
PAXOS Made Transparent
Heming Cui+*, Rui Gu*, Cheng Liu*, Tianyu Chenx, and Junfeng Yang*

+The University of Hong Kong *Columbia University xTsinghua University

Abstract
State machine replication (SMR) leverages distributed con-
sensus protocols such as PAXOS to keep multiple replicas of
a program consistent in face of replica failures or network
partitions. This fault tolerance is enticing on implementing a
principled SMR system that replicates general programs, es-
pecially server programs that demand high availability. Un-
fortunately, SMR assumes deterministic execution, but most
server programs are multithreaded and thus nondeterminis-
tic. Moreover, existing SMR systems provide narrow state
machine interfaces to suit specific programs, and it can be
quite strenuous and error-prone to orchestrate a general pro-
gram into these interfaces

This paper presents CRANE, an SMR system that transpar-
ently replicates general server programs. CRANE achieves
distributed consensus on the socket API, a common interface
to almost all server programs. It leverages deterministic mul-
tithreading (specifically, our prior system PARROT) to make
multithreaded replicas deterministic. It uses a new technique
we call time bubbling to efficiently tackle a difficult chal-
lenge of nondeterministic network input timing. Evaluation
on five widely used server programs (e.g., Apache, ClamAV,
and MySQL) shows that CRANE is easy to use, has mod-
erate overhead, and is robust. CRANE’s source code is at
github.com/columbia/crane.

Categories and Subject Descriptors: D.4.5 [Operating Sys-
tems]: Threads, Reliability; C.2.4 [Computer-communication
Networks]: Distributed Systems;
General Terms: Algorithms, Design, Reliability, Performance
Keywords: State Machine Replication, Fault Tolerance, Stable and
Deterministic Multithreading, Software Reliability

1. Introduction
State machine replication (SMR) models a program as a de-
terministic state machine, where the states are important pro-
gram data and the transitions are deterministic executions
of program code under input requests. SMR runs replicas
of the program and invokes a distributed consensus proto-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright c© 2015 ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815427

col (typically PAXOS [42, 44, 65]) to ensure the same se-
quence of input requests for replicas, as long as a quorum
(typically a majority) of the replicas agrees on the input re-
quest sequence. Under the deterministic execution assump-
tion, this quorum of replicas must reach the same exact
state despite replica failures or network partitions. SMR is
proven safe in theory and provides high availability in prac-
tice [19, 21, 23, 33, 37, 51, 52, 61].

The fault-tolerant benefit of SMR makes it particularly at-
tractive on implementing a principled replication system for
general programs, especially server programs that require
high availability. Unfortunately, doing so remains quite chal-
lenging; the core difficulty lies in the deterministic state ma-
chine abstraction required by SMR, elaborated below.

First, the deterministic execution assumption breaks down
in today’s server programs because they are almost univer-
sally multithreaded. Even on the same exact sequence of
input requests, different executions of the same exact mul-
tithreaded program may run into different thread interleav-
ings, or schedules, depending on such factors as OS schedul-
ing and physical arrival times of requests. Thus, they can
easily exercise different schedules and reach divergent ex-
ecution states – a difficult problem well recognized by the
community [14, 33, 34, 37]. To tackle this problem, one prior
approach, execute-verify [37], detects divergence of execu-
tion states and retries, but it relies on developers to manually
annotate states, a strenuous and error-prone process.

Second, to leverage existing SMR systems such as
ZooKeeper [6], developers often have to shoehorn their pro-
grams into the narrowly defined state machine interfaces
provided by these SMR systems. Ideally, experts – those
with intimate knowledge of the arcane (think how many
papers [23, 42, 44, 52, 65] are needed to explain PAXOS),
under-specified [52] SMR protocols and subtle failure sce-
narios in distributed systems – should build a solid SMR sys-
tem, which all other developers then leverage. However, an
SMR system often has to settle for a specific state and tran-
sitional interface because it cannot anticipate all possibilities
in which developers structure their programs. For example,
Chubby [21] defines a lock server interface, and ZooKeeper
a pseudo file system interface. Orchestrating a sever pro-
gram into such a narrow interface not only requires intrusive
and error-prone modifications to the program’s structure and
code, but also disrupts the SMR system itself at times. For
instance, developers abused Chubby for storage [21], caus-
ing the Chubby developers to add quota support.

github.com/columbia/crane

This paper presents CRANE,1 an SMR system that trans-
parently replicates server programs for high availability.
With CRANE, a developer focuses on implementing her pro-
gram’s intended functionality, not replication. When she is
ready to replicate her program for availability, she simply
runs CRANE with her program on multiple replicas. Within
each replica, CRANE interposes on the socket and the thread
synchronization interfaces to keep replicas in sync. Specifi-
cally, it considers each incoming socket call (e.g., accept()
a client’s connection or recv() a client’s data) an input re-
quest, and runs a PAXOS consensus protocol [52] to ensure
that a quorum of the replicas sees the same exact sequence
of the incoming socket calls.

CRANE schedules synchronizations using deterministic
multithreading (DMT) [13–15, 18, 31, 34, 56]. This tech-
nique typically maintains a logical time2 that advances de-
terministically on each thread’s synchronization. By serial-
izing thread synchronizations, DMT practically makes an
entire multithreaded execution deterministic. The overhead
of DMT is typically moderate because most code is not
synchronization and can still run in parallel. Specifically,
CRANE leverages our prior DMT system PARROT [29],
which incurs on average 12.7% overhead on a wide range of
108 popular multithreaded programs on 24-core machines.

A key challenge on realizing SMR for multithreaded ex-
ecutions is that, simply combining PAXOS and DMT is not
sufficient to keep replicas in sync, because the physical time
that each request arrives at different replicas may still be dif-
ferent, easily leading to divergence of execution states and
outputs. (We illustrate this problem using an example in §2.2
and experimental results in §7.2.)

Two prior approaches attempted to tackle this challenge.
Execute-agree-follow [33] records a partially ordered sched-
ule of Pthreads synchronizations on one replica and replays
it on the other replicas, which may incur high network band-
width consumption and performance overhead. dOS [14]
also leverages DMT for replication, but it determines the
logical admission time for each request using two-phase
commit. Aside from two-phase commit’s known intolerance
of primary failures, per-request commit is also costly.

