
A Generic Communication Scheduler for Distributed
DNN Training Acceleration

Yanghua Peng
∗†
, Yibo Zhu

†
, Yangrui Chen

∗
, Yixin Bao

∗
, Bairen Yi

†
, Chang Lan

†

Chuan Wu
∗
, Chuanxiong Guo

†

{yhpeng, yrchen, yxbao, cwu}@cs.hku.hk
∗
, {zhuyibo, yibairen.byron, lanchang, guochuanxiong}@bytedance.com

†

The University of Hong Kong
∗
, ByteDance Inc.

†

Abstract
We present ByteScheduler, a generic communication sched-

uler for distributed DNN training acceleration. ByteSched-

uler is based on our principled analysis that partitioning and

rearranging the tensor transmissions can result in optimal

results in theory and good performance in real-world even

with scheduling overhead. To make ByteScheduler work gen-

erally for various DNN training frameworks, we introduce

a unified abstraction and a Dependency Proxy mechanism

to enable communication scheduling without breaking the

original dependencies in framework engines. We further in-

troduce a Bayesian Optimization approach to auto-tune ten-

sor partition size and other parameters for different training

models under various networking conditions. ByteScheduler

now supports TensorFlow, PyTorch, and MXNet without

modifying their source code, and works well with both Pa-

rameter Server (PS) and all-reduce architectures for gradient

synchronization, using either TCP or RDMA. Our experi-

ments show that ByteScheduler accelerates training with all

experimented system configurations and DNN models, by

up to 196% (or 2.96× of original speed).

CCS Concepts • Computer systems organization →

Distributed architectures; Neural networks.

Keywords ML frameworks, communication scheduling

1 Introduction
Deep Neural Networks (DNNs) have been extensively used

for a wide range of applications, such as Computer Vision,

The work of Yanghua Peng, Yangrui Chen and Chuan Wu was supported

in part by a ByteDance Research Collaboration Project. Yanghua Peng is

also supported by SOSP 2019 Student Scholarship from the ACM Special

Interest Group in Operating Systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00

https://doi.org/10.1145/3341301.3359642

Natural Language Processing, etc. Training DNNs, however,

are time-consuming tasks, mainly due to large volumes of

data and growing DNN model sizes. The most common way

to scale out and accelerate DNN training is data parallelism

(§2). Unfortunately, its performance is often far from linear

speed-up, due mainly to the communication overhead. As

a large online service provider, in many of our internal and

publicly available training workloads, communication often

consumes a significant portion of total training time. This is

also echoed by recent literature [9, 18, 39].

Consequently, many different communication accelera-

tion approaches have been proposed and integrated into pop-

ular frameworks, including TensorFlow [6], PyTorch [28],

MXNet [12], with drastically different implementations. For

example, one can use RDMA to replace TCP, while the RDMA

implementations are quite different among frameworks. Or,

one can use ring-based all-reduce, either from one of several

different MPI implementations or NCCL [4] by NVIDIA, to

replace Parameter Servers (PS). Nevertheless, they share the

same goal – speeding up each individual message.
Recently, a new direction to accelerate distributed DNN

training, i.e., communication scheduling, has been explored [18,

21]. The idea is to change the transmission order of differ-

ent DNN layers, in order to better hide the communication

overhead and achieve training speed improvement with-
out affecting computation results. For example, Jayarajan

et al. [21] empirically show that a speed-up of 25% − 66%

can be achieved with a certain framework (MXNet with PS

and 1Gbps to 10Gbps TCP network). Independently, we got

a similar observation with our own initial implementation

and deployment. We will further explain the details in §2.2.

In this paper, we will show that priority-based commu-

nication scheduling, combined with tensor partitioning, is

not only the theoretically optimal strategy (§4) assuming no

system overhead, but also generic. It can accelerate most, if

not all, popular frameworks, both PS (synchronous or asyn-

chronous) and all-reduce gradient synchronization, different

network transports (RDMA or TCP), and any combinations

of them. This could have allowed the whole community/in-

dustry to use the expensive GPU cycles more efficiently!

Meanwhile, with a unified scheduling module across dif-

ferent frameworks, future developers and researchers can

experiment with their ideas much easier in a wide range of

settings and achieve a larger impact.

https://doi.org/10.1145/3341301.3359642

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

Unfortunately, the existing designs [18, 21] are far from

this vision because of two main reasons.

First, as mentioned above, there are many different com-

binations of frameworks and network stacks. However, ex-

isting communication scheduler designs are just for one:

P3 [21] modified several layers in MXNet framework and its

PS implementation, and TicTac [18] modified TensorFlow

and its PS implementation totally differently from P3. To use

them in another framework with different communication

methods, e.g., all-reduce, one may have to re-do everything.

In contrast, we design a generic communication schedul-

ing layer that presents a framework-agnostic and commu-

nication method-agnostic abstraction, benefiting a broader

audience. Building such a generic scheduling layer, however,

is non-trivial. For example, different frameworks decide the

order of both computation and communication by them-

selves. We must have a generic way to schedule the order of

communication, while complying with the framework en-

gines, without heavy modifications in the respective engines

(otherwise it cannot be generic). Also, some frameworks

introduce global barriers that prevent communication sched-

uling (e.g., TensorFlow, PyTorch). Thus, in addition to the

unified scheduling abstraction, we propose two designs, De-
pendency Proxy and layer-wise out-of-engine dependencies, to
address the above challenges, respectively.

Second, existing work does not adapt well to a wide range

of system setups. Different communication methods have

their own implications on system parameters, such as tensor

partition sizes. For PS architecture, it is better to slice tensors

into smaller pieces, so that push and pull can better utilize

bi-directional network bandwidth. However, for all-reduce,

each partition incurs a synchronization cost among all work-

ers, so small partition sizes may lead to performance penalty.

Moreover, different DNNs, bandwidths, and even the number

of workers also affect the optimal system parameters.

To address these issues, we present the analysis of how

different system setups may impact the final performance

and system parameter choices, and propose an auto-tuning

algorithm based on Bayesian Optimization. It automatically

searches for the best system parameters, like tensor partition

sizes and maximum sender credits. The auto-tuning helps

the core scheduling algorithm adapt to different models,

communication architectures and hardware configurations.

We evaluate our design with MXNet, TensorFlow, and Py-

Torch, with PS or all-reduce gradient synchronization, using

RDMA or TCP transports with different physical bandwidths.

Popular CNN and RNN models are tested. The results are

promising – the performance improvement is up to 196%,

for all different combinations of frameworks/networks/mod-

els. In addition, with the auto-tuning for different run-time

environments, our design outperforms P3 [21] (in its only

scenario, MXNet with PS TCP) by 28% to 43%. All these re-

quire zero or little code change to the framework engines,

and no more than 5-line change to the user code.

We summarize our contributions as follows:

▷Wedesign a generic tensor scheduling framework, ByteSched-

uler, that separates tensor scheduling and partitioning from

various training frameworks, gradient update architectures,

and network protocols, without modifying their implementa-

tions. Our design works for TensorFlow and PyTorch which

introduce global barriers between successive iterations.

▷ Our analysis shows that ByteScheduler’s scheduling al-
gorithm is optimal when there is no system overhead. The

insight is that assigning higher priority to the layers near

the DNN input maximizes the overlap with forward compu-

tation of the next iteration. With given system overhead, the

performance gap from the optimum is bounded.

▷We identify key system parameters, i.e., partition size and
credit size, and design Bayesian Optimization-based auto-

tuning. It makes ByteScheduler adapt to various training

models and system configurations.

We have open-sourced our implementation, including the

core scheduler and plugins for different frameworks [2]. We

hope to continue evolving it with the community, since

many future directions can be investigated. Examples in-

clude variable tensor partition sizes, supporting dynamic

models, cross-job co-scheduling, etc. ByteScheduler decou-

ples communication scheduling from the computation frame-

works, so that it can be made framework-agnostic and op-

timized separately. We believe that ByteScheduler, being

open-sourced and widely generic, can significantly facilitate

future research and development in related directions.

2 Background and Motivation
2.1 DNN Training and Data Parallelism
In deep learning, a DNN model is trained by iterating a large

dataset many times (or “epochs”), to minimize a loss function.

Forward and backward propagation. Within each epoch,

the dataset is partitioned into mini-batches. In each iteration,

one mini-batch travels through the DNN model layer-by-

layer and generates a loss. This process is called forward
propagation (FP). After FP, the gradients are calculated from

the last layer to the first layer, and this process is called back-
ward propagation (BP). The gradients are then used to update

model parameters based on some optimization algorithm,

e.g., Stochastic Gradient Descent (SGD). Then, the training
moves on to the next mini-batch, starting from FP again.

