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Abstract Information exchange is a fundamental communication primitive in radio
networks. We study this problem in multi-channel single-hop networks. In particu-
lar, given k pieces of information, initially stored in k nodes respectively, the task is
to broadcast these information pieces to the entire network via a set of F channels.
We develop efficient distributed algorithms for this task for the scenario where both
the identities and the number k of the initial information holders are unknown to the
participating nodes. Assuming nodes with collision detection, we present an efficient
randomized algorithm for unrestricted information exchange, where multiple infor-
mation items can be combined into a single message. The algorithm disseminates all
the information items within O( k

F +F log2 n) timeslots with high probability. To the
best of our knowledge, this is the first algorithm that breaks the Ω(k) lower bound for
unrestricted information exchange if only a single channel is available. This result
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establishes the superiority of multiple channels for the task of unrestricted informa-
tion exchange. Moreover, for restricted information exchange, where each message
can carry only one information item, we devise a randomized algorithm that com-

pletes the task in O(k + log2 n
F + log n) timeslots. When k is large, both algorithms are

asymptotically optimal, as they can reach the trivial lower bounds of Ω( k
F ) and Ω(k)

for unrestricted and restricted information exchange, respectively.

Keywords Wireless network · Multiple channels · Information exchange ·
Distributed algorithm · Randomized algorithm

1 Introduction

Today, most wireless devices, such as those using wireless LAN or Bluetooth, can
use multiple channels over their allocated radio spectrum to communicate. Devices
using the 802.11 standard have access to around a dozen channels I. 802.11 (1999),
whereas Bluetooth devices have access to around 75 Bluetooth Consortium (2007).
A natural question then arises: How much faster can we send information around if
indeed we have access to multiple communication channels? Surprisingly, despite the
amount of work done so far on multiple access channels for the problem of transmission
scheduling, the exact benefits of multiple communication channels for the fundamental
task of information dissemination, or their characterization, remain largely unexplored.

In this paper we address this missing piece—the effects of multiple channels on
the performance of information dissemination—in the theory of wireless network
communication. We consider the task of information dissemination (also called infor-
mation exchange) because it is the most fundamental one of all primitive operations.
The task is to disseminate k information items, initially stored at k different nodes,
to all the nodes in the network via a number of shared communication channels. As
the channels are shared, collision of transmissions is a common phenomenon. When
a collision occurs, none of the transmissions involved can be successful. The goal of
an effective algorithm for information exchange is to minimize the time required to
disseminate the information by avoiding collisions as much as possible.

2 Our results

We study information exchange in a synchronized single-hop communication network,
where each node can directly communicate with every other node. Single-hop networks
on one hand represent our first step towards solving the problem for a wide range of
networking scenarios, and on the other hand they can be practical as many ad-hoc
wireless networks formed with a small physical space are most likely single-hop. The
communication takes place through F ≥ 2 available channels. In each timeslot, each
node can choose one of the F channels, and then either listen to or transmit a message
using the chosen channel. We assume that nodes can detect whether or not a collision
has taken place. But nodes have no prior knowledge about which nodes possess the
information items initially, nor the number k.
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We first give an efficient distributed algorithm for unrestricted information
exchange. A message is unrestricted if there is no bound on the number of infor-
mation items that it can carry. Our algorithm can disseminate all information items
to all nodes in O( k

F + F log2 n) timeslots with high probability1. This result demon-
strates the superiority of multiple channels over a single one for the task of information
exchange when multiple information items can be combined into a single message.
Note that in order to accomplish information exchange, each of the k information
item holders needs to transmit a message to at least one other node, and so if only
one channel is available, we have a lower bound of Ω(k) on disseminating all infor-
mation items. In addition to showing the advantage of multiple channels, we prove
that our algorithm is asymptotically optimal for k = Ω(F2 log2 n), by deriving an
Ω( k

F ) lower bound valid for every unrestricted information exchange algorithm using
F channels.

We then present a randomized algorithm for restricted information exchange where
each message can only contain one information item. Our algorithm can accomplish

information exchange in O(k + log2n
F + log n) timeslots with high probability, which

improves the best known O(k+log2 n) result Fernández Anta and Mosteiro (2010) for
a single-channel case when k is small. A trivial lower bound for solving information
exchange is Ω(k), since in each timeslot, a node can only receive at most one message.

The proposed algorithm is asymptotically optimal when k = Ω(
log2n

F + log n).
In the following sections, we first give an overview of the related work, in Sect. 3.

The network models are presented in Sect. 4. We describe the unrestricted and restricted
information exchange algorithms in Sects. 5 and 6 respectively. We conclude the paper
in Sect. 7.