One may consider solving this challenge by leveraging the
underlying distributed consensus protocol to determine the
logical admission time for each request. Specifically, when
running the consensus protocol to decide each request’s po-
sition in the request sequence, a predicted logical admission
time can be carried as part of the decision as well. Unfortu-
nately, predicting a logical admission time for each request
accurately is quite challenging because typical server pro-
grams have background threads which may frequently tick
logical clocks. A too-small predication leads to replica di-

1 CRANE stands for Correctly ReplicAting Nondeterministic Executions. It
is also our hope that our system is as elegant as the identically named bird.
2 Though related, the logical time in DMT is not to be confused with the
logical time in distributed systems [43].

vergence if another replica has already run past the predicted
logical time. A too-large predication blocks the system un-
necessarily because replicas cannot admit the request before
reaching the predicted time.

Our key insight is that many requests need no admission
time consensus because their admission times are already
deterministic. Hypothetically, if the requests arrive faster
than they are admitted at each replica, each request’s admis-
sion time is fully deterministic because each replica simply
admits requests as fast as it can. In practice, requests do not
arrive this fast. However, there are still frequent bursts of re-
quests that arrive together. Among replicas, as long as the
first request of a burst is admitted at a deterministic logical
time, all the other requests in the burst are admitted at deter-
ministic logical times without requiring consensus.

Leveraging this insight, we created an technique called
time bubbling to enforce deterministic logical times effi-
ciently. It ensures that the first request in a burst is admitted
at each replica deterministically by inserting a determinis-
tic wait after the previous burst of requests are all admit-
ted. During this wait, each replica only processes already
admitted requests, and does not admit new requests. CRANE
negotiates a consistent duration of the wait via the under-
lying distributed consensus protocol, and enforces this wait
at each replica via DMT. These waits are like deterministic
time bubbles between bursts of requests (hence the name of
the technique), creating the illusion that the requests arrive
faster than they are admitted.

In short, by converting per-request admission time con-
sensus to per-burst, time bubbling efficiently combines the
input determinism of PAXOS and the execution determinism
of DMT. For busy servers, requests in bursts greatly outnum-
ber the other requests. (We observed that 66.65% to 93.88%
of requests are in bursts; see §7.3.) They rarely need to in-
voke time consensus, enjoying good performance. For idle
servers, time consensus overhead does not matter much be-
cause the servers are idle anyway.

We implemented CRANE by interposing on the POSIX
socket and the Pthreads synchronization interfaces. It inter-
cepts operations along these interfaces by hijacking dynam-
ically linked library calls for transparency. It implements
the PAXOS protocol atop libevent [47] for distributed con-
sensus, and leverages our PARROT system for deterministic
multithreading. Unlike prior SMR systems with narrow in-
terfaces, CRANE’s checkpoint and recovery must work with
general programs. To this end, it leverages CRIU [28] to
checkpoint and restore process states, and LXC [2] for file
system states. An additional benefit of using the LXC con-
tainer is that CRANE isolates the replicated server program
from the environment, avoiding nondeterministic systems
resource contentions (§5.2).

We evaluated CRANE on five widely used server pro-
grams, including HTTP servers Apache and Mongoose,
an anti-virus server ClamAV, a uPnP multimedia server

MediaTomb, and a database server MySQL. Our results on
popular performance benchmarks show that CRANE works
with all the servers easily (three servers require no modifica-
tion, and the other two servers each require only two lines of
PARROT hints [29] to improve performance); that CRANE’s
performance overhead is moderate (an average of 34.19%
overhead at the servers’ peak performance setups on our 24-
core machines); and that CRANE is robust on replica failures.

Our key conceptual contribution is the idea of transpar-
ent SMR for general programs, which has the potential to
expand SMR’s adoption and improve availability of many
systems. This idea also applies to other replication con-
cepts (e.g., byzantine fault tolerance [22, 38]). This idea
has other broad applications as well (§6.2). Our engineering
contributions include the CRANE system and its evaluation
on widely used server programs. All CRANE’s source code
(including a standalone, libevent-based PAXOS implemen-
tation), benchmarks, and evaluation results are available at
github.com/columbia/crane.

In the remainder of this paper, §2 introduces CRANE’s ar-
chitecture and an example. §3 describes how CRANE en-
forces order for synchronizations in a server. §4 illustrates
the work flow of the time bubbling technique. §5 describes
implementation details. §6 discusses the limitations and ap-
plications of CRANE. §7 presents evaluation results. §8 dis-
cusses related work, and §9 concludes.

2. CRANE Overview
CRANE is deployed as a typical SMR system. A set of
three or five replicas is set up within a LAN, and each
replica runs an CRANE instance containing the same server
program. On the CRANE system starts, one replica becomes
the primary (or leader) replica which proposes the order of
requests to execute, and the others become backup replicas
which follow the primary’s proposals. A number of clients
in LAN or WAN send network requests to the primary and
get responses. If the primary machine fails, the other replicas
run a leader election (§5.1) to elect a new primary.

This section first presents CRANE’s architecture, including
its consensus interface and a CRANE instance’s main compo-
nents, and then uses an example to show how CRANE works
with server programs.

2.1 Architecture

To support general server programs transparently, CRANE
chooses the POSIX socket API as its consensus interface.
CRANE enforces two kinds of orders for socket calls. First,
for client programs’ out going socket calls (e.g., connect()
and send()), CRANE enforces that all replicas see the same
sequence of client socket calls with PAXOS. CRANE does
not need to order the clients’ blocking socket calls be-
cause CRANE is not designed to replicate clients. Second,
for a server program’s blocking socket calls (e.g., poll(),
accept(), and recv()), CRANE enforces that these calls
are scheduled and returned in the same sequence of logical

Checkpoint component

A server program

recv()
lock()

poll()
accept()

DMT scheduler

lock()

Proxy

Paxos
consensus

...

Client 1

Client 2

Client N

C
T

S

CS

Time
bubble

Insert
Request

consensus
Consensus

decision

Consensus with the other nodesCconnect()

Ssend()

Ta time bubble

C

Figure 1: The CRANE Architecture. CRANE components are
shaded (and in green).

times across replicas. CRANE responses to the clients only
using the server program on the primary, and it drops the
responses of the server programs on backups.