Data parallelism. Due to the complexity of DNN mod-

els and large datasets, the training is often not able to be

finished within a short time, e.g., it takes 115 minutes to

finish training ResNet50 [19] on a DGX-1 machine with 8

V100 GPUs [3]. Data parallelism is a popular strategy for

scaling DNN training across many devices. It partitions the

dataset onto multiple compute devices (“workers”), where

each worker shares the same model parameters. Gradients

from all workers are then aggregated before applied to up-

date model parameters. Network communication is involved

A Generic Communication Scheduler for Distributed DNN Training Acceleration SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Figure 1. Layer-wise computation and communication in dis-

tributed DNN training, e.g., MXNet PS.

Figure 2. A contrived example showing performance gain with a

better scheduling strategy (than FIFO) and tensor partitioning.

in this process, usually using the parameter server architec-

ture [15, 24] or collective routines (e.g., all-reduce) [32].
Parameter Server. A parameter server (PS) is a logically

separate device that stores global parameters and provides a

key-value interface to workers. Typically, data parallelism

with PS has the following steps: (a) each worker computes

the gradients using its local data partition and sends them

to PS (push); (b) PS sums the gradients across workers and

updates its parameters (update); (c) Workers synchronize

parameters with PS (pull). A PS architecture enables better

fault tolerance and more flexible parameter synchronization.

All-reduce. All-reduce is a collective operation that reduces
the target arrays with a specified binary operator (e.g., sum,

max) in all processes to a single array and broadcasts the

result to all processes. In DNN training, all-reduce computes

the sum of gradients across workers, and then each worker

updates its parameters accordingly locally.

2.2 Communication Scheduling
Computation-communication dependencyDAG. In dis-
tributed DNN training, computation and communication of

tensors form a dependency DAG (Directed Acyclic Graph).

In the DAG, the forward and backward propagation is or can

be linearized as a chain of computation across layers (e.g., by
grouping or coalescing multiple operators or tensors [36]).

Let fi , bi , pushi and pulli be the FP, BP, push and pull of layer
i , respectively. Figure 1 shows the layer-wise dependencies
of MXNet with PS architecture between two iterations: fi
depends on fi−1 and pulli , pulli depends on pushi , pushi de-
pends on bi , and bi depends on bi+1. To finish DNN training

is to finish such a DAG (spanning all iterations).

Scheduling the order of communication. By default, ML

framework engines execute communication operations in

a FIFO order, because the underlying communication stack,

either PS or all-reduce, TCP or RDMA, is inherently based

on FIFO queues. This is shown in Figure 1: since push0 and

push1 both require upload bandwidth, push1 gets executed
before push0; similarly, pull1 could be executed before pull0.

However, this is sub-optimal. Because f0 must be executed

before f1, it is better to finish pull0 as soon as possible. In

the case that pull1 takes a long time and blocks pull0, FIFO
strategy delays pull0, and hence delays the start time of f0
and the whole iteration process.

Communication scheduling [18, 21] is a good solution to

this problem. In the example above, we can prioritize pushi
over pushj if i < j , and do the same for pull operations. Then

the forward propagation of the next iteration can start earlier,

and potentially speed up the training.

Tensor partitioning. In DNNs, each layer includes one or

multiple tensors (e.g., the “pushed” gradients and “pulled”

parameters). Communication scheduling is commonly car-

ried out for such tensors, while tensors in the same layer can

have the same scheduling priority (i.e., push tensors have

the same priority and the same for all pull tensors) and are

scheduled sequentially on the respective resource (e.g., up-
load and download bandwidth). The tensor sizes can vary

significantly (e.g., the smallest tensor is 256B and the largest

tensor is over 400MB for VGG16 model [33]). A very large

tensor, once en-queued in the communication stack, would

block other tensors even if they have higher priorities. Thus,

a more efficient scheduling strategy is to partition the ten-

sors before en-queuing, and allow higher-priority tensors to

jump ahead of the queue once they arrive.

Tensor partitioning also improves bandwidth utilization

of bi-directional network in PS architecture. Without parti-

tioning, the pull flow of a large tensor can start only after

the push flow of the whole tensor is done. Given that the

network today is usually duplex, this implies 50% bandwidth

waste. Finally, partitioning tensors can mitigate load imbal-

ance in PS architecture, especially when one or a few tensors

are very large and dominate the total model size.

Potential benefits. To demonstrate the potential bene-

fits of communication scheduling (with tensor partitioning),

we show a simple and contrived illustrative example (Fig-

ure 2). The DNN has three layers of different sizes, with

FP and BP consuming different time. Compared with the

default FIFO transmission scheduling, the better schedule

can lead to 44.4% training speed-up. Jayarajan et al. [21]
have implemented similar scheduling strategies on MXNet

PS and shown an up-to-66% training speed improvement

with 10Gbps (or less) TCP networks, than FIFO.

2.3 The Opportunities and Challenges
We believe that communication scheduling is valuable to

general DNN training, not just MXNet with PS and TCP. We

explain the rationale and challenges below.

Opportunity 1: one unified scheduler for all. Though

there are several different ML frameworks and DNN models,

the most popular training jobs have similar DAG structures

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

Figure 3. Distributed DNN training with an inter-iteration barrier.

TensorFlow with PS is shown. PyTorch also has this barrier.

200 400 600
Partition Size (KB)

0.5
1.0
1.5
2.0
2.5

Sp
ee

d
(im

ag
es

/s
ec

) 1e3

1 Gbps
10 Gbps

(a) Different partition sizes

200 400 600
Credit Size (KB)

0.30
0.45
0.60
0.75
0.90

Sp
ee

d
(im

ag
es

/s
ec

) 1e3

1 Gbps
10 Gbps

(b) Different credit sizes

Figure 4. Training VGG16 using MXNet (PS, TCP) with FIFO

communication scheduling at different network bandwidth levels.

as shown in Figure 1. Most DNN models have layered struc-

tures, and computation takes place one layer after another.

Even though the training frameworks have different features,

they essentially run the same DAG for the same model, just

with different ways (e.g., APIs) of implementing the DAG.

In addition, different communication methods also fit in

this DAG model – the network transport (TCP or RDMA)

does not change the DAG, and an all-reduce architecture

simply replaces a push and a pull in the DAG by the all-

reduce operation. Intuitively, the same scheduling algorithm

should also apply.

We envision a generic scheduler that can accelerate the

execution of DAG by changing the order of communication

operations, no matter which frameworks, which commu-

nication patterns and which network transports. Also, for

the best generality and easier adoption, we seek minimal-

to-none modification to existing framework engines and

communication libraries.

Opportunity 2: one unified analytical foundation for
scheduling algorithms. Once we realize the unified sched-
uler, we essentially decouple the algorithm design from the

framework-related implementation details. This gives us the

opportunity to formulate the scheduling problem across all

system setups. In contrast, previous work was deeply cou-

pled with specific framework implementations, and only

focused on empirical results. In this paper, we show that our

scheduling algorithm is not only empirically effective, but

also theoretically guaranteed even with system overhead.

However, the opportunities come with challenges.

Challenge 1: be generic to different frameworks. Al-

though the DAGs are similar in the end, how the frameworks

build such DAGs and execute them is very different. Engines

that support declarative mode decide the execution order

based on DAG dependencies, while imperative engines run

in a FIFO manner. A generic scheduler must be able to work

with both types of engines, manipulating the transmission

order without breaking the properties of the original engines.

In addition, existing engines are not designed with com-

munication scheduling in mind. Therefore, some engines,

like TensorFlow and PyTorch, introduce a global barrier be-

tween iterations, as Figure 3 shows. This would make any

scheduling of push/pull (or all-reduce) ineffective.

Challenge 2: adapt to different run-time environments.
In the real-world, scheduling and tensor partitioning have

networking-related overhead. For example, there is certain

overhead for sending a tensor regardless of the size of the

tensor. Consequently, tensor partitioning has a performance

penalty, especially if the partition size is too small. In Fig-

ure 4(a), we show the training speed with different partition

sizes, with FIFO transmission scheduling. We see that the

partition size affects training speed, especially in networks

with larger bandwidth. P3 [21] uses a default partition size

of 160KB (the leftmost points in Figure 4(a)). Such a partition

size is far from optimal in a 10Gbps network when FIFO

scheduling is used, though P3’s scheduling out-weighs the

non-optimality of partition size and delivers positive gains

in the end. The same goes for credit size (Figure 4(b)), which
is defined by us (§4.2) for filling the sending buffer in the

network stack. P3 essentially uses a credit size equal to the

partition size, which is again not the best.