3 Related work

The problem of restricted information exchange on multiple channels is not new Holzer
et al. (2011, 2012). But these works have a different objective: they target at asymptoti-
cally optimal solutions using as few channels as possible. In Holzer et al. (2011), Holzer
et al. presented both randomized and deterministic asymptotically optimal algorithms
for restricted information exchange when there are enough available channels. Specif-
ically, for k ≤ √

log n and
√

log n ≤ k ≤ log n−3
β

with an elaborately set constant
β, they gave randomized algorithms which can disseminate all information items
in Θ(k) timeslots with high probability using O(n1/2) and O(nβ log k/k) channels,
respectively. If there are n channels available, a deterministic algorithm was proposed
to accomplish information exchange in O(max{k, log n}) timeslots. The determinis-
tic result was improved in Holzer et al. (2012) which achieves asymptotically optimal
time bound using O(nlog k/k) channels when k ≤ 1

6 log n and log1+ρ(n/k) channels
otherwise. An Ω(nΩ(1/k)+logk n) lower bound was also derived for any asymptoti-
cally optimal deterministic information exchange algorithm when the message size

1 In this context, we say an event occurs with high probability if its probability of occurrence is 1 − n−c

for a constant c > 0.
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is restricted. With the assumption that nodes can listen to and receive messages from
multiple channels concurrently, Shi et al. (2012) gave an O(log k log log k) time ran-
domized information exchange algorithm using Θ(n) channels. Furthermore, in a very
recent paper Daum et al. (2013), Daum et al. gave a randomized protocol with time

complexity O(k log n + log2 n
F + log n log log n) when there are F available chan-

nels. In contrast, very few works addressed unrestricted information exchange on
multiple channels. To the best of our knowledge, there is only one result, which
is given in Daum et al. (2013). Their proposed randomized algorithm can accom-

plish information exchange in O(k + log2 n
F + log n log log n) timeslots with high

probability. All the above works did not try to study the benefit of collision detec-
tion when it is used in solving the information exchange problem on multiple chan-
nels.

Information exchange on a single channel has been very well studied. There is a
long list of papers addressing this problem since 1970s Capetanakis (1979), Hayes
(1978) and Mikhailov and Tsybakov (1978). In single-channel networks, informa-
tion exchange is also known as contention resolution or k-selection. Previous studies
mainly focus on the restricted information exchange with or without collision detec-
tion. Assuming collision detection as in here, a randomized adaptive protocol with
expected running time of O(k + log n) was presented in Martel (1994). By making
use of the expected O(log log n) selection protocol in Willard (1986), and in Kowal-
ski (2005), Kowalski argued that the protocol in Martel (1994) can be improved to
O(k + log log n) in expectation. In Willard (1986), Willard also gave an Ω(log log n)

expected time lower bound for fair selection protocols. When requiring high prob-
ability results, the best known randomized algorithm was given in Fernández Anta
and Mosteiro (2010), which can solve the k-selection problem in O(k + log2 n)

rounds without assuming collision detection. This protocol is asymptotically opti-
mal for k ∈ Ω(log2 n) given the trivial lower bound Ω(k). Furthermore, an Ω(log n)

expected time lower bound for randomized k-selection protocols is implied by the
result in Kushilevitz and Mansour (1998) on the expected time needed to get the
first message delivered without collision in a radio network. In a recent work Fer-
nández Anta et al. (2011), by assuming that the channel can provide feedback on
whether a message is successfully transmitted, an O(k) randomized protocol was pro-
posed even without knowing n. However, the error probability that can be incurred by
this protocol is 1

kc , rather than 1
nc . Concerning deterministic solutions, with collision

detection and making use of the technique of tree algorithms, adaptive protocols for
k-selection were presented with running time O(k log(n/k)) in Capetanakis (1979),
Hayes (1978) and Mikhailov and Tsybakov (1978). A lower bound of Ω(k logk n) is
shown in Greenberg and Winograd (1985) for this class of protocols. Furthermore,
oblivious protocols in which the sequence of transmissions of a node is indepen-
dent of the received messages have also been studied in Komlòs and Greenberg
(1985), Clementi et al. (2001) and Kowalski (2005). There are also some other
work focusing on dynamic packet arrivals, e.g., in a stochastic model Goldberg et
al. (2004), in adversarial queuing models Bender et al. (2005), Chlebus et al. (2006)
and Kowalski (2005), and message arrivals determined by an adversary Yu et al.
(2012).
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4 Model and preliminaries

Consider a single-hop network with n nodes, i.e., each pair of nodes can directly
communicate with each other. There are F ≥ 2 available channels. We use [F] :=
{1, 2, · · · ,F} to denote these channels. Time is synchronized and divided into slots,
and the nodes start executing the algorithm at the same time. In each timeslot, each
node can select one of the F channels and operate on the selected channel: listen or
transmit. When a node v listens to a channel C , it can receive a message if and only if
there is only one node transmitting on channel C . When two or more nodes transmit on
the same channel, a collision occurs and none of these transmissions can be successful.
Specifically, a node that operates on a channel in a given timeslot learns nothing about
events on other channels. It is assumed that nodes can detect collisions, i.e., they
can distinguish between collision and silence. Note that with collision detection, a
transmitting node can know whether the transmission succeeds or not.

We next introduce some definitions and concrete assumptions about the information
exchange problem.

Definition 1 (Information Exchange) In a wireless network consisting of n nodes,
there are a subset of k ≤ n nodes, each of which is given a distinct piece of information.
The information exchange problem is to disseminate all these k information items to
every node in the network in the fewest timeslots.