For a server program’s outgoing socket calls (e.g.,
send()), CRANE simply schedules them using DMT and
does not invoke consensus. The reason is that these calls
readily have consistent contents via enforcing the same log-
ical admission times of input requests and the same thread
schedules for server programs across replicas.

Figure 1 shows a CRANE instance running on the primary.
The instance contains five main components, the proxy, the
PAXOS consensus, the DMT scheduler, the time bubbling
component that enforces the same logical clocks for servers’
blocking socket calls across replicas via inserting time bub-
bles, and the checkpoint component that periodically check-
points the server program. A server program runs transpar-
ently in a CRANE instance without being aware of CRANE’s
components. A backup replica runs the same CRANE in-
stance except that its proxy does not accept connections from
clients and does not invoke consensus.

The proxy component is a CRANE instance’s gateway. It
accepts socket requests from clients and forwards the re-
quests to the server program on its own replica. It accepts re-
sponses from the server program and forwards the responses
to the clients. Once the proxy receives a client socket re-
quest, it invokes the PAXOS consensus component running
on its own replica for this request. The proxy does not block-
wait for this decision which may take a while to reach. Once
the proxy is notified by the PAXOS component that some
requests’ decisions are made, it forwards the requests in de-
cision order to the server program.

The PAXOS consensus component is a PAXOS protocol
that receives a client socket request from its own proxy and
invokes a consensus process on this request. This compo-
nent is also the only CRANE component that communicates
among different replicas. CRANE’s PAXOS implementation
is based on a well-known and concise protocol [52]. More
details on our PAXOS implementation are given in §5.1. Af-
ter CRANE’s PAXOS components reach consensus on a client
socket call, each PAXOS component notifies its own proxy to
forward this call to its server program.

The DMT component runs within the server pro-
gram’s process. CRANE leverages PARROT [29] as the
DMT scheduler because PARROT runs fast on a wide

github.com/columbia/crane

range of 108 popular multithreaded programs. Specifically,
PARROT uses a runtime technique called LD PRELOAD
to dynamically intercept Pthreads synchronizations (e.g.,
pthread mutex lock()) issued by an executable and en-
forces a well-define, round-robin schedule on these synchro-
nization operations for all threads, practically eliminating
nondeterminism in thread synchronizations.

Although PARROT is not designed to resolve data races
deterministically, CRANE’s replication tolerates data races
that have fail-stop consequences, and can further catch the
other data races by running a race detector on a backup
replica (see §6.1). CRANE augments the DMT component to
schedule the return points of socket calls in server replicas,
too, to ensure that requests are admitted at consistent logical
times across replicas.

The time bubbling component sits between the proxy and
the DMT’s processes, and it is invoked on two conditions.
First, on a server’s bootstraps, CRANE invokes time bubble
insertions to make sure that the server programs across repli-
cas reach the same initial state and wait for the first input re-
quest. Second, if the DMT component has not received any
input request from the proxy for a physical duration Wtimeout ,
a time bubble insertion is invoked as the boundary of two re-
quest bursts. To ensure the same sequence of inserted time
bubbles across replicas, the same PAXOS consensus as that
for client socket calls is invoked. For each time bubble, each
replica’s DMT scheduler promises to run a number of Nclock
synchronizations and not to admit any client socket call.

If the DMT scheduler exhausts the logical clocks in a time
bubble, it either admits new client socket call (if any) or
inserts another time bubble. If the scheduler does not exhaust
the logical clocks after serving current requests, PARROT has
a mechanism to exhaust them rapidly (§3.1). More details on
the time bubbling technique are given in §4, and discussions
on the values of the two parameters Wtimeout and Nclock are
given in §7.5.

To recover from replica failures or add new replicas, the
checkpoint component is invoked every minute on a backup
replica. It checkpoints the server process running with DMT.
While one can always start a server replica from scratch
and replay the entire sequence of socket calls, this replay
can be extremely time-consuming for long-running servers.
Prior SMR systems rely on narrow state machine interfaces
for checkpoint and recovery, which does not work for gen-
eral server programs. Instead, CRANE leverages two popular
open source tools: CRIU, to checkpoint process state such
as CPU registers and memory; and LXC, to checkpoint the
file system state of a server program’s current working di-
rectory and installation directory.

Each checkpoint in CRANE is associated with a global in-
dex in PAXOS’s consensus order, so if one replica needs re-
covery, CRANE ships the latest checkpoint from a backup
replica, restores the process running DMT and the server
program, and re-executes socket calls starting from this in-

1 : void main(int argc, char *argv[]) {
2 : int done = 0; // Be 1 when receives a kill signal.
3 : int nworkers = atoi(argv[1]);
4 : pthread create(. . ., NULL, listener, NULL);
5 : for (i = 0; i < nworkers; ++i)
6 : pthread create(. . ., NULL, worker, NULL);
7 : . . .; // Wait for threads to exit.
8 : }
9 : void *listener(void *arg) {
10: . . .; // Call bind() and listen().
11: while (!done && poll(. . .)) {
12: int sock = accept(. . .);
13: worklist.add(sock);
14: }
15: }
16: void *worker(void *arg) {
17: while(!done && int sock = worklist.get()) {
18: recv(sock, buf, . . .);
19: lock(m);
20: ret = process req(buf);
21: unlock(m);
22: send(sock, ret, . . .);
23: . . .;
24: }
25: }

Figure 2: A server example based on Apache.

1: void main(argc, char *argv) {
2: . . .; // Get server IP:port from argv[].
3: int sock = socket(. . .);
4: connect(sock, . . .); // Connect to IP:port.
5: send(sock, . . .); // Send a http request.
6: recv(sock, . . .); // Wait for server’s response.
7: close(sock);
8: }

Figure 3: A client example based on curl.

dex. The proxy and consensus components do not require
checkpoints because we explicitly designed their execution
states independent to the server’s process (§5.2).

2.2 Example

Figure 2 shows an example based on the Apache HTTP
server. For clarity, the example uses worklist synchroniza-
tion, and the actual servers use Pthreads mutex locks and
conditional variables which CRANE readily handles. The
main thread creates a listener thread to accept client requests
and a number of worker threads to process client requests in
parallel. The listener listens on a port with poll(). When a
new client connection comes, the listener calls accept()

and appends the accepted socket descriptor to a worklist.
Each worker thread blocks on a worklist.get() function
until the worklist is not empty. It then dequeues an accepted
socket, processes the request with a mutex lock acquired,
and then sends a response. Figure 3 shows an example based
on client programs such as curl. This client connects to the
server, sends one HTTP request, waits for the server’s re-
sponse, and then closes the connection.