The question is, what are the sweet spots for these pa-

rameters? They are likely to vary with many factors. For

example, in Figure 4, we show that the impact of overhead

is very different in 1Gbps and 10Gbps networks. In practice,

the physical network bandwidth can range from 1Gbps to

200Gbps, and users use either PS or all-reduce as gradient

synchronization method, and TCP or RDMA as the trans-

port. Furthermore, we find that various DNN models have

different optimal partition/credit size values because they

have different model structures and sizes. We will further

show its analytical complexity in §4.1.

A generic scheduling framework must be able to adapt to

all these different run-time environments.

3 Design
3.1 Architecture
To make ByteScheduler generic, the key question is –

Which layer shouldByteScheduler be implemented in?
From the closest to user to the lowest level, ML frameworks

and communication stacks include: 1) user code that declares

DNN models, 2) framework frontend with high-level API

(e.g., Python frontend), 3) framework engine (which decides

how to execute the DAG), 4) message-level communication

library, and 5) TCP or RDMA stack. To be generic, we can

not modify user code and framework engines heavily. Im-

plementing the scheduler in message-level communication

library is a good choice if in a clean slate. Unfortunately, in

reality, the communication libraries are quite diverse (e.g.,

A Generic Communication Scheduler for Distributed DNN Training Acceleration SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Figure 5. ByteScheduler architecture in the communication stack.

The dark grey part is added by ByteScheduler.

lots of RPC andMPI implementations), with their own thread

management modules. It would be almost impossible to have

a single piece of code work across all of them. Under the

TCP or RDMA stack, like socket and verbs, we will lose

application-level information, such as message priorities.

Therefore, this leaves us the final choice – implement

ByteScheduler at the high-level API implementation layer

in the framework. Fortunately, this layer is usually imple-

mented in flexible languages (i.e., Python) that support class
inheritance and runtime monkey patch [38]. Since this layer

is mainly for translating users’ DNN declaration into asyn-

chronous operations, it often has a simple threading model

(e.g., single-threaded), indicating an easier implementation.

As shown in Figure 5, we design ByteScheduler to be

just before the API layer posting communication opera-

tions to the engine. For each framework, we design a shim

layer, called plugin, that wraps the original operation into a

unified “communication task” abstraction (§3.2). Then, the

Core, schedules the task using our (or any) algorithm. Con-

sequently, the same piece of scheduling code would work

across frameworks and communication methods. The de-

tailed interaction between these modules is explained in the

following subsections.

3.2 Unified Abstraction for Communication Tasks
ByteScheduler Core is designed to be framework-agnostic

and communication method-agnostic. It accepts a unified

abstraction for communication, called CommTask (a com-

munication task associated with one tensor, e.g., all-reduce),
as input from the plugins. Except the trivial init() and shut-
down() interfaces, the Core exposes a single interface to the

plugins, i.e., Core.enqueue(CommTask).

Each time a communication tensor arrives, the plugin

wraps it as a CommTask and assigns priority before enqueu-

ing it. For declarative engines (e.g., TensorFlow), it uses topo-
logical sort to obtain the priority. For imperative engines, it

assigns a monotonic increasing ID to each (gradient) tensor

based on the order they are created (same as the BP order).

Once getting a CommTask, Core partitions it into Sub-

CommTasks and decides when to send each. Based on the

functionality of Core, and our observation on the most popu-

lar frameworks (TensorFlow, PyTorch, MXNet) and commu-

nicationmethods, we conclude that the following CommTask

interfaces are sufficient and implementable in the plugins.

CommTask.partition(size): Core calls this interface to

partition a CommTask into one or multiple SubCommTasks

with tensors no larger than size, which invokes a callback in

the plugin as tensor partitioning is framework-dependent.

Core then schedules those partitioned CommTasks. This

incurs low overhead because all popular frameworks provide

zero-copy APIs for partitioning the underlying tensor.

CommTask.notify_ready(): MostML frameworks are asyn-

chronous – when a communication operation is posted to

the engine, possibly the tensor has not been computed or

ready to be sent. We let the engine use this interface to notify

Core about a tensor being ready, so that Core can actually

begin scheduling it. We will explain how we achieve this

generically and without modifying the engines in §3.3.

CommTask.start(): Core calls this interface to let engines

and the underlying communication stacks send the tensor. It

has to be implemented per framework and communication

method combination. Fortunately, the differences are very

small – simply calling the built-in communication primitives

(e.g., ring all-reduce, push or pull) in the framework.

CommTask.notify_finish(): Once the communication of

a tensor (all-reduce, push or pull) has been finished, the

framework engine must notify Core about this, so that Core

can continue scheduling more Tasks. More details are in §3.3.

We believe that one can implement most, if not all, com-

mon scheduling algorithmswith these interfaces. Using these

interfaces, we implement our scheduling algorithm in Core

(Algorithm 1 in §4). All the above interfaces must be imple-

mented in the plugins per framework, and start() is also per

communication methods. The users can enable plugins with

no more than 2 lines of codes (LoC), as shown in §5.

3.3 Interaction with Framework Engines
Next, we explain our generic approach that works with dif-

ferent engines to schedule the order of CommTasks.

The frameworks have their own execution engines that

run the computation and communication operations. Declar-

ative engines, e.g., TensorFlow andMXNet, build dependency

graphs, while imperative engines like PyTorch, run opera-

tions in a FIFO manner. Either way, the Core should not

schedule a CommTask before the engine allows, and should

be able to delay a CommTask while keeping original depen-

dencies. We propose a new primitive to address this problem.

Dependency Proxy (or Proxy). A Proxy is an operation

created by ByteScheduler. It can be posted into the frame-

work engines, and claim dependencies from/to other opera-

tions. Declarative engines all provide direct APIs to define

such dependencies since this is the fundamental feature of

such engines. In the case of imperative engines, Proxy can

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

Figure 6. Interaction between Core and framework engines with-

out global barrier, e.g., MXNet. Only one DNN layer is shown (as-

sume one tensor in the layer). Operations in squares are added by

ByteScheduler. The solid arrows are direct function calls, while the

dashed arrows mean dependencies.

be simply posted immediately before or after an operation,

e.g., with “hooks” in PyTorch.

If a communication operation must happen after a compu-

tation operation in the original order, e.g., the computation

operation generates the gradients to be sent, we will post

a Proxy to the engine. It claims to depend on the finish of

the computation operation, and also to be precedent to the

communication operation, as shown in Figure 6.

Proxy does only two things. First, once it is started by the

engine, it will trigger the correspondingCommTask.notify_ready()
via a callback, because the start of Proxy means the original

precedent operations of the communication operation have

been finished. Second, it will not finish until Core tells it

to end via CommTask.start(). Because it is one precedence
of the communication operation, it effectively delays the

communication operation until being scheduled by Core.

Proxy has very low overhead – before Proxy ends, it is

blocked by a lock and yields the CPU resources (in the case

of imperative engines), or simply “finishes” without calling

the on_complete() callback provided by the engine (in the

case of declarative engines). Core will call CommTask.start(),
which includes the engine’s on_complete().

For MXNet, we post another type of Proxy right after

the communication operation and claim dependency on it.

This Proxy only generates completion signal using Comm-
Task.notify_finish() once it is started by the engine. For Ten-

sorFlow and PyTorch, we have to generate the completion

signal a bit differently – see the next subsection.

3.4 Crossing the Global Barrier
As explained in §2.3, some frameworks (e.g., TensorFlow and

PyTorch) introduce a global barrier between two consecutive

iterations. This makes scheduling largely ineffective – the

global barrier waits for all communication operations to

finish before moving on to the next iteration, so changing

the order of communication does not matter. We cannot

simply take the global barrier away, because it would require

significant change on the framework and the user code.
1

1
The most common way to program in TensorFlow and PyTorch is to wait

for each iteration’s finishing in a while-loop.

Figure 7. Interaction between Core and framework engines when

a global barrier exists, e.g., TensorFlow. The thick dashed arrow

means dependencies enforced by ByteScheduler, not by engines.

Figure 8. The new DAG with layer-wise out-of-engine dependen-

cies (assume one layer has one tensor). Dashed arrows indicate the

original dependencies removed by ByteScheduler.