It is assumed that the subset of nodes which are assigned information items is
determined by an adversary before the first time slot. We also assume that nodes have
no knowledge about the number k, nor the subset of nodes possessing the information
items. The only prior knowledge given to nodes is a polynomial upper bound on the
network size n. As shown in the subsequent sections, a polynomial estimate only affects
the time complexity of the proposed algorithms by a constant factor, so we simply
use n to denote the estimate. It is not difficult to provide nodes with this estimate in
reality.

We study two types of information exchange: unrestricted and restricted. In unre-
stricted information exchange, a node can transmit a message containing multiple
information items in each timeslot. In the restricted case, messages are of bounded
size: precisely, we assume that each message can only carry one information item.

Before concluding this section, we state the following lemmas which will be use-
ful later. The proofs of these lemmas can be found in most advanced mathematical
textbooks.

Lemma 1 For i = 1, 2, · · · , n, xi ∈ [0, 1
2 ], it holds that

(
1

4

)∑n
i=1 xi

≤
n∏

i=1

(1 − xi ) ≤
(

1

e

)∑n
i=1 xi

Lemma 2 (Chernoff Bound) For a parameter a > 0, let X1, . . . , Xn be independent
or negatively associated non-negative random variables with Xi ≤ a. Let X = X1 +
· · · + Xn and μ = E[X ]. For δ > 0, it holds that
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Pr(X ≥ (1 + δ)μ) ≤
(

eδ

(1 + δ)1+δ

)μ/a

.

Furthermore, for every δ ∈ (0, 1),

Pr(X ≤ (1 − δ)μ) ≤
(

e−δ

(1 − δ)1−δ

)μ/a

≤ e−δ2μ/2a .

5 Unrestricted information exchange algorithm

In this section, we present a distributed algorithm for unrestricted information
exchange. We use the notation F = F − 1.

5.1 Algorithm

In the algorithm, the information items are first collected to a small number of nodes
through the transmissions on the first F channels, and then these nodes would dissem-
inate the information to all the other nodes by transmitting on the F + 1-th channel.
In particular, after the algorithm starts, each active node (possessing an information
item) tries to send its message to other active nodes through a channel selected from
the first F channels. Once a node has successfully sent a message that contains its own
information item and perhaps also other received information items to other active
nodes, it becomes inactive and only listens. While a node finds that it is the only one
choosing a particular channel in the round, it starts broadcasting its message to all
other nodes on the F + 1-th channel. Since each node only becomes inactive after
transmitting its information to other active nodes or broadcast a message to all others,
all information items will finally get broadcast on channel F + 1, which ensures the
correctness of the algorithm.

During the algorithm, nodes may stay in four states: the information collection state
C , the broadcast state B, the adjusting state A and the inactive state I . Initially, the
state of nodes storing information items is set as C , and others stay in state I during the
algorithm execution. Nodes in state I do nothing except listening on channel F + 1.
The algorithm execution is divided into phases. A phase consists of Θ(log n) rounds
which contains two timeslots each. Between any two consecutive phases, there is an
extra timeslot, called the adjusting timeslot, which is set for adjusting the transmission
probability of nodes in state C . There are three parameters used in the algorithm. count
and phase are use to record the number of rounds and phases that the node has executed
the algorithm, respectively, while MegNum is used to count the number of received
messages. We next introduce the operations in states C , B and A in more detail. The
pseudo-code is given in Algorithm 1.

Information collection state C In state C , the information items are collected to a
small number of nodes. At the beginning of the algorithm, all active nodes (that have a
piece of information) are in state C . In each round of each phase, with probability 1/2,
each node in state C selects channel F + 1 on which it listens for receiving messages
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transmitted on this channel. With the remaining probability, nodes select an operating
channel from the first F channels uniformly at random. On the selected channel, in
the first timeslot of the round, nodes transmit with probability pc and listen with
probability 1 − pc (the value of pc will be given later), while in the second timeslot of
the round, nodes transmit deterministically. The transmission on the selected channel
in the second timeslot is to determine whether there are multiple nodes on a channel
or not, which is the condition for a node to change from state C to state B as described
later. In the adjusting timeslot, all nodes in state C listen on channel F + 1.

The transmission probability pc of nodes in state C is initially set as F
2N . If there is

not any node in state A transmitting on channel F + 1 in the adjusting timeslot after
each phase, all nodes in state C double their transmission probability, or otherwise they
would leave the transmission probability unchanged. The transmission probability will
no longer be changed after it is increased to 1/2.

When a node in state C receives a message, it combines the received information
items and its original message into a new one, then transmits the updated message
during subsequent execution of the algorithm.

Once a node v in state C transmits its message successfully on the selected channel
in the first timeslot of a round, v will change its state to B or I according to whether
a collision is detected or not in the subsequent timeslot. If there is a collision, i.e.,
other nodes in state C which have received v’s message selecting the same channel,
v enters state I . Otherwise, v enters state B. After each phase, nodes that received at
least 12 log n messages in the last phase transit to state A in the adjusting timeslot.

Adjusting state A In each adjusting timeslot, nodes in state A transmit on channel
F + 1 and then change its state to state C in the subsequent phase.

Broadcast state B Each node in state B transmits on channel F +1 with probability
1

4cl F log n for ωF log2 n timeslots, where cl is a constant defined in Algorithm 1 and
ω is a large enough constant ensuring high probability results. With probability 1 −

1
4cl F log n , each node listens on channel F + 1.