// worker 1 worker 2
1: recv("PUT a.php");
2: lock(m);
3: ret = process req();
4: unlock(m);
5: send(ret);
6: recv("GET a.php");
7: lock(m);
8: ret = process req();
9: unlock(m);
10: send(ret); //200 OK

Figure 4: HTTP GET request got the valid page due to the two
requests’ large arrival interval.

// worker 1 worker 2
1: recv("PUT a.php");
2: recv("GET a.php");
3: lock(m);
4: ret = process req();
5: unlock(m);
6: lock(m);
7: ret = process req();
8: unlock(m);
9: send(ret);
10: send(ret); //404 Not Found

Figure 5: HTTP GET request didn’t get the page due to the two
requests’ small arrival interval.

Let’s say a CRANE system with three replicas is set up,
and each replica runs this server; two clients start simultane-
ously, and each sends a HTTP PUT and GET request respec-
tively on the same URL “a.php” to the primary.

This server has three major sources of nondeterminism,
which can easily cause its execution states across replicas
to diverge. The first source (for short, S1) is that clients’
requests may arrive at different replicas in different orders.
Second (S2), within the server, the nondeterministic Pthreads
synchronizations may easily lead to different schedules. For
instance, the worklist.add() called by the listener may
wake up any worker blocking on worklist.get().

Third (S3), even if clients’ requests arrive at different repli-
cas in the same order, the physical time interval of each
two consecutive requests can still be largely different across
replicas depending on each request’s physical arrival time.
This variance may cause client socket calls to be admitted at
inconsistent logical clocks across replica and lead to diver-
gent execution states.

For instance, Figure 4 and Figure 5 show two replicas’
schedules, and each is a total order of executed socket calls
or Pthreads synchronizations in workers. Although the PUT
and GET requests arrive at the two replicas in the same order,
these requests’ interval in the first schedule (Figure 4) is
much larger than that in the second one, causing the first
one to return a page and the second one “404 Not Found”.

CRANE works as follows. First, depending on the order the
primary’s proxy receives these requests, CRANE eliminates
S1 with PAXOS and ensures the same request sequence for all

1: connect();
2: connect();
3: send("PUT a.php");
4: send("GET a.php");
5: a time bubble;
6: close();
7: close();
Figure 6: A sequence of client socket calls enforced by CRANE.

// Listener worker 1 worker 2
1: poll();
2: accept();
3: worklist.add();
4: worklist.get();
5: poll();
6: accept();
7: worklist.add();
8: worklist.get();
9: recv("PUT a.php");
10: recv("GET a.php");
11: lock(m);
12: ret = process req();
13: unlock(m);
14: lock(m);
15: ret = process req();
16: unlock(m);
17: send(ret);
18: send(ret);//404 Not Found

Figure 7: A schedule of the server example enforced by CRANE
across replicas.

replicas. Second, CRANE’s DMT scheduler eliminates S2 by
ensuring a deterministic order of Pthreads synchronizations.

Third, depending on the time intervals of client socket
calls observed by the primary, CRANE eliminates S3 by
dividing this sequence of calls into bursts with time bubbles.
Figure 6 shows a sequence. Let’s say the primary observes
that the intervals of the connect() and send() calls are all
smaller than Wtimeout , and the interval between the send()

at Line 4 and the close() at Line 6 in the sequence is
larger than Wtimeout . Then, CRANE inserts a time bubble
at Line 5 and divides the sequence into two bursts. For
the calls in the first burst, all replicas admit them as is
using DMT even if some of their time intervals are larger
than Wtimeout on some backups, consistently maintaining the
logical admission times for these calls.

For the time bubble in this sequence, all replicas’ DMT
schedulers promise to do only Nclock Pthreads synchroniza-
tions and then admit a client socket call, consistently main-
taining the logical admission times for the close() calls.
Given this sequence, Figure 7 shows CRANE’s consistent
schedule and output “404 Not Found” across replicas. We
ran CRANE with Apache and used curl to spawn concur-
rent PUT and GET requests, and we observed that Apache’s
network outputs were consistent across replicas (§7.2).

In addition to enforcing consistency, the time bubbling
technique is also efficient because it does per-burst con-
sensus instead of per-request consensus. In this example,

void get turn();
void put turn();
void wait(opaque obj);
void signal(opaque obj);

Figure 8: The PARROT DMT runtime’s scheduler primitives.

if more connect() calls arrive simultaneously and each
client connection does more send() calls, the ratio of in-
serted time bubbles versus the total number of socket calls in
the sequence may be even lower, then CRANE may become
more efficient. Evaluation on popular servers and workloads
shows that this ratio is often low and that CRANE has mod-
erate overhead (§7.3).

3. CRANE’s Synchronization Wrappers for a
Server

This section describes how CRANE handles a server pro-
gram’s synchronizations, including Pthreads synchroniza-
tions and blocking socket calls. Because how to handle these
synchronizations is tightly relevant to the PARROT DMT
scheduler we leverage, in this section, we first introduce
some background on the PARROT scheduler, including its
primitives and wrappers. And then we describe how CRANE
leverages PARROT’s primitives and wrappers to implement
its own synchronization wrappers.

3.1 Background: the PARROT Scheduler

PARROT [29] is a DMT system that uses the LD PRELOAD
trick to intercept Pthreads synchronizations at runtime and
enforces a well-define, round-robin order for these oper-
ations. In this round-robin manner, PARROT first lets one
runnable thread do one synchronization operation; and then,
for the left runnable threads, PARROT lets the next thread do
one synchronization operation; and then the next runnable
thread, until all runnable threads having done one synchro-
nization operation. Then PARROT repeats. To enforce this
schedule, PARROT maintains a queue of runnable threads
(run queue) and another queue of waiting threads (wait
queue), like a Linux OS scheduler.

PARROT enforces an important invariant: only the thread
at the head of the run queue can do one actual synchroniza-
tion operation and manipulate the run queue and wait queue.
After the head thread does one operation, it rotates itself to
the tail of the run queue and wakes up the new head thread
of the run queue. Conceptually, threads within PARROT pass
a global token (the run queue head) around. A thread will
be put into the wait queue if the synchronization object it
requires is not available, and it will be put back to the run
queue when this object becomes available.