Layer-wise out-of-engine dependencies. To facilitate

scheduling, we make the global barrier not wait for the ac-
tual completion of communication operations. We replace

the actual communication operation by an asynchronous

operation, as Figure 7 shows. The asynchronous operation

will start the actual communication in the background, and

returns immediately to let the global barrier pass. In other

words, the actual communication operations are run outside
the engine and computation graph, by Core, even after the

barrier. At the end of each actual communication operation,

we add a callback to notify Core about completion.
2

Only moving the actual communication out of the DAG

may cause incorrectness. Because neither TensorFlow nor

PyTorch engines can track cross-iteration dependencies, the

FP in the next iteration may start before the actual communi-

cation finishes. Hence we add another type of Proxy before

the FP of each DNN layer, and let the Proxy block until Core

gets CommTask.notify_finish(). Thus, the dependencies are

enforced by ByteScheduler instead of by the engines. Figure 8

summarizes the design.

4 Scheduling in the Wild
Next, we first present the analysis of our core scheduling

algorithm (Algorithm 1).We show that it is the optimal sched-

uling in an ideal scenario (i.e., no system overhead), and it

is within a certain bound to the ideal case in practice. Then,

we explain our auto-tuning mechanism to reduce the gap be-

tween real-world performance and the theoretical optimum.

2
Fortunately, even if the operation is run outside the main engine, Tensor-

Flow and PyTorch still allow us to add an on_complete() callback.

A Generic Communication Scheduler for Distributed DNN Training Acceleration SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

4.1 The Analysis of ByteScheduler Algorithm
The following theorem shows that in the ideal case with

assumptions, the optimal scheduling strategy turns out to

be priority queuing. The priorities of tensors are determined

by the order of the layers in the DNN model. Detailed proof

of the theorem can be found in the appendix [1].

Theorem 1. The following priority queuing scheduler:
• in a PS architecture, prioritize pulli over pullk , and pushi

over pushk , ∀i < k
• in an all-reduce architecture, prioritize allreducei over

allreducek , ∀i < k
is the optimal solution for minimizing the time for each train-
ing iteration, if the following conditions are met:
1. (Sequential GPU computation operations) The subgraph

of DAG containing only fi and bi is a chain (i.e., no parallel
layers in the DNN).

2. (Optimal GPU scheduling) Whenever the dependencies of
fi or bi are satisfied, GPU will run the computation operation
without preemption. This is the optimal GPU scheduler because
the GPU computation operations are in a chain.
3. (Tensor partition) Tensors in each DNN layer are par-

titioned, such that flow preemption can happen; with PS, if
the push flow in a layer is only partially done before being
preempted, the done part can be pulled.

4. (Infinitely small partition) Suppose the partition size is δ
and δ → 0.

5. (Flow preemption) Higher priority push/pull or all-reduce
can preempt lower priority push/pull or all-reduce immediately
without extra overhead.

With infinitely small partition, the push flow and pull flow

can start at the same time to increase pipelining in PS ar-

chitecture. Minimizing the time for one training iteration

is equivalent to maximizing the overlap between communi-

cation and computation. Priority queuing can lead to more

potential overlap between forward computation and com-

munication than other policies. The optimality of Theorem 1

can be proved by induction on the number of layers.

In the all-reduce architecture, all workers form a topology

(usually a ring). Each tensor is partitioned (or segmented, in

MPI terms) and reduced by walking the ring from different

starting points. This is the same as the PS case with small

partition and without preemption overhead.

Assumptions 1 and 2 are typically true for existing ML

frameworks and DNN models, especially those models con-

sisting of layers where one stacks on another. Unfortunately,

assumptions 4 and 5 do not hold in practice – the preemption

in scheduling cannot be as ideal as assumed, and partitions

cannot be infinitely small due to system overhead (see §2.3).

Analysis with partition size and overhead. Below, we

consider non-infinitely-small partition sizes. In addition to

the network transmission time t = size/bandwidth, real-
world systems usually spend extra time on handling a mes-

sage, like the RPC serialization and ACK time, or synchro-

nization time for all-reduce. We refer to this extra time as

partition overhead (about 300us in our testbed).With the over-

head, the scheduling problem is much more complicated.

It causes three kinds of extra delay, comparing its time for

one training iteration with the infinitely-small partition case:

1) In PS architecture, the pull flow will start later because a

partition must be pushed before being pulled. The partition

size determines this delay. 2) Sending each partition will need

longer time due to overhead. 3) Preemption cannot happen

at any time but only when a partition transmission is done.

Therefore, partition size affects the preemption granularity.

Fortunately, for the first kind of delay, we find that the

gap to the ideal case is bounded by the transmission time

of one partition, since the start of all push/pull flows and

preemption need to wait for the ongoing partition to be

transmitted first. The smaller the partition is, the closer it

is to the ideal case. For the second kind of delay – system

slowdown directly caused by partition overhead, we consider

the worst case that the bottleneck during one iteration is the

communication time. The extra delay is bounded by O(nθ)
where θ is a constant partition overhead, and n is the number

of partitions in all layers in the DNN.

Summing up the gaps in the above two delays, we obtain

that the extra delay due to finite partition size and partition

overhead, as compared to the ideal case in Theorem 1, is at

most

∑N−1
i=0 (⌊

si
δ ⌋θ) + θ + 2

δ
bandwidth for PS, where si is the

size of pushi , δ is the partition size and N is the number of

layers in the DNN, and

∑N−1
i=0 (⌊

allr educei
δ ⌋θ)+ δ

bandwidth for

all-reduce, where allreducei is the size for one all-reduce op-
eration. This delay for one iteration is a function of partition

size δ , composed by an increasing function and a decreasing

function, and has a trend to decrease first and increase later.

Due to the rounding operator, this function is not smooth

nor differentiable everywhere, and it is hard to find the near-

optimal partition size using classical optimization methods.

We will explain how to tune the best partition size in §4.3.

For the last kind of delay related to preemption granularity,

it is influenced even more by another system parameter,

credit size, as explained below.

4.2 Credit-based Preemption
To realize preemption, a naïve approach is stop-and-wait: the

sender keeps only one tensor unacknowledged and sends the

next tensor after receiving the acknowledgement. Existing

schedulers like [21] adopted this approach. However, depend-

ing on runtime environment, sending tensors one-by-one

may not fully utilize network bandwidth (§2.3).

Our solution is credit-based preemption. It works like a

sliding window and the credit is the window size. Multiple

tensors (instead of one tensor) in the window can be sent

concurrently (to the underlying FIFO network transmission

queue). This improves network utilization due to filling the

sending buffer in the network stack. However, preemption

may happen less timely. Suppose while tensor 1 is being

transmitted, tensors 2, 3 and 4 arrive sequentially (priorities

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

Algorithm 1 The scheduling algorithm in Core

Input:
commtasks← a set of unready SubCommTasks

queue← priority queue of SubCommTasks

credit← credit size for credit-based preemption

unit← partition size that is used to partition a CommTask

1: /* Partition a CommTask in Core*/

2: procedure Partition(task)
3: subtasks = task.partition(unit)

4: commtasks.add(subtasks)

5: /* Enqueue a ready SubCommTask based on priority*/

6: procedure Ready(priority, subtask)
7: queue.put(priority, subtask)

8: commtasks.remove(subtask)

9: /* Return credits when a SubCommTask is finished*/

10: procedure Finish(subtask)
11: credit = credit + subtask.tensor.size

12: /* Schedule SubCommTasks in the priority queue */

13: procedure Schedule
14: while True do
15: priority, subtask = queue.get()

16: if credit > subtask.tensor.size then
17: credit = credit - subtask.tensor.size

18: subtask.start()

19: else
20: wait until a subtask is finished and returns credits

p1 < p2 < p3 < p4). Using the existing approach, the trans-

mission order will be 1->4->3->2 due to stop-and-wait. Using

our solution with a sliding window of size 2, the order will

be 1->2->4->3. Once tensor 2 arrives, it will be sent to the

underlying FIFO queue though tensor 1 is still being trans-

mitted, to improve network utilization; later when tensor

3 and 4 arrive, they can not preempt tensor 2 as the first

approach, because tensor 2 has been delivered to the under-

lying queue before their arrival. A larger credit size leads to

better bandwidth utilization but with less timely preemption.

We leave it as a system parameter to balance the trade-off

and will explain how to tune its best value in §4.3.