5.2 Analysis

We show below the correctness and the efficiency of Algorithm 1. Specifically, our
algorithm can accomplish information exchange in O( k

F + F log2 n) timeslots with
high probability. It is also proved that any information exchange algorithm needs
Ω( k

F ) timeslots even if collision detection is assumed. This lower bound shows the
asymptotic optimality of the proposed algorithm for large k.

We use C , A, B to denote the set of nodes in the corresponding states, and PC

and PB to denote the sum of transmission probabilities of nodes in state C and B,
respectively.

We start the proof by first showing that the probability adjusting strategy in Algo-
rithm 1 ensures that PC can be upper bounded for a sufficiently long time which is
crucial for bounding the time the nodes spend in state C .

Lemma 3 In the first O(n2) rounds of the algorithm’s execution, with probability
1 − O(n−1), PC ≤ F/2.
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Algorithm 1 Unrestricted Information Exchange

Initially, cl = 3072; l = cl log n; pc = F
2n ; count = 1; phase = 1; MsgNum = 0

State C
1: if count = l + 1 then
2: listen on Channel F + 1;
3: count = 1;phase = phase + 1;MsgNum = 0
4: if there is not any transmission then
5: pc = min{2pc,

1
2 }

6: end if
7: else
8: uniformly at random pick q ∈ [0, 1]
9: if q ∈ [0, 1/2] then
10: uniformly at random select a channel from {1, 2, . . . , F}
11: if count is odd then
12: transmit with probability pc and listen with probability 1 − pc on the selected channel
13: if received a message then
14: MsgNum = MsgNum + 1
15: end if
16: else
17: transmit on the selected channel
18: if successfully send a message in the last timeslot then
19: if detect a collision then
20: state = I
21: else
22: state = B; count = 1; MsgNum = 0
23: end if
24: end if
25: if count = l and MsgNum ≥ 12 log n then
26: state = A
27: end if
28: end if
29: else
30: listen on Channel F + 1
31: end if
32: count = count + 1
33: end if
State A
34: transmit on Channel F + 1;
35: state = C ; count = 1; phase = phase + 1; MsgNum = 0
State B
36: for ωF log2 n timeslots do
37: transmit with probability 1/4cl F log n and listen with remaining probability on Channel F + 1
38: end for

Proof Assume that t is the first round such that the lemma does not hold. Since
the transmission probability of nodes in state C may only be increased in adjusting
timeslots, by the algorithm, t must be the first round of a certain phase and there are
not nodes joining state A in the adjusting timeslot before the phase. Let this phase be
phase i . By the initial transmission probability setting for nodes in state C , i > 1.
In the adjusting timeslot before phase i , the transmission probability of each node in
state C can be at most doubled. So PC is in the interval ( F

4 , F
2 ] during phase i − 1.

Next we lower bound the number of messages that a node in C can receive on the first
F channels during phase i − 1.
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In each round of phase i − 1, a node v selects a channel from the first F channels
uniformly at random with a total probability 1/2. In a round j during phase i − 1,
assume that v chooses channel k. Denote Pr as the probability that v receives a message
in round j . Then

Pr = (1 − pc)
∑

u∈C\{v}
pc · 1

2F
·

∏
w∈C\{u,v}

(1 − pc · 1

2F
)

≥ 1

2

∑
u∈C\{v}

pc · 1

2F
· (

1

4
)
∑

w∈C pc· 1
2F

≥ 1

4

∑
u∈C

pc · 1

2F
· (

1

4
)

F
2 · 1

2F

≥ 1

64

(1)

In other words, in each round of phase i −1, with constant probability, v will receive
a message. In expectation, v can receive 24 log n messages. By the Chernoff bound in
Lemma 2, during phase i −1, v can receive at least 12 log n messages with probability
1 − n−3. Then in the adjusting timeslot after phase i − 1, v joins state A and transmits
on channel F + 1. All nodes in C does not change the transmission probability in the
subsequent phase. So in round t , PC ≤ F

2 with probability 1−n−3, which contradicts
the assumption on t . None of the first O(n2) rounds are the first violating one with
probability 1 − O(n−1). ��

For nodes in state C , we call a phase an increasing one if the transmission probability
is doubled after that, and otherwise an unchanging phase. In the following lemma, we
present a sufficient condition for a phase to be increasing, with which we can start
bounding the time for nodes in state C .

Lemma 4 For a phase during which PC ≤ F
128 , it is an increasing phase with prob-

ability at least 1 − n−2.

Proof Assume that phase i satisfies the condition. We only need to show that there is
not any node joining state A after phase i , i.e., each node in C receives less than 12 log n
messages during phase i . Consequently, after phase i , the transmission probability of
nodes in C is doubled, which completes the proof.