To implement this round-robin schedule in a compact way,
PARROT provides a monitor-like internal interface, shown in
Figure 8. The get turn() function waits until the calling
thread becomes the head of the run queue. The put turn()

function rotates the calling thread to the tail of the run queue
and wakes up the next thread which now is the head of

1: int pthread mutex lock wrapper(mu) {
2: DMT.get turn();
3: check add timebubble(); // NOP in Parrot. Called in Crane.
4: while (pthread mutex trylock(mu))
5: DMT.wait(mu);
6: DMT.put turn();
7: return 0; // Error handling code ommitted for clarity.
8: }

Figure 9: PARROT’s wrapper for pthread mutex lock().

the run queue. The wait() function puts the calling thread
from run queue to wait queue and blocks on a opaque object
(e.g., a mutex or a socket descriptor), until another thread
makes this object available and calls a signal() on this
object. When a thread returns from a wait() function, it
becomes the head of the run queue. Both the wait() and
the signal() functions require getting the global turn.

These set of primitives are highly optimized for multi-
core. Each thread has an integer flag and condition vari-
able. The get turn() function spin-waits on the current
thread’s flag for a while before blocking on the condition
variable. The wait() function needs to get the turn before it
returns, so it uses the same combined spin- and block- wait
strategy as the get turn() function. The get turn() and
signal() functions signal both the flag and the conditional
variable of the next thread. In common case, these opera-
tions acquire no lock and do not block-wait, thus the num-
ber of synchronization context switches in PARROT is much
smaller than that in traditional Pthreads synchronizations,
yielding faster performance in PARROT than in the Pthreads
runtime for some programs [29].

Figure 9 shows the pthread mutex lock() wrapper in
PARROT. This wrapper uses try-lock to avoid deadlock: if
the head of the run queue is blocked waiting for a lock before
giving up the turn, no other thread can get the turn.

When all threads of a program block, which is com-
mon case in a server program, PARROT puts an internal
idle thread to the run queue, which simply does repetitive
get turn() and put turn() operations. This idle thread
ensures that PARROT’s run queue always has threads and that
PARROT’s logical clock keeps ticking.

PARROT’s blocking socket calls are nondeterministic be-
cause it is a DMT system for eliminating nondeterminism in
Pthreads synchronizations. A blocking socket call’s wrapper
in PARROT works as follows. When a thread calls a blocking
socket call, the thread calls get turn(), passes the global
token to the next thread in the run queue, removes itself
from the run queue, and then calls into the actual socket
call. When the thread returns from the actual call, it ap-
pends itself to a socket queue. Each thread at the run queue
head moves the threads in this socket queue back to the run
queue. This move-back is nondeterministic because threads
may return from blocking socket calls nondeterministically
and thus may be added to the socket queue in various orders.

1: void check add timebubble(mu) {
2: while (paxos seq.empty()) {
3: usleep(. . .);
4: request time bubble();
5: }
6: if (paxos seq.head().type == TIME BUBBLE)
7: paxos seq.head().decrease();
8: else
9: DMT.signal(paxos seq.head());
10: }

Figure 10: CRANE’s check add timebubble() function.

1: int recv wrapper(sockfd, . . .) {
2: DMT.get turn();
3: DMT.wait(sockfd);
4: int nbytes = recv(sockfd, . . .);
5: paxos seq.dequeue(nbytes);
6: DMT.put turn();
7: return nbytes;
8: }

Figure 11: CRANE’s wrapper for recv().

3.2 CRANE’ Synchronization Wrappers for a Server

CRANE wraps a rich set of common blocking socket
operations, including select(), poll(), epoll wait(),
accept(), and recv(). CRANE also modifies the wrappers
of Pthreads synchronizations. These wrappers are sufficient
for the server programs in our evaluation.

CRANE needs to modify the pthread mutex lock()

wrapper in Figure 9 to do three things. First, if the PAXOS
request sequence has been empty for a physical duration
Wtimeout , CRANE requests a time bubble with Nclock log-
ical clocks. Second, if the head of the PAXOS sequence
is a time bubble, CRANE decreases the logical clock in
the time bubble by one, or it removes this bubble if zero
clock is left. Third, CRANE signals a thread that blocks
on a socket operation (e.g., recv()) if there is a match-
ing client socket call (e.g., send()) at the head of the
PAXOS sequence. To do these three things, CRANE calls the
check add timebubble() function (defined in Figure 10)
at Line 3 of the pthread mutex lock() wrapper in Fig-
ure 9.

An important data structure in CRANE’s wrapper is the
PAXOS sequence which contains clients’ socket calls and in-
serted time bubbles. This sequence sits between the proxy
and the server’s processes, and it is implemented with
Boost [1] shared memory. CRANE uses lockf() to en-
sure mutual exclusion on this sequence because the two
processes may concurrently manipulate this sequence. For
clarity, these lock and unlock operations are omitted in the
pseudo code.

CRANE also needs to modify PARROT’s idle thread mech-
anism because sometimes this thread is the only thread in the
run queue, and CRANE needs to frequently check whether a
new client socket call comes or a time bubble insertion is

1st request
burst start

Primary

Backup 1

Backup 2

Time

Requests

1st request
burst end

2nd request
burst start

2nd request
burst end

3rd request
burst start

…

Time bubbles

Figure 12: The request and time bubble flow.

needed. To do so, CRANE replaces PARROT’s get turn()

and put turn() primitives within the idle thread to be mu-
tex lock and unlock operations, then the idle thread also runs
the function defined in Figure 10 to check and insert time
bubbles.

Figure 11 shows CRANE’s wrapper for the recv() call.
This wrapper ensures that the recv() calls of server pro-
grams across replicas return at consistent logical times. The
other blocking socket calls’ wrappers are similar. A thread
calling recv() in CRANE simply calls get turn() and
blocks on the socket descriptor using PARROT’s wait()

primitive. When a client send() call that matches this
recv() becomes the head of the PAXOS sequence, the
pthread mutex lock() wrappers wakes up the server
thread blocking on recv() with the signal() call at Line
9 in Figure 10. The waken up thread dequeues a number of
matching send() calls from the PAXOS sequence accord-
ing to the actual bytes received. Also, for clarity, the lock
and unlock operations for the PAXOS sequence are omitted
in this recv() wrapper.