Algorithm 1 shows the preemptive scheduling algorithm

in ByteScheduler Core. In one iteration, each communication

operation is wrapped as a CommTask and partitioned into

SubCommTasks (line 3). As the BP goes, the SubCommTasks

become ready one by one and are enqueued into a priority

queue (line 7). A scheduling thread runs the SCHEDULE pro-

cedure (line 13) and polls the queue constantly. Whenever

the credit is enough for the highest priority SubCommTask

(line 16), ByteScheduler pops the SubCommTask from the

queue and starts transmission (line 18). The credit is de-

creased by the tensor size (line 17), and increased when the

tensor’s transmission is completed (line 11).

4.3 Auto-Tuning Partition Size and Credits
Credit size and partition size are two knobs that decide the

trade-off between optimal scheduling and system overhead.

0 100 200 300
Credit (MB)

2.1

2.2

2.3

2.4

Sp
ee

d
(im

ag
es

/s
ec

) 1e3
Objective Function
95% Confidence Interval

Prediction
Samples
Prediction
Samples

Figure 9. Bayesian Optimization example: 7 samples; tuning credit

size of VGG16 in MXNet (all-reduce)

Unfortunately, formally modeling and solving this problem

is hard, since we can not explicitly express training speed as

a function of two knobs. We leave the two knobs undecided

until runtime, and resort to runtime searching.

To search the best credit size and partition size, one simple

way is to use grid search, i.e., enumerate all possible com-

binations of credit size and partition size. But the cost of

enumeration is too high and is infeasible for the continuous

solution space. Some simple heuristic algorithm like SGD

with momentum [30] may work when the training speed

has a trend of unimodality, but we can not get the accurate

gradient of the curve as it is non-parametric. The derivatives

approximated by slope are “noisy” due to runtime jitters, and

SGD is easy to be stuck in a local optimum.

We experimented with a few algorithms (see §6), and fi-

nalize on using Bayesian Optimization (BO) to tune credit

and partition size together. BO does not have any limitation

of the function format. The function of partition size and

credit size can be treated as non-parametric. In addition, it

tries to minimize the number of trials to find a near-optimal

solution, which reduces the tuning cost. BO is also known

to be noise-resilient since it quantitatively evaluates the un-

certainty region of the performance curve [8].

We aim to optimize the training speed D(δ , c) and the de-

cision variables are partition size δ and credit size c . The
objective function D(·) is unknown beforehand, but its val-

ues can be observed through profiling. At each given (δ , c),
the objective function value follows a distribution and we

use Gaussian as it is widely accepted as a good surrogate

model for BO [8]. A 95% confidence interval is associated

with D(δ , c), which describes the region that D(δ , c) most

likely resides in. With one more trial, the confidence interval

is updated with the new observation according to the poste-

rior distribution. With more trials, the confidence interval

decreases and the estimate of D(·) becomes more accurate.

To minimize the number of trials, BO selects the next

configuration (δ , c) by maximizing an acquisition function,

which is also updated with the confidence interval. We use

the most common acquisition function, Expected Improve-

ment [11], which picks (δ , c) to maximize the expected speed

improvement over the current best candidate. A BO hyper-

parameter EI balances the exploitation and the exploration

of the searching process (we use the default value 0.1 in the

experiments). In this way, BO can quickly learn the objective

A Generic Communication Scheduler for Distributed DNN Training Acceleration SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

function and only suggest (δ , c) in the areas that most likely

contain the optimal solution. For illustration, Figure 9 shows

BO’s search process for credit size for training VGG16. Each

sample is a pair (credit, speed).

5 Implementation Details
ByteScheduler is implemented using C++11 and Python. The

Core is a common Python library for all ML frameworks. For

each framework, a plugin is required for PS architecture or

all-reduce architecture. The plugins are usually a mixture of

C++ and Python code. The current implementation has 4279

LoC in total, with Core as the largest part (1503 LoC).

ByteScheduler Core. The Core runs a single main thread,

handling events like Core.enqueue(CommTask), and all Comm-

Task APIs. The key data structure is a priority queue of

CommTasks, and the main algorithm is described in Algo-

rithm 1. Auto-tuning algorithms are also implemented.

Every worker runs an instance of Core. However, only

one worker’s (with ID 0) Core runs as a master, which runs

auto-tuning algorithms to decide the partition size and credit

size and broadcasts them to other workers. Also, to avoid

deadlocks in all-reduce, only the master Core determines the

order of sending tensors and broadcasting to other workers,

so that all workers can perform the same all-reduce operation

simultaneously. For PS that supports asynchronous push and

pull, all Cores schedule the order independently.

MXNet plugin. We implement plugins for both PS and

all-reduce architectures for MXNet≥ 1.4. The PS plugin is

based on MXNet’s native communication abstraction, i.e.,
KVStore. We wrap calls of KVStore APIs (e.g., init, push,
pull) as CommTasks and post them to ByteScheduler Core

for scheduling. We will evaluate ByteScheduler performance

on both TCP and RDMA for MXNet PS, shown in Sec. 6. So

far, ps-lite, the underlying PS library of MXNet, only sup-

ports TCP communication between workers and parameter

servers. Internally, we added RDMA support to ps-lite. It is

out of the scope of this paper, so we omit the details.

For all-reduce, we develop the plugin based on Horovod,

which wraps MXNet optimizer with Horovod DistributedOp-

timizer [32]. We further wrap Horovod DistributedOptimizer

in our ScheduledOptimizer for MXNet, so that all-reduce op-

erators are scheduled before executed by Horovod.

PyTorch plugin. We implement PyTorch plugin for only all-

reduce architecture because PyTorch does not support PS. In

order to support layer-wise out-of-engine dependencies, we

add hooks (via register_hook function provided by PyTorch)

to backward propagation so that all-reduce operators will be

called after each gradient tensor is ready; we also add hooks

to forward propagation (via register_forward_pre_hook func-

tion in PyTorch) so that forward computation of each layer

will not start until the all-reduce of this layer is completed.

We again leverage Horovod, which supports all-reduce

communication for PyTorch≥ 0.4 by wrapping PyTorch op-

timizer with Horovod DistributedOptimizer [32]. Similar to

the implementation of MXNet all-reduce plugin, we wrap

Horovod DistributedOptimizer in our ScheduledOptimizer.

TensorFlowplugin. The plugin is implemented for TensorFlow≥

1.13 and PS architecture. It is an opt-in TensorFlow graph

optimization module, using the TensorFlow Grappler frame-

work [5]. Grappler supports altering run-time behavior of

graph execution, such as instrumenting OpKernel implemen-

tation, adding and removing data or control dependencies

of graph nodes. The TensorFlow plugin goes through the

data-flow graph before its execution, and adds Dependency

Proxies to schedule the timing of worker sending gradients

and parameter server sending model parameters. The invoca-

tion of gradient updates is moved out of graph, i.e., the global
barrier is removed, as discussed in Sec. 3.4. Among all three

frameworks, only TensorFlow requires 13-line code change

in its engine, which delays the clean-up of communication

channels when we cross the global barrier.

Auto-tuning support. Each worker needs to adjust par-

tition size and credit size during BO tuning. For training

DNNs in PS architecture, adjusting the partition size requires

re-partitioning the parameters and can cause errors due to

tensor shape mismatch. Hence, each time when the partition

size is changed, we checkpoint and restart the training (e.g.,
by adding a batch_end_callback hook). For all-reduce, we

can change the values of the two knobs dynamically without

stopping training.

Usage. Users need to add 2 lines of code in their Python≥ 2.7
program to enable ByteScheduler. Take MXNet PS architec-

ture as an example, a user needs to wrap MXNet KVStore

using our ScheduledKVS, shown as follows.

After user created an MXNet KVStore object kvs

from bytescheduler.mxnet.kvstore import ScheduledKVS

kvs = ScheduledKVS(kvs)

Continue using kvs without any further modification

ByteScheduler may cause confusion for users due to cross-

ing the global barrier. From our experience, the impact is

little since the main metrics (e.g., loss and accuracy) are cal-

culated during forward pass and hence are not affected.

6 Evaluation
6.1 Methodology
Testbed setup. Our testbed has 16 physical machines, each

with 64 CPU cores, 256GB memory, 8 Tesla V100 GPUs with-
out NVLinks, and 100Gbps bandwidth between any two

servers using Mellanox CX-5 single-port NICs.

Benchmarks. We choose 2 CNNmodels, VGG16 and ResNet50,

and 1 RNN model, Transformer, as our benchmark models.