In each round of phase i , the probability of a node v in state C receiving a message
is

(1 − pc)
∑

u∈C\{v}
pc · 1

2F
·

∏
w∈C\{u,v}

(1 − pc · 1

2F
) ≤ PC · 1

2F
≤ 1

256
. (2)

Then during phase i , node v can receive 6 log n messages in expectation. Using the
Chernoff bound in Lemma 2, the number of messages v received is less than 12 log n
with probability 1−n−3. Each node receives less than 12 log n messages during phase
i with probability 1 − n−2. In other words, with probability 1 − n−2, there will not
be a node joining state A after phase i , and nodes in C will double the transmission
probability. ��
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We next bound the time that nodes spend in state C . Let i1 be the first phase at
the beginning of which PC ≥ F

128 . Let i2 be the first phase at the beginning of which
|C | ≤ 3cl F log n. We divide the execution of the algorithm for nodes in state C into
two stages by i2. Stage 1 consists of phases from the beginning to phase i2 − 1 and
Stage 2 consists of the rest.

Lemma 5 With probability 1− O(n−1), Stage 1 takes at most O( k
F + log2 n) rounds.

Proof Let j1 = min{i1 − 1, i2 − 1}. Then we can prove the following result.

Claim With probability 1 − O(n−1), j1 ∈ O(log n).

Proof By the definition of j1, in each round of a phase j with j < j1, PC < F
128 and

there are at least 3cl F log n nodes in C . Then by Lemma 4, a phase j with j < j1
is an increasing phase with probability 1 − n−2. In other words, after phase j , the
transmission probability of nodes in state C is doubled. Furthermore, since at the
beginning of phase j , |C | ≥ 3cl F log n, and at most cl F log n nodes in C change their
states in phase j , PC can be decreased at most by a factor of 1

3 . Denote Pi
C as the sum

of transmission probability of nodes in C at the beginning of a phase i . Then, after
phase j , P j+1

C ≥ 2
3 P j

C · 2 = 4
3 P j

C . Thus, with probability 1 − O(n−1), after at most
O(log n) phases, either the number of nodes in C decreases to less than 3cl F log n,
or PC will exceed F

128 , which completes the proof. ��
If i2 ≤ i1, the lemma has been proved by the above claim. We assume that i1 < i2.

We divide Stage 1 into two substages by i1. Substage 1 consists of phases from the
beginning to phase i1 − 1 and Substage 2 consists of the rest phases in Stage 1. By
the above claim, Substage 1 contains at most O(log2 n) timeslots with probability
1 − O(n−1). So we only need to bound the time for Substage 2. Before that, we prove
a crucial claim which shows a lower bound for PC , as follows.

Claim In the first O(n) phases of Substage 2, with probability 1− O(n−2), PC ≥ F
288 .

Proof Assume that in Substage 2, phase j is the first one during which there is a
round such that PC < F

288 . By the definition of i2, it is easy to see that in each phase
of Substage 2, PC can be decreased by at most a factor of 1

3 , by which it is easy to get
that j > i1, since in each round of phase i1, PC ≥ F

192 . We can also get that in each
round of phase j − 1, PC < F

128 . Phase j − 1 is an increasing phase with probability
1 − n−2 by Lemma 4. Note that PC ≥ F

288 in each round of phase j − 1, since phase
j is the first one violating the lower bound on PC . Thus, with probability 1 − n−2, in
any round of phase j , PC ≥ 2 · F

288 · 2
3 > F

288 , which contradicts the assumption of
phase j . With probability 1 − O(n−1), any one of the first O(n) phases in Substage
2 is not the first one violating the lower bound on PC . ��

With the above claim, we are ready to bound the time for Substage 2.

Claim With probability 1 − O(n−1), i2 − i1 ∈ O( k
F log n ).
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Proof By Lemma 3 and the above claim, in any round of the first O(n) phases in
Substage 2 (if Substage 2 contains so many phases), PC ∈ [ F

288 , F
2 ] with probability

1 − O(n−1). With this bound in hand, we next show that in each phase of Substage 2,
the number of nodes in C is decreased by Ω(F log n).

In a round r of a phase j with i1 ≤ j ≤ min{i1 + O(n), i2 − 1}, the expected
number of nodes in C transiting to state B or I is

Ns =
∑
v∈C

1

2
pc

∏
w∈C\{v}

(1 − 1

2F
· pc) ≥

∑
v∈C

1

2
pc ·

(
1

4

)∑
w∈C

pc
2F

≥ 1

4

∑
v∈C

pc ≥ F

1152

(3)

During phase j , the number of nodes in C is decreased by at least F log n. Using the
Chernoff bound, the decreasing number is at least Ω(F log n) with probability 1−n−2.
With probability 1 − n−1, after at most O( k

F log n ) phases in Substage 2, the number

of nodes in state C decreases to be less than 3cl F log n, i.e., i2 − i1 ∈ O( k
F log n ).

This result is obtained based on Lemma 3 and the above claim. Considering the error
probability of these two results and by the union bound, the claim is proved.

Since each phase contains Θ(log n) timeslots, the lemma is proved by above
claims. ��

In the following Lemma, we bound the time needed for Stage 2.

Lemma 6 With probability 1 − O(n−1), Stage 2 takes O(F log n + log2 n) timeslots.

Proof At the beginning of Stage 2, it is easy to see that there are at most 4cl F log n
nodes in C . During each unchanging phase of Stage 2, Ω(log n) nodes in C transit to
state B or I . So there are at most O(F) unchanging phases. After O(F + log n)

phases, each node in C will have constant transmission probability 1/2. In each
round of the subsequent phase, by noting that Lemma 3 still holds, the probability
of a node v in state C sending a message successfully on the selected channel is
1
2 pc

∏
u∈C\{v}(1 − 1

2F pc) ≥ 1
8 . During this phase, with probability 1 − n−1, each

node in C will transmit a message successfully and then joins state B or I . Combining
everything, with probability 1− O(n−1), Stage 2 takes O(F log n + log2 n) timeslots.