4. The Time Bubbling Technique
Figure 12 shows the time bubbles inserted by the time bub-
bling technique. The technique groups clients’ socket opera-
tions as bursts. A request burst can be a group of real socket
requests (rectangles), or can be a time bubble with a fixed
number of logical clocks (circles). In this figure, black re-
quests are the first operation for each burst.

In a conceptual level, CRANE uses three rules to enforce
the same sequence of logical times for socket requests (rect-
angles) and thus the same schedules across different repli-
cas. First, CRANE uses PAXOS to ensure the same sequence
of client socket calls as well as inserted time bubbles as a
“PAXOS request sequence” for each replica, as shown in
each horizontal arrow. Second, CRANE uses DMT to guaran-
tee that it only ticks logical clocks (i.e., schedules Pthreads
synchronizations or socket operations) when this sequence
is not empty. Third, the time bubbling technique ensures that
this sequence is not empty, otherwise it inserts a time bubble.

Figure 13 shows the work flow of our time bubbling tech-
nique with four steps. Each replica’s DMT just waits for a
physical duration Wtimeout , if no further requests come, (1)
the DMT requests its own proxy to insert a time bubble. (2)

Checkpointer

A server program

recv()
lock()

poll()
accept()

DMT Scheduler

lock()

(1) Request
bubbles(2) Am I

primary?
Proxy

(3) Invoke bubble
consensus

Paxos
consensus

(4) Insert bubbules

Yes

NoDrop

Figure 13: The work flow of inserting a time bubble.

The proxy then checks whether it sees itself as the primary
in the PAXOS protocol. If so, it asks (3) the consensus com-
ponent to invoke consensus on whether inserting this bub-
ble; otherwise it drops this request. After a consensus on this
bubble insertion is reached, (4) each machine’s proxy simply
inserts the bubble into the PAXOS sequence, granting Nclock
logical clocks to the DMT scheduler.

If a server has not exhausted the logical clocks in a time
bubble after serving current requests, PARROT’s idle thread
mechanism (§3.1) exhausts these clocks rapidly. Then, the
server can continue to process further requests in time.

5. Implementation Details
5.1 The PAXOS Protocol

The PAXOS consensus component (§2.1) is a critical com-
ponent to enforce a consistent total order of socket calls
from client programs. Although there are already a number
of open source PAXOS implementations [6, 26, 60], we re-
implemented a PAXOS protocol in order to incorporate our
new socket-API consensus interface.

Our PAXOS implementation is based on a well-known and
concise approach [52]. In normal case, only the primary in-
vokes consensus, thus this approach reaches consensus ef-
ficiently. In exceptional cases such as primary restarts, a
PAXOS leader election is invoked to resolve conflicts. In
CRANE, we implemented this election via making the pri-
mary send a heart beat message to all the backups every
second, and if backup replicas have not receive any heart
beat message for three seconds, these replicas start to elect a
new leader. The leader election contains three steps [52]: (1)
backups proposing a new view, which is a standard PAXOS
two-phase consensus [42], (2) the proposer that wins the
view proposing itself as a primary candidate, another stan-
dard PAXOS two-phase consensus, and (3) the new leader
announcing itself as the new primary.

In our implementation, each socket call from the client
is assigned a global, monotonically increasing viewstamp
(or global index) to associate with each checkpoint (§5.2).
Upon consensus on a socket call, each consensus component
persistently stores the call type, arguments, and global index
into a Berkeley DB storage [17] on SSD.

Although our current PAXOS implementation focuses on
supporting socket consensus interface, this PAXOS protocol
logic is independent of the types and arguments of socket

operations, so our PAXOS implementation can be applied to
other types of consensus interface as well.

5.2 Checkpoint and Restore

To recover or add a new replica, CRANE leverages two pop-
ular open source tools: CRIU [28], to checkpoint process
state such as CPU registers and memory; and LXC [2], to
checkpoint the file system state of a server program’s current
working directory and installation directory. These two di-
rectories are sufficient to capture files modified by the server
programs in our evaluation.

Incorporating LXC into CRANE has two extra practical
benefits. First, the server process is ran within an LXC,
which provides the server the same and clean initial sys-
tems state and mitigates contentions on systems resources
(e.g., file descriptors) with other processes. Second, LXC
snapshots make CRANE easy to deploy on multiple replicas
without worrying about slight differences of the systems en-
vironments such as kernel and library versions. We just built
CRANE on one replica once, did a LXC snapshot, and then
copied the snapshot to other replicas.

A CRANE checkpoint operation contains three steps. First,
CRANE uses CRIU to checkpoint the server’s process run-
ning within the LXC container and dumps the checkpoint
to the process’s current working directory. CRIU needs to
modify systems files (e.g., ns last pid), but LXC’s default
isolation configuration does not permit these modifications,
so we configure LXC to run in “unconfined mode”. Second,
CRANE stops the container, uses “diff --text” to gen-
erate a patch of current working directory and the server’s
installation directory against an LXC snapshot prepared be-
fore any server starts. This file system checkpoint patch is
incremental and thus efficient (§7.6). Third, CRANE restarts
the container, and restores the server process with CRIU.

Such a CRANE checkpoint operation is done every minute
on one backup replica without affecting the other replicas’
performance. We explicitly design CRANE’s proxy and con-
sensus component stateless and they do not require check-
points. A CRANE restore operation reverts these steps.

One main issue on checkpointing a server process is that
it constantly accepts socket connections, but checkpoint-
ing and restoring TCP stacks are notoriously difficult. Our
trick to avoid this difficulty is based on an observation:
even busy server programs have some idle moments. For
instance, consider Apache, even running with its standard
performance-stress benchmark ApacheBench, we observed
that in some moments the server has no alive socket con-
nections. Thus, during a checkpoint operation, CRANE sim-
ply checks whether the server has alive connections. If so,
CRANE backs off for a few seconds and then retries until the
server has no alive connections. Since checkpoint periods do
not have to be precise, this trick runs well (§7.6).

6. Discussions
This section first discusses CRANE’s limitations and then
introduces its applications.

6.1 Limitation

CRANE leverages PARROT to make synchronizations deter-
ministic. PARROT is explicitly designed not to handle data
races. However, in the context of CRANE, data races are less
harmful because, if they cause backups to crash, CRANE can
still operate and recover as long as a quorum of the repli-
cas is still alive. Moreover, leveraging CRANE’s replication
architecture, one can deploy a race detector on a backup
replica [30], achieving both good CRANE performance and
full determinism.