We have run ByteScheduler in 8 different setups: MXNet PS,

MXNet NCCL, TensorFlow PS, and PyTorch NCCL, each with

TCP or RDMA, respectively. ByteScehduler accelerates train-

ing in all setups. Due to space limit, we only show results in

5 setups: MXNet PS TCP, MXNet PS RDMA, TensorFlow PS

TCP, MXNet NCCL RDMA, and PyTorch NCCL TCP.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

8 16 32 64
of GPUs

0

1

2

3

4

Sp
ee

d
(im

ag
es

/s
ec

) 1e3
Baseline
ByteScheduler
Linear Scaling
P3

(a)MXNet, PS, TCP

(80%-94%)

8 16 32 64
of GPUs

0.0
1.5
3.0
4.5
6.0

Sp
ee

d
(im

ag
es

/s
ec

) 1e3
Baseline
ByteScheduler
Linear Scaling

(b) MXNet, PS, RDMA

(97%-125%)

8 16 32 64
of GPUs

0.0

0.6

1.2

1.8

2.4

Sp
ee

d
(im

ag
es

/s
ec

) 1e3
Baseline
ByteScheduler
Linear Scaling

(c) TensorFlow, PS, TCP
(170%-196%)

8 16 32 64
of GPUs

0.0
0.2
0.4
0.6
0.8

Sp
ee

d
(im

ag
es

/s
ec

) 1e4
Baseline
ByteScheduler
Linear Scaling

(d)MXNet, NCCL, RDMA

(14%-20%)

8 16 32 64
of GPUs

0.0
0.2
0.4
0.6
0.8

Sp
ee

d
(im

ag
es

/s
ec

) 1e4
Baseline
ByteScheduler
Linear Scaling

(e) PyTorch, NCCL, TCP
(7%-13%)

Figure 10. Training VGG16 model. The numbers in parentheses are ByteScheduler speedup percentages as compared with the baseline.

8 16 32 64
of GPUs

0.0
0.3
0.6
0.9
1.2

Sp
ee

d
(im

ag
es

/s
ec

) 1e4
Baseline
ByteScheduler
Linear Scaling
P3

(a)MXNet, PS, TCP

(32%-62%)

8 16 32 64
of GPUs

0.0
0.3
0.6
0.9
1.2

Sp
ee

d
(im

ag
es

/s
ec

) 1e4
Baseline
ByteScheduler
Linear Scaling

(b) MXNet, PS, RDMA

(6%-16%)

8 16 32 64
of GPUs

0.0
0.2
0.4
0.6
0.8

Sp
ee

d
(im

ag
es

/s
ec

) 1e4
Baseline
ByteScheduler
Linear Scaling

(c) TensorFlow, PS, TCP
(70%-89%)

8 16 32 64
of GPUs

0.0

0.4

0.8

1.2

1.6

Sp
ee

d
(im

ag
es

/s
ec

) 1e4
Baseline
ByteScheduler
Linear Scaling

(d)MXNet, NCCL, RDMA

(1%-7%)

8 16 32 64
of GPUs

0.0

0.4

0.8

1.2

Sp
ee

d
(im

ag
es

/s
ec

) 1e4
Baseline
ByteScheduler
Linear Scaling

(e) PyTorch, NCCL, TCP
(11%-15%)

Figure 11. Training ResNet50 model.

8 16 32 64
of GPUs

0.0
0.3
0.6
0.9
1.2

Sp
ee

d
(to

ke
ns

/s
ec

) 1e5
Baseline
ByteScheduler
Linear Scaling
P3

(a)MXNet, PS, TCP

(18%-72%)

8 16 32 64
of GPUs

0.0

0.4

0.8

1.2

1.6

Sp
ee

d
(to

ke
ns

/s
ec

) 1e5
Baseline
ByteScheduler
Linear Scaling

(b) MXNet, PS, RDMA

(34%-171%)

8 16 32 64
of GPUs

0.0
0.2
0.4
0.6
0.8

Sp
ee

d
(to

ke
ns

/s
ec

) 1e5
Baseline
ByteScheduler
Linear Scaling

(c) TensorFlow, PS, TCP
(31%-102%)

8 16 32 64
of GPUs

0.0

0.8

1.6

2.4

Sp
ee

d
(to

ke
ns

/s
ec

) 1e5
Baseline
ByteScheduler
Linear Scaling

(d)MXNet, NCCL, RDMA

(6%-14%)

8 16 32 64
of GPUs

0.0

0.8

1.6

2.4

Sp
ee

d
(to

ke
ns

/s
ec

) 1e5
Baseline
ByteScheduler
Linear Scaling

(e) PyTorch, NCCL, TCP
(11%-18%)

Figure 12. Training Transformer model.

For PS architecture, workers and parameter servers are

on different machines, the number of workers is equal to the

number of parameter servers, and each worker has 8 GPUs.

Only the results of synchronous training is shown as we

find the training speedup of asynchronous mode is similar.

For all-reduce, each worker process has 1 GPU. The batch

sizes of VGG16, ResNet50, and Transformer are 32, 32, 512

samples per GPU by default.

Baselines. We use the vanilla ML frameworks as baselines.

We also present the linear scalability, which is used as an

optimal case inmanyworks [21, 32, 39]. It is calculated by the

training speed on 1 machine (with a vanilla ML framework)

multiplied by the number of machines. We use training speed

(samples/sec) as the performance metric. All the reported

speed numbers are averaged over 500 training iterations after

a warm-up of 10 iterations.

6.2 Speedup in Different Setups
Figure 10, 11 and 12 show the training speeds of baseline,

ByteScheduler, and linear scaling when running the 3-model

5-case benchmarks under 100Gbps network bandwidth with

the number of GPUs ranging from 8 to 64. Since each ma-

chine has 8 GPUs, the number of machines is calculated by

dividing the number of GPUs by 8.

Comparison with P3. We compare ByteScheduler with

P3, which only works in the MXNet PS TCP case. We use the

source code available on Github and the default partition con-

figuration of P3. We tested other partition sizes and obtained

no better results. From Figure 10 (a), 11 (a) and 12 (a), we

see that ByteScheduler outperforms P3 by 28% − 43% across

the 3 benchmark models. The main reason is that P3 cannot

utilize the bandwidth fully due to its stop-and-wait tensor

transmission and system overhead as shown in §2.3. We did

not compare with TicTac [18] as it is not fully open-sourced.

TCP vs. RDMA. From (a) and (b) in Figure 10, 11, 12, we

see that the speedup varies largely case by case. In general,

ByteScheduler has larger benefits with RDMA. We suspect

that this is because the overhead due to small partition is

lower with RDMA than with TCP, based on its more efficient

network stack. The outlier is ResNet50 with PS RDMA: the

baseline is already close to linear scaling, so there is not

much room for ByteScheduler to improve.

PS vs. all-reduce. In most cases, ByteScheduler has larger

speedup in PS architecture than in all-reduce. Take VGG16

training on 16 GPUs as an example. ByteScheduler achieves

124.9% and 19% improvement for MXNet PS RDMA and

MXNet NCCL RDMA, respectively. The reason is that: for

PS, removing the global barrier and partitioning the tensors

A Generic Communication Scheduler for Distributed DNN Training Acceleration SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

1 10 25 40 100
Bandwidth (Gbps)

0
1
2
3
4

Sp
ee

d
(im

ag
es

/s
ec

) 1e3
Baseline
Fixed Scheduler
Tuned Scheduler

(a) VGG16, PS (79%-132%)

1 10 25 40 100
Bandwidth (Gbps)

0.0

1.5

3.0

4.5

6.0

Sp
ee

d
(im

ag
es

/s
ec

) 1e3
Baseline
Fixed Scheduler
Tuned Scheduler

(b) VGG16, NCCL (3%-16%)

1 10 25 40 100
Bandwidth (Gbps)

0.0
0.2
0.4
0.6
0.8

Sp
ee

d
(im

ag
es

/s
ec

) 1e4
Baseline
Fixed Scheduler
Tuned Scheduler

(c) ResNet50, PS (10%-64%)

1 10 25 40 100
Bandwidth (Gbps)

0.0

0.3

0.6

0.9

1.2
Sp

ee
d

(im
ag

es
/s

ec
) 1e4

Baseline
Fixed Scheduler
Tuned Scheduler

(d) ResNet50, NCCL (1%-13%)

1 10 25 40 100
Bandwidth (Gbps)

0.0

0.3

0.6

0.9

1.2

Sp
ee

d
(to

ke
ns

/s
ec

) 1e5
Baseline
Fixed Scheduler
Tuned Scheduler

(e) Transformer, PS (67%-70%)

1 10 25 40 100
Bandwidth (Gbps)

0.0
0.5
1.0
1.5
2.0

Sp
ee

d
(to

ke
ns

/s
ec

) 1e5
Baseline
Fixed Scheduler
Tuned Scheduler

(f) Transformer, NCCL (7%-15%)

Figure 13. Speed comparison by training models with MXNet PS

RDMA and MXNet NCCL RDMA under different bandwidths.

create better pipelining of push and pull and hence the com-

munication time is also reduced significantly. For all-reduce

training with NCCL RDMA, ByteScheduler is very close to

linear scaling; occasionally, it even outperforms linear scal-

ing (based on vanilla MXNet), because ByteScheduler also

benefits the communication between GPUs inside a machine.