��
By Lemma 5 and Lemma 6, we have upper bounded the time needed for nodes

in state C . To bound the running time of the algorithm, we still need to bound the
execution time for nodes in state B. We first give an upper bound on the number of
nodes in state B.

Lemma 7 There are at most 4cl F log n nodes joining state B with probability 1 −
O(n−1).

Proof The lemma is proved by showing that there are not nodes joining state B in
Stage 1. Noting that there are at most 4cl F log n nodes in C in Stage 2, the lemma is
proved.
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By the algorithm, a node enters state B only if in a round, it is the only node
selecting a channel from {1, . . . , F}. In a round of Stage 1, since there are more than
2cl F log n nodes in C , there is at least 2cl log n nodes in C selecting each channel in
expectation. Then for a channel j , using the Chernoff bound, it is easy to show that
with probability 1−n−3, there are at least two nodes on j . This is true for all channels
with probability 1 − n−2, which means that with probability 1 − n−2, there is not a
node joining state B in this round. By Lemma 5, with probability 1 − O(n−1), Stage
1 has at most O( k

F + log2 n) rounds. Thus, with probability 1 − O(n−1), in each
round of Stage 1, there are not nodes in state C joining state B, which completes the
proof. ��
Lemma 8 With probability 1 − O(n−1), each node in state B can successfully send
its message to all other nodes on channel F + 1 in O(F log2 n) timeslots.

Proof In each timeslot except for the adjusting timeslot, for a node v in B, the
probability that v is the only transmitting node on channel F + 1 is at least

1
4cl F log n

∏
u∈B\{v}(1− 1

4cl F log n ) ≥ 1
16cl F log n . AfterωF log2 n timeslots, by noting the

listening probability of each node on channel F + 1 being at least 1/2, the probability
that a node u can receive the message from v is at least 1−(1− 1

2 · 1
16cl F log n )ωF log2 n ≥

1 − n−3 if ω is a large enough constant. The probability that all nodes can receive
the message v sends with probability 1 − n−2. Then by Lemma 7, with probability
1 − O(n−1), each node in state B can send its message to all other nodes. ��
Theorem 1 The information exchange can be accomplished after executing Algorithm
1 for O( k

F + F log2 n) timeslots with probability 1 − O(n−1). Furthermore, any

information exchange algorithm takes at least Ω( k
F ) timeslots.

Proof The running time of Algorithm 1 can be obtained by Lemmas 5, 6 and 8.
By the algorithm, each node in state C becomes inactive only if it transmits its

message to at least one other node in state C . Nodes in state C will finally join state
B if they do not become inactive, and each node in state B can broadcast its message
to all nodes with probability 1 − O(n−1) by Lemma 8. So each information item
can be disseminated to all nodes with probability 1 − O(n−1) during the algorithm’s
execution.

The lower bound is obtained by noting that each active node needs to transmit its
message to at least one other node and in each timeslot, at most F nodes can send
their messages successfully. ��

6 Restricted information exchange algorithm

In this section, we propose a randomized distributed algorithm for restricted informa-
tion exchange, where each message can carry only one information item.

Again, we define F = F − 1 and denote the F channels as {1, 2, · · · , F}. The
F + 1-th channel is used as a special broadcasting channel.

Without loss of generality, we assume F ≤ log n. Otherwise, we only use the first
log n + 1 channels and ignore the others. For simplicity, we assume that log n is an
integer and F divides log n.
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6.1 Algorithm

Our algorithm uses the first F channels to reduce the number of collisions on channel
F + 1. In particular, nodes first try to broadcast their messages on a channel selected
from the first F channels. Only those that successfully sent messages on the selected
channels will broadcast on channel F + 1. By doing so, in any timeslot, the number
of nodes simultaneously transmitting on channel F + 1 is reduced to an acceptable
level, such that there is a high probability that one of these nodes can send its message
to all the other nodes. The details are given in Algorithm 2.

In the algorithm, nodes may be in two states: the active state A and the inactive state
I . Initially, nodes possessing a message to broadcast enter the active state A, and the
others stay in state I . After transmitting the message successfully, an active node will
change its state to I . Nodes in state I do nothing except listening on channel F + 1
for receiving messages.

The algorithm’s execution is divided into phases. Each phase consists of l = α log n
rounds, and each round has two timeslots, where α is a large enough constant for ensur-
ing high probability results. The first slot C is used for competition (competing for the
chance to broadcast on channel F +1), and the second slot B for broadcasting. Nodes
having sent their messages successfully on selected channels in slot C will transmit
their messages in the subsequent slot B on channel F +1. In slot C of each round, each
node in state A chooses one of the first F channels according to an exponential prob-
ability distribution. After choosing a channel, nodes listen with constant probability
pl = 3

4 and broadcast with probability 1− pl . Nodes that have successfully transmitted
(with no collision) on selected channels in slot C switch status to broadcast . In the sub-
sequent slot B, all nodes with status broadcast broadcast their messages on channel
F+1. At the same time, all other nodes listen on channel F+1. Thus, we guarantee that
the message can be received by all nodes if there is exactly one node transmitting. Once
a node successfully sends its message to all other nodes (with no collision), it changes
its state to I ; otherwise, it switches its status back to listen and goes on executing the
algorithm.