There are other sources of nondeterminism besides thread
scheduling and request timing. These other sources of non-
determinism may cause backups to diverge, too. For exam-
ple, backups may do different things based on their IP ad-
dresses, data read from /dev/random, addresses returned
by malloc, physical time observed via gettimeofday, or
delivery time of signals. Prior work has shown how to
eliminate these sources of nondeterminism using record-
replay [40, 46] or OS-level techniques [14], which CRANE
can leverage. Another solution is to treat all these sources
as inputs and leverage distributed consensus to let all repli-
cas observe the same input. We leave these ideas for fu-
ture work. We inspected server programs’ network outputs
among replicas, and we found that these outputs were con-
sistent in CRANE except physical times (§7.2).

For a server program that spawns multiple processes
which communicate via IPC, CRANE currently does not
make these IPC operations deterministic. We expect that it
should be easy to support deterministic IPC in CRANE be-
cause it already makes socket API deterministic. In addition,
dOS [14] and DDOS [34] have many effective techniques for
tackling this problem, which CRANE can leverage.

6.2 Applications

We envision three applications for CRANE. First, CRANE
can be leveraged by other replication concepts (e.g., byzan-
tine fault tolerance [22, 38]) and record-replay [39, 41,
46] because they also suffer from nondeterminism. Sec-
ond, promising results in REPFRAME [30] have shown
that CRANE’s transparent replication architecture can enable
multiple types of program analysis tools within one execu-
tion, making a server program enjoy benefits of multiple
analyses. Third, CRANE’s determinism as well as its time
bubbling technique alone can be applied to mitigate timing
channels [10, 11, 70].

7. Evaluation
Our evaluation was done on a set of three replica machines,
with each having Linux 3.13.0, 1Gbps bandwidth LAN,
2.80 GHz dual-socket hex-core Intel Xeon with 24 hyper-
threading cores, 64GB memory, and 1TB SSD.

We evaluated CRANE on five widely used server
programs, including HTTP servers Apache [9] and
Mongoose [54]; ClamAV [24], an anti-virus scanning server
that scans files in parallel and deletes malicious ones;
MediaTomb [8], a uPnP multimedia server that uploads,
shares, and transcodes pictures and videos in parallel; and
MySQL [3], an SQL database. Although MySQL has a repli-
cation feature [4], this feature is mainly for improving read
performance, not for providing SMR fault tolerance.

SMR’s high availability and fault-tolerance are attractive
to these servers programs, because these programs provide
on-line service and contain important in-memory execu-
tion states and storage (e.g., ClamAV’s security database,
MediaTomb’s SQLite [5] database, and MySQL).

For Apache and Mongoose, we used Apache’s own con-
currency stress testing benchmark ApacheBench to invoke
concurrent HTTP requests for a PHP page, which takes
about 70 ms for a PHP interpreter to generate the page con-
tents. For ClamAV, we used its own client utility clamdscan

to request the server to scan ClamAV’s own source code
and installation directories in parallel. For MediaTomb, be-
cause it has a web interface, we used ApacheBench to
invoke concurrent requests which use mencoder [53] to
transcode a 15MB video from AVI to MP4. For MySQL, we
used SysBench [7] to generate random select queries. These
workloads triggered 8∼12 threads in each server program
to process requests concurrently at peak performance on our
machines. These popular benchmarks and workloads cover
CPU, network, and file-IO bounded operations.

CRANE has two parameters for the time bubbling tech-
nique. The first parameter, Wtimeout , is the physical duration
that the primary’s DMT scheduler waits before it requests
consensus on a time bubble insertion. To prevent this pa-
rameter significantly deferring responses, CRANE sets its de-
fault value 100us, two orders of magnitudes smaller than the
workloads’ response times and wide-area network latencies.

The second parameter, Nclock, is the number of logical
clocks within each time bubble. CRANE sets its default value
1000, because we observed that the amounts of executed
Pthreads synchronizations to process each request in most of
the evaluated servers are closed to this scale. We used these
default values in all evaluations unless explicitly specified. A
sensitivity evaluation on these two parameters showed that
their default values were reasonable choices (§7.5).

To mitigate network latency, benchmark clients were ran
within the replicas’ LAN. Larger latency will mask CRANE’s
overhead. We measured each workload’s response time as it
has direct impact on users. For each data point, we ran 1K
requests for 20 times and then picked the median value.

The rest of this section focuses on these questions:
§7.1: Is CRANE easy to use?
§7.2: Compared to nondeterministic executions, does

CRANE consistently enforce the same sequence of
network outputs among replicas?

§7.3: What is CRANE’s performance overhead compared to
nondeterministic executions?

§7.4: When the default schedules enforced by the PARROT
DMT scheduler are slow, how much optimization can
PARROT’s performance hints bring to CRANE?

§7.5: How sensitive are the two time bubbling parameters to
CRANE’s performance?

§7.6: How fast are CRANE’s checkpoint and recovery com-
ponents on handling replica failures?

7.1 Ease of Use

All five servers we evaluated were able to be transparently
plugged and played in CRANE without modification. For
ClamAV, MediaTomb, and MySQL, we did not need to mod-
ify any line of code and they already have moderate per-
formance overhead compared to the un-replicated nondeter-
ministic executions. For Apache and Mongoose, the default
schedules serialized parallel computations. For each of the
two servers, we added two lines of soft barrier performance
hints invented by PARROT [29] to line up parallel computa-
tions as much as possible and compute efficient DMT sched-
ules (cf §7.4).

7.2 Consistency of Network Outputs

To verify whether the server programs running in different
replicas maintain the same execution states, we compared
each server program’s network outputs logged in three repli-
cas. Network outputs imply a server’s execution states, in-
cluding the outcomes of ad-hoc synchronizations and data
races, which synchronization schedules can not capture. We
ran the performance workloads and logged the order and
contents of server programs’ outgoing socket calls, including
send(), sendto(), sendmsg(), write(), and pwrite().
These calls are sufficient to capture all network outputs of
the evaluated programs. We then used diff to compare the
logs across replicas.