Different DNN models. We see ByteScheduler has larger

speedup for VGG16 and Transformer than ResNet50. The low

gain of ResNet50 is expected, since training it with 100Gbps

RDMA is not communication-bound, i.e., the ratio of com-

munication to computation is low. We also test other models.

For example, using 32 GPUs in MXNet PS RDMA setting,

speedups for AlexNet [23] and VGG19 [33] are 96% and 60%,

respectively. We omit other numbers due to space limit.

PS load balancing. In some cases, ByteScheduler achieves

significantly higher improvement than what we expect, e.g.,
171% speed-up when training Transformer using 2 workers

(16 GPUs) in MXNet PS RDMA. In such cases, we find that

the PS are severely imbalanced in baseline (due to the imbal-

ance in tensor sizes and the naïve tensor-to-PS assignment

like round-robin by default) and smaller partitions used in

ByteScheduler actually balance the PS load very well.

Working with different network bandwidths. We ex-

amine how much improvement ByteScheduler can achieve

compared with the baseline under typical bandwidth settings

VGG-16 Transformer
Models

0

15

30

45

of

 T
ria

ls

BO
SGD

Random
Grid

(a) MXNet PS RDMA

VGG-16 Transformer
Models

0
50

100
150
200

of

 T
ria

ls

BO
SGD

Random
Grid

(b) MXNet NCCL RDMA

Figure 14. Search costs of different auto-tuning algorithms. Error

bars show standard deviation.

Table 1. Best partition size (MB) and credit size (MB)

(partition, credit) VGG16 ResNet50 Transformer

MXNet PS RDMA (6, 21) (3, 17) (5, 29)

MXNet NCCL RDMA (88, 171) (56, 64) (56, 103)

(i.e., 1Gbps, 10Gbps, 25Gbps, 40Gbps, and 100Gbps). In this

experiment, we use 4 machines with 32 GPUs in total to run

the workers. We set the available bandwidth by limiting the

speed of Mellanox NIC card using the mlnx_qos command.

We measure the training speed of the benchmarks in cases

of MXNet PS RDMA and MXNet NCCL RDMA. Figure 13

shows the training speeds of baseline and ByteScheduler

with auto-tuning (“Tuned Scheduler” bars).

From Figure 13, we observe that: (1) ByteScheduler with

auto-tuning consistently speeds up the training of VGG16

and Transformer in all bandwidth settings. The improve-

ment is larger with PS, which is also consistent with pre-

vious figures. (2) The improvement for ResNet50 is high

when the bandwidth is less than 25Gbps (e.g., 64.4% speedup

with PS under 10Gbps bandwidth) but decreases as the band-

width increases (e.g., 9.6% speedup with PS under 100Gbps

bandwidth). This is because ResNet50 is more computation-

intensive and has less parameters than the other two models.

6.3 Auto-tuning’s Contribution and Overhead
Figure 13 also shows the training speed when disabling auto-

tuning (i.e., the “Fixed Scheduler” bars). Specifically, we fix

the partition and credit sizes to be values given by our auto-

tuning algorithm under 1Gbps bandwidth, and use them un-

der all bandwidth settings. We find that auto-tuning achieves

higher speed than without it in all cases. Auto-tuning is also

necessary as in some cases, without auto-tuning, ByteSched-

uler even performs worse than baseline.

In addition, we show the best partition size and credit size

of the 3 models using 32 GPUs for training under 100Gbps

bandwidth in Table 1. We see that: (1) The best configura-

tions are different. (2) NCCL requires much larger partition

size and credit size than PS, mainly due to the larger synchro-

nization costs of all-reduce primitive. (3) The best partition

and credit sizes also differ between different models. For ex-

ample, ResNet50 is computation-heavy, so achieving timely

preemption is more important than paying less partition

overhead. VGG16 is the opposite.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

Search cost. To comparewith BO used in our auto-tuning al-

gorithms, we choose 3 classic alternatives, i.e., random search,

grid search and SGD with momentum [30]. Random search

tests points randomly picked. Grid search splits each dimen-

sion by interval in search space and tests grid points one by

one. For SGD with momentum [30], we randomly choose

an initial point and restart the algorithm in case that it is

stuck in a local optimum. We test different hyper-parameters

and show the results achieved with the best parameters. For

each algorithm, we stop searching when it reaches the opti-

mal configuration (as identified by grid search). We compare

the search cost (i.e., number of searches) of algorithms for

VGG16 and Transformer in PS and NCCL.

Figure 14 shows that: (1) on average Bayesian Optimiza-

tion can reach optimal configuration with much less cost

than other algorithms, e.g., it incurs 28% − 51% less number

of trials than momentum and hence mitigates the restarting

overhead (see §5) in PS architecture. (2) BO is much more sta-

ble than random search and SGD with momentum (smaller

standard deviation), as it selects next point based on expected

improvement. So users can expect more stable performance

in the tuning phase.

BO tuning runs in parallel withmodel training. ForHorovod

NCCL, it does not add extra overhead. For PS architecture

like TensorFlow PS, the restarting overhead varies among

models, e.g., 5 seconds for VGG16 and 9 seconds for ResNet50
in each restart. Since BO typically runs within 10 trials (Fig-

ure 14), the overhead is small compared to the entire training.

7 Discussion and Future Directions
Dynamic partition size and credit size. We use auto-

tuning to search for the best parameters, i.e., partition size

and credit size, at the beginning of training, and assume

their values stay constant throughout the training. We may

further allow dynamic partition size and credit size over the

training course, by consistently searching for the best values

using newly profiled results. Also, we may use different

partition and credit sizes for different layers in the DNN.

Both improvements may incur significantly more search

costs. We leave efficient search algorithms as open problems.

Co-scheduling in a shared cluster. For simplicity, our

scheduling algorithm omits the consideration of possible

shared resources between training jobs: (a) shared worker

resources (e.g., CPUs and NICs); (b) shared network with

congestion; (c) shared PS resources (e.g., GPU/CPU). How-
ever, in the multi-tenancy cloud setting, resource sharing is

common. The performance impact is not negligible when

the shared resource is the bottleneck. A potential solution

is to cooperatively schedule the communication within the

shared cluster, and possibly integrate it with DNN cluster

job scheduler [17, 29] or Coflow scheduler [13].

ByteScheduler for other ML frameworks. Our current

implementation supports TensorFlow, PyTorch and MXNet.

Though they are probably the three most popular frame-

works, there are many other alternatives, like Caffe [22],

CNTK [31] and Spark [27, 35]. We believe that we can apply

ByteScheduler to them in similar ways, since the ByteSched-

uler design is quite generic. We leave this as future work.

8 Related work
Speed up communication in DNN training. Existing ap-
proaches include: (1) speeding up individual messages by

using RDMA [25] or NCCL [4]; (2) compressing data trans-

mission such as gradient quantization [9, 37] and sparse

parameter synchronization [7]; (3) optimizing communica-

tion approach, e.g., Stale Synchronous Parallel [20] for PS
and different all-reduce algorithms [10, 14]; (4) minimizing

network flow completion time by using flow control [26] or

Coflow scheduling [13]. These work mainly focus on acceler-

ating a single communication operation, and are orthogonal

and complementary to ByteScheduler.

Overlap communicationwith computation. Most DNN

frameworks, e.g., TensorFlow, PyTorch, MXNet and Posei-

don [39], support overlapping communication with back-

ward propagation. On top of this, P3 [21] further attempts to

overlap communication with forward propagation by layer

partitioning and scheduling on MXNet PS architecture. Tic-

Tac [18] proposes a similar idea but shows a much smaller

training speedup (less than 20%) based on TensorFlow PS

TCP. We suspect that it is due to the global barrier (§2.3).

P3 and TicTac are probably the closest related work to

ByteScheduler. However, ByteScheduler is generic across

multiple DNN frameworks, provides analysis on the schedul-

ing algorithm, overcomes their shortcomings like not adapt-

ing to system overhead and suffering from a global barrier,

and achieves much higher speedup.