The initial probability of choosing channel i is set as 2i−F

4n for 1 ≤ i ≤ F . After
each phase, the selection probability is adjusted based on the number of successfully
transmitting nodes on channel F + 1 in the phase. If there are less than 12 log n
messages having been successfully transmitted on channel F +1, the selection proba-

bility for each channel increases by a multiplicative factor 2
F
2 ; otherwise, the selection

probability stays unchanged. Similar to Algorithm 1, we say a phase is increasing if
the increasing condition for selection probability is satisfied, and unchanging other-
wise. Then after cA = 2 log n

F increasing phases, the selection probability for channels
F, F − 1, F − 2, · · · , 1 is 1

4 , 1
8 , 1

16 , · · · , 1
2F+1 , respectively. Then the selection prob-

ability will not be changed any more. Note that there are k messages in total which
will be broadcast on channel F + 1, so at most O( k

log n ) unchanging phases will
occur, since in each unchanging phase, there are Ω(log n) successful transmissions
on channel F + 1.
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Algorithm 2 Restricted Information Exchange
State: A - active, I - inactive
Slot: C - competition, B - broadcast

1: l = α log n; cA = 2 log n
F

2: Np = 0; count = 0; MsgNum = 0; status = listen; slot = C
3: if have a message to broadcast then
4: state = A
5: else
6: state = I
7: end if
8: while state �= I do
9: count = count + 1
10: if slot = C then
11: uniformly at random pick: q ∈ [0, 1)

12: Q = max{i : q ≥ 2i−F · 2(F/2)Np /(4n)}
13: if Q > 0 and Q ≤ F then
14: Listen on channel Q with probability pl or broadcast on channel Q otherwise
15: end if
16: if broadcast and detect no collision then
17: status = broadcast
18: end if
19: slot = B
20: end if
21: if slot = B then
22: if status = broadcast then
23: broadcast the message on Channel F + 1
24: if detect no collision then
25: state = I
26: end if
27: status = listen
28: else
29: listen on Channel F + 1
30: if received a message then
31: MsgNum = MsgNum + 1
32: end if
33: slot = C
34: end if
35: end if
36: if count = l then
37: if MsgNum < 12 log n then
38: Np = min{Np + 1, cA}
39: end if
40: count = 0
41: end if
42: end while
43: Listen on channel F + 1

6.2 Analysis

In the following we prove the correctness and efficiency of Algorithm 2.

Theorem 2 With probability 1 − O(n−1), Algorithm 2 can solve the information

exchange problem in O(k + log2 n
F + log n) timeslots.
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Without confusion, we also use A to denote the set of nodes in state A. For a channel
m with 1 ≤ m ≤ F , we denote the probability that a node u chooses m as Pu(m), and
let Pm = ∑

u∈A Pu(m) be the sum of the probability of active nodes choosing channel
m.

We call a round successful if there is exactly one node switching status to broadcast
(successfully transmitting on the selected channel) in slot C . Note that only nodes with
status broadcast can broadcast in slot B, so the successful round also means there
is exactly one node broadcasting in slot B. We give a sufficient condition for the
occurrence of a successful round.

Lemma 9 If PF ∈ [ 1
4 , 2F−2] in a round r, then r is successful with constant proba-

bility.

Proof By the setting of the channel selection probability, it holds that PF = 2PF−1 =
22 PF−2 = · · · = 2F−1 P1. Then we have Pm ∈ [2m−2−F , 2m−2]. Thus, there exists
a channel λ such that Pλ ∈ [ 1

4 , 1
2 ). Let Ai

λ be the event that only node i transmits on
channel λ. Then

Pr(Ai
λ) = (1 − pl)Pi (λ)

∏
j∈A\{i}

[1 − (1 − pl)Pj (λ)]

≥ (1 − pl)Pi (λ)
∏

j∈A\{i}
[1 − (1 − pl)Pj (λ)]

≥ (1 − pl)Pi (λ)4−(1−pl )Pλ =: C ′
i (4)

The last inequality holds by Lemma 1. Let Aλ be the event that in round r , there
is only one node transmitting on channel λ. By the independence of channel selection
of nodes, we have

Pr(Aλ) =
∑
i∈A

Pr(Ai
λ) ≥

∑
i

C ′
i = (1 − pl)Pλ4−(1−pl )Pλ ∈ Ω(1)

Similarly we define Ai
m and Am for each channel m with 1 ≤ m ≤ F and each

active node i . By above, we have bounded the probability that there is only one node
transmitting on channel λ. So in order to compute the probability that round r is
successful, we need to upper bound

∑
m∈[F]\λ

Pr(Am). At first, we bound Pr(Ai
m) as

follows.

