithm for computing the permanent of a matrix over rings
and finite commutative semirings [20]. The polynomial space exact algorithm
for counting Hamiltonian paths in Example 7 is due to Karp [36]. The inclusion-
exclusion approach for counting subgraph isomorphisms using homomorphism
as demonstrated in Example 8 is developed by Amini, Fomin and Saurabh [1].
Nederlof [44] further developed inclusion-exclusion techniques to derive a number
of polynomial space algorithms. Additionally, the approach based on a combina-
tion of branching and inclusion-exclusion is developed in [45, 50, 48, 47]. For the
recent progress on the algorithmic uses of inclusion-exclusion, please refer to the
survey by Husfeldt [34].

The technique used for deriving faster exact algorithms in bounded graphs
is introduced by Björklund et al. in [16, 17]. The exact algorithm for TSP in
bounded graphs in Example 10 comes from [17].

The application of algebraic methods in designing exact algorithms can be
traced back to the famous paper by Kohn et al. [39] on solving the traveling
salesman problem using generating polynomials. Björklund introduced the al-
gebraic sieving method in some recent papers [9, 10]. The exact algorithms for
k-dimensional matching and Hamiltonicity come from [9] and [10], respectively.
The polynomial circuit based approach for deriving polynomial space exact algo-
rithms is developed by Lokshtanov and Nederlof in [42]. Faster polynomial space
exact algorithms for subset sum were also proposed in the same paper, and by
combining with subset convolution, they gave polynomial space exact algorithms
for the Steiner tree problem as well as the TSP problem. Very recently, by using
a new algebraic method based on computing the hafnian over an arbitrary ring,
Björklund [8] gave a faster polynomial space algorithm for counting the number
of perfect matchings.

This chapter focuses only on the recently resurrected or newly developed com-
binatorial and algebraic approaches for designing either faster or space efficient
exact algorithms. Many recent successes in using these approaches suggest that
these approaches could play a significant role in the design of exponential ex-
act algorithms for many other NP-hard problems. Other than these approaches,
there are also other classical methods for tackling NP-hard problems, such as
branching and local search methods. For detailed illustrations of these classi-
cal methods, please refer to Woeginger’s survey [55]. Schöning in his concise
survey [53] investigated how randomization can be used to design randomized
exponential time algorithms. Most recently, perhaps in response to the rapid
development of exact algorithms research, Fomin and Kratsch have written an
excellent text [27] on exact exponential algorithms. Both classical methods and
newly developed techniques such as measure and conquer are covered by this
book. The book discusses also combinatorial methods for which our chapter
tries to fill in some of missing details. On top of that, this chapter demonstrates
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how to employ these techniques to design space efficient exact algorithms with-
out increasing the running time, as well as how the newly developed algebraic
approaches can be utilized to design either faster or space efficient exact algo-
rithms.

6 Cross-References

For more details on dynamic programming, please refer to Chapter [Advanced
Techniques in Dynamic Programming]. Additional information about combina-
torial problems on coloring, dominating set and hypergraph Matching can be
found in Chapters [On Coloring Problems,Combinatorial Optimization Prob-
lems on Hypergraph Matchings: A Probabilistic Analysis, Algorithmic Aspects
of Domination in Graphs,Variations of Dominating Set Problem].
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