Parameter tuning with BO. BO is also used in searching

the best cloud configuration for big data analytics [8], tuning

the learning parameters of machine learning algorithm [34],

and online parameter tuning of databases [16]. ByteSched-

uler is parallel to them, as it searches the optimal scheduling

parameters to accelerate distributed DNN training.

9 Conclusion
ByteScheduler is a generic communication scheduler for dis-

tributed DNN training acceleration. Our implementation sup-

ports multiple ML frameworks including MXNet, PyTorch,

and TensorFlow, with both PS and all-reduce for gradient

synchronization, and using either TCP or RDMA. ByteSched-

uler achieves up to 196% end-to-end speedup. The key design

points include a unified abstraction for communication oper-

ations,Dependency Proxy, and system parameter auto-tuning.

We have open-sourced our implementation and expect that

the community will add support to more existing and future

frameworks.

A Generic Communication Scheduler for Distributed DNN Training Acceleration SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

References
[1] 2019. ByteScheduler Appendix. https://www.dropbox.com/s/

smoq6xd6pr7av81/bytescheduler_appendix.pdf?dl=0.
[2] 2019. ByteScheduler Source Code. https://github.com/bytedance/

byteps.
[3] 2019. MLPerf Training v0.6 Results. https://mlperf.org/training-results-

0-6/.
[4] 2019. NVIDIA Collective Communications Library (NCCL). https:

//developer.nvidia.com/nccl.
[5] 2019. TensorFlow Grapper. https://github.com/tensorflow/tensorflow/

tree/master/tensorflow/core/grappler.
[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale

Machine Learning. In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI).

[7] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse Communication

for Distributed Gradient Descent. arXiv preprint arXiv:1704.05021
(2017).

[8] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adap-

tively Unearthing the Best Cloud Configurations for Big Data Analytics.

In Proceedings of USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

[9] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan

Vojnovic. 2017. QSGD: Communication-Efficient SGD via Gradient

Quantization and Encoding. In Proceedings of Advances in Neural In-
formation Processing Systems (NIPS).

[10] Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, and Dha-

baleswar K Panda. 2018. Optimized Broadcast for Deep Learning

Workloads on Dense-GPU Infiniband Clusters: MPI or NCCL?. In Pro-
ceedings of the 25th European MPI Users’ Group Meeting.

[11] Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A Tutorial on

Bayesian Optimization of Expensive Cost Functions, with Application

to Active User Modeling and Hierarchical Reinforcement Learning.

arXiv preprint arXiv:1012.2599 (2010).
[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2016.

MXNet: A Flexible and Efficient Machine Learning Library for Het-

erogeneous Distributed Systems. In Proceedings of NIPS Workshop on
Machine Learning Systems.

[13] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient

Coflow Scheduling with Varys. In Proceedings of ACM Special Interest
Group on Data Communication (SIGCOMM).

[14] Jeff Daily, Abhinav Vishnu, Charles Siegel, Thomas Warfel, and Vinay

Amatya. 2018. GossipGraD: Scalable Deep Learning using Gossip

Communication based Asynchronous Gradient Descent. arXiv preprint
arXiv:1803.05880 (2018).

[15] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

MarkMao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012.

Large Scale Distributed Deep Networks. In Proceedings of Advances in
Neural Information Processing Systems (NIPS).

[16] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tun-

ing Database Configuration Parameters with iTuned. In Proceedings of
Very Large Data Bases (VLDB) Endowment.

[17] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-

jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.

Tiresias: A GPU Cluster Manager for Distributed Deep Learning. In

Proceedings of USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[18] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell.

2019. TicTac: Accelerating Distributed Deep Learning with Commu-

nication Scheduling. In Proceedings of Systems and Machine Learning
(SysML).

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).

[20] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,

Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.

2013. More Effective Distributed ML via a Stale Synchronous Parallel

Parameter Server. In Proceedings of Advances in Neural Information
Processing Systems (NIPS).

[21] Anand Jayarajan, JinliangWei, Garth Gibson, Alexandra Fedorova, and

Gennady Pekhimenko. 2019. Priority-Based Parameter Propagation

for Distributed DNN Training. In Proceedings of Systems and Machine
Learning (SysML).

[22] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.

Caffe: Convolutional Architecture for Fast Feature Embedding. In

Proceedings of the 22nd ACM International Conference on Multimedia.
[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Ima-

geNet Classification with Deep Convolutional Neural Networks. In Pro-
ceedings of Advances in Neural Information Processing Systems (NIPS).

[24] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr

Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing

Su. 2014. Scaling Distributed Machine Learning with the Parameter

Server. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[25] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda. 2004. High

Performance RDMA-based MPI Implementation over InfiniBand. In-
ternational Journal of Parallel Programming (2004).

[26] Luo Mai, Chuntao Hong, and Paolo Costa. 2015. Optimizing Net-

work Performance in Distributed Machine Learning. In Proceedings of
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud).

[27] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,

Sean Owen, et al. 2016. Mllib: Machine Learning in Apache Spark.

Journal of Machine Learning Research (2016).

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, AlbanDesmaison, Luca Antiga, and

Adam Lerer. 2017. Automatic Differentiation in PyTorch. In Proceedings
of NIPS Autodiff Workshop.

[29] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong

Guo. 2018. Optimus: An Efficient Dynamic Resource Scheduler for

Deep Learning Clusters. In Proceedings of the 13th ACM European
Conference on Computer Systems (EuroSys).

[30] Sebastian Ruder. 2016. An Overview of Gradient Descent Optimization

Algorithms. arXiv preprint arXiv:1609.04747 (2016).

[31] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s Open-Source

Deep-Learning Toolkit. In Proceedings of ACM International Conference
on Knowledge Discovery and Data Mining (KDD).

[32] Alexander Sergeev and Mike Del Balso. 2018. Horovod: Fast and

Easy Distributed Deep Learning in TensorFlow. arXiv preprint
arXiv:1802.05799 (2018).

[33] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolu-

tional Networks for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556 (2014).

[34] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical

BayesianOptimization ofMachine LearningAlgorithms. In Proceedings
of Advances in Neural Information Processing Systems (NIPS).

[35] Evan R Sparks, Ameet Talwalkar, Virginia Smith, Jey Kottalam, Xing-

hao Pan, Joseph Gonzalez, Michael J Franklin, Michael I Jordan, and

Tim Kraska. 2013. MLI: An API for Distributed Machine Learning. In

Proceedings of IEEE International Conference on Data Mining (ICDM).
[36] Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting

Very Large Models Using Automatic Dataflow Graph Partitioning. In

Proceedings of the 14th ACM European Conference on Computer Systems
(EuroSys).

https://www.dropbox.com/s/smoq6xd6pr7av81/bytescheduler_appendix.pdf?dl=0
https://www.dropbox.com/s/smoq6xd6pr7av81/bytescheduler_appendix.pdf?dl=0
https://github.com/bytedance/byteps
https://github.com/bytedance/byteps
https://mlperf.org/training-results-0-6/
https://mlperf.org/training-results-0-6/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/grappler
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/grappler

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

[37] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. 2017. Terngrad: Ternary Gradients to Reduce Com-

munication in Distributed Deep Learning. In Proceedings of Advances
in Neural Information Processing Systems (NIPS).

[38] Wikipedia. 2019. Monkey Patch. https://en.wikipedia.org/wiki/
Monkey_patch.

[39] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan

Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017.

Poseidon: An Efficient Communication Architecture for Distributed

Deep Learning on GPU Clusters. In Proceedings of USENIX Annual
Technical Conference (USENIX ATC).

https://en.wikipedia.org/wiki/Monkey_patch
https://en.wikipedia.org/wiki/Monkey_patch

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DNN Training and Data Parallelism
	2.2 Communication Scheduling
	2.3 The Opportunities and Challenges

	3 Design
	3.1 Architecture
	3.2 Unified Abstraction for Communication Tasks
	3.3 Interaction with Framework Engines
	3.4 Crossing the Global Barrier

	4 Scheduling in the Wild
	4.1 The Analysis of ByteScheduler Algorithm
	4.2 Credit-based Preemption
	4.3 Auto-Tuning Partition Size and Credits

	5 Implementation Details
	6 Evaluation
	6.1 Methodology
	6.2 Speedup in Different Setups
	6.3 Auto-tuning's Contribution and Overhead

	7 Discussion and Future Directions
	8 Related work
	9 Conclusion
	References