Pr(Ai
m) = (1 − pl)Pi (m)

∏
j∈A\{i}

[1 − (1 − pl)Pj (m)]

= (1 − pl)Pi (m)

1 − (1 − pl)Pi (m)

∏
j∈A

[1 − (1 − pl)Pj (m)]

≤ (1 − pl)Pi (m)

1 − (1 − pl)Pi (m)
e−(1−pl )Pm ≤ 1 − pl

pl
Pi (m)e−(1−pl )Pm (5)
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With the above upper bound on Pr(Ai
m), we bound Pr(Am) as follows.

Pr(Aλ) =
∑

i

Pr(Ai
λ) ≤ 1 − pl

pl
Pme−(1−pl )Pm =: Cλ (6)

Note that the function xe−x ≤ e−1 for x ≥ 0 and by the set value of pl , we can get
that Pr(Am) < 1

2 . Now we are ready to bound
∑

m �=λ Pr(Am).
Let λ′ = min{λ+5, F}. Note that Pm+1 = 2Pm , we can get the following relations

on {Cm}.
Cm+1

Cm
= 2e− Pm

4 <
1

2
, ∀m ≥ λ′

Cm−1

Cm
= 1

2
e

Pm
8 <

3

5
, ∀m ≤ λ

With the above geometric relations, we can bound
∑

m<λ

Cm by 3
2 Cλ and

∑
m>λ′

Cm by

Cλ′ , then
∑

m∈[F]\λ
Pr(Am) can be upper bounded by a constant.

∑
m∈[F]\λ

Pr(Am) ≤
∑
m<λ

Cm +
∑

m>λ′
Cm +

λ′∑
m=λ+1

Cm

≤ 3

2
Cλ + Cλ′ +

λ′∑
m=λ+1

Cm ≤ 15

4
(7)

With the results in Inequality (5) and Inequality (7), the probability that r can be
lower bounded is as follows.

Pr(r is successful) ≥ Pr(Aλ)
∏

m∈[F]\λ
(1 − Pr(Am))

≥ Pr(Aλ)4
− ∑

m∈[F]\λ
Pr(Am )

≥ 1

4
Pλ4− 1

4 (Pλ+15) ∈ Ω(1) (8)

which concludes the proof. ��
We call a round which satisfies the condition in Lemma 9 a bounded one. In the

following lemma, we show that all messages will be broadcast successfully on channel
F + 1 after at most O(k + log n) bounded rounds.

Lemma 10 All messages can be broadcast successfully on channel F + 1 in O(k +
log n) bounded rounds with probability 1 − O(n−1).

Proof Let Xi indicate whether the i-th bounded round is successful and denote by
X = ∑r

i=1 Xi the number of successful rounds in the first r bounded rounds. By
Lemma 9, each bounded round succeeds with constant probability. Then E[X ] =
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∑r
i=1 E[Xi ] ≥ r · Ω(1). Let r = β(k + log n), where β is a constant. Then using

a standard Chernoff argument, if β is large enough, with probability 1 − O(n−1),
it is easy to show that X ≥ k, i.e., at least k nodes can successfully broadcast their
messages on channel F + 1, which means that all active nodes successfully broadcast
their messages. ��

Before proving the final result, we need to know when the condition in Lemma 9
can be satisfied. We first show that the upper bound on PF holds for a long enough
time after the algorithm starts.

Lemma 11 With probability 1 − O(n−1), in the first O(n2) rounds, PF ≤ 2F−2.

Proof The proof is similar to that for Lemma 3. We assume that round i of phase j is
the first one in which PF exceeds 2F−2. It is obvious that i is the first round of phase
j . By the adjusting strategy of selection probability, PF ∈ [ 1

4 , 2F−2] in phase j − 1.
By Lemma 9, each round of phase j − 1 is successful with constant probability. In

expectation, there are at least 24 log n nodes transmitting successfully on channel F+1
if α is large enough. Using the standard Chernoff Bound argument, with probability
1 − n−3, there will be at least 12 log n successful transmissions on channel F + 1 in
phase j − 1. Thus, the selection probability will stay unchanged, which means that in
round i , PF will not break the upper bound with probability 1 − n−3. By the Union
Bound argument, none of the first O(n2) rounds would be the first violating one with
probability 1 − O(n−1), which completes the proof. ��

With all above lemmas, we prove Theorem 2.

Proof (Proof of Theorem 2) Note that there are at most k
12 log n unchanging phases;

after O( k
log n + log n

F ) phases, the probability of an active node choosing channel F will

become a constant 1
4 , i.e., PF will be at least 1

4 if there still exist some active nodes.
Combining the result in Lemma 11, the condition in Lemma 9 can be satisfied in the
subsequent O(n2) rounds. By Lemma 9, with probability 1 − O(n−1), information
exchange can be completed in O(k + log n) rounds thereafter. Combining everything,
the theorem is proved. ��

7 Conclusion

We presented two randomized distributed algorithms for information exchange in
single-hop multiple-channel radio networks, covering respectively the unrestricted
case and the restricted case. The proposed algorithms are both asymptotically optimal
when the number k of nodes having an information item initially is large. Furthermore,
given the lower bound Ω(k) for solving unrestricted information exchange on a single
channel, our first algorithm shows the superiority of multiple channels in disseminating
information. An important future work is to adapt the proposed techniques to solve
information exchange in multi-hop multi-channel networks.
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