We designed two experiment plans. In plan I, we ran
CRANE with the programs. In plan II, we disabled only the
time bubbling component in CRANE for three reasons: (1)
we wanted to know whether time bubbling is needed to keep
replicas in sync, (2) enabling PAXOS made us easy to ship
the same workload to replicas, and (3) enabling PARROT
made us easy to intercepted and logged network outputs.

Among the five programs, three server programs, Apache,
MediaTomb, and Mongoose, used ApacheBench to spawn
workloads. In plan I, CRANE’s logs from all three replicas
had the same order and contents of outputs except physical
times in the responded HTTP headers. In plan II, despite that
we disabled only the time bubbling component, the logs’ or-
der of responded HTTP headers and contents across replicas
were different. Two server programs, ClamAV and MySQL,
used specific benchmarks to spawn workloads. In plan I, the
logs showed that CRANE enforced the same network out-
puts. In plan II, the orders of the outputs across replicas were
different. These experiments suggest that simply combining

0

50

100

150

200

250

Apache Mongoose ClamAV MediaTomb MySQL

C
ra

ne
’s

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
) w/ Parrot only

w/ Paxos only
Crane

Figure 14: CRANE’s performance normalized to un-replicated
nondeterministic execution.

PAXOS and DMT is not sufficient to keep replicas in sync,
and the time bubbling technique is needed.

To diagnose consistency of network outputs more con-
cisely, we wrote a micro-benchmark for Apache. We used
the curl utility to spawn two concurrent HTTP requests: a
PUT request of a PHP page and a GET request on this page,
and then we inspected the outcome of the GET request. We
ran Apache in CRANE with this micro benchmark for 100
times and found that three replicas consistently reported the
same GET result in each run, either “200 OK” or “404 Not
Found”, depending on the order of the PUT and GET request
arriving at the primary’s proxy. And then we ran Apache’s
un-replicated execution for 100 times on each replica, and
three replicas reported “404 Not Found” for 6, 8, 11 times
respectively.

7.3 Performance Overhead in Normal Case

To understand the performance impact of CRANE’s com-
ponents, we divided CRANE’s components into two major
parts: the DMT part ran by PARROT; and the proxy (with
PAXOS) part which enforces the same sequence of client
socket calls across replicas. Each part ran independently
without the other part. The proxy part represents the per-
formance overhead of invoking PAXOS consensus for client
socket calls, and the DMT part represents the PARROT DMT
scheduler’s overhead.

Figure 14 shows the servers’ performance running in
CRANE normalized by their un-replicated nondeterminis-
tic executions. The mean overhead of CRANE for the five
evaluated programs is 34.19% due to two main reasons.
First, except for MySQL, which does fine-grained, per-table
mutex and read-write locks frequently, the DMT schedules
were efficient on the other four servers. The reason is that
PARROT’s scheduling primitives are already highly opti-
mized for multi-core (§3.1). The proxy-only part incurred
0.82%∼3.46% overhead, which is not surprising, because
the number of socket calls is much smaller than the num-

ber of Pthreads synchronizations in these programs. In short,
CRANE’s performance mainly depends on the DMT sched-
ules’ performance.
MediaTomb incurred modest speedup because its

transcoder mencoder had significant speedup with PAR-
ROT. We inspected MediaTomb’s micro performance
counters with the Intel VTune [66] profiling tool. When
running in CRANE, MediaTomb only made 6.6K synchro-
nization context switches, while in the Pthreads runtime
it made 0.9M synchronization context switches. This
saving caused MediaTomb running with PARROT a 12.76%
speedup compared to its nondeterministic execution. The
PARROT evaluation [29] also observed a 49% speedup on the
mencoder program.

The time bubbling technique saves most of needs on in-
voking consensus for the logical times of clients’ socket op-
erations, confirmed by the low frequency of inserted time
bubbles in Table 1. Apache, MediaTomb, and Mongoose

uses ApacheBench as its benchmark, and each request con-
tained a connect(), send(), and close() call. ClamAV
uses its own clamdscan benchmark, and each request con-
tained 18 socket calls. MySQL’s benchmark contained 6∼7
socket calls for each query. The ratio of inserted bubbles is
merely 6.12%∼33.35%. MediaTomb had the highest ratio of
time bubbles because it took the longest time (9,703ms) to
process each request.

Note that the number of inserted time bubbles across repli-
cas is the same within the same run of CRANE. Within dif-
ferent runs of CRANE, this number can be different because
Wtimeout is a physical duration.

7.4 Optimization of PARROT’s Performance Hints

In general, a DMT schedule may be slow in some cases [29,
48], because this schedule may serialize some major compu-
tations that can run in parallel in the Pthreads runtime. For
instance, when we ran CRANE’s DMT scheduler PARROT
with Apache and Mongoose, we observed that PARROT’s
default schedules serialized the PHP interpreters.

Fortunately, PARROT creates a set of easy to use, intuitive
soft barrier hints [29] which tell the DMT runtime to switch
to faster schedules. These hints are just “soft” barriers; they
timeout deterministically and can tolerate different number
of concurrent incoming requests. They just make a (deter-
ministic) effort to line up computations that tend to run in
parallel. In addition, these hints can be safely ignored by the
PARROT runtime without affecting a program’s logic.

In our evaluation, we added two lines of hints for each of
the Apache and Mongoose servers’ source code, and the pat-

Program # client socket calls # time bubbles %
Apache 3,000 450 13.04
ClamAV 18,000 1,173 6.12
MediaTomb 3,000 1,501 33.35
Mongoose 3,000 448 12.99
MySQL 6,750 573 7.82

Table 1: Ratio of time bubbles in all PAXOS consensus requests.

100

500

700

Apache Mongoose

C
ra

ne
’s

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
) Crane w/o hint

Crane w/ hint

Figure 15: Effects of PARROT’s soft barrier performance hints.

0

50

75

100

125

150

175

200

Apache ClamAV MediaTomb Mongoose MySQL

C
ra

ne
’s

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
) 1

10
100 (default)

1000
10000

Figure 16: CRANE’s performance with different settings on
Wtimeout (us). Normalized with the default parameter.

tern was general: one line was added at the server’s main()
function to initialize the soft barrier, and the other before a
PHP interpretation’s start to tell the DMT scheduler “these
are the major computations to line up”. The performance
optimization effects of these hints are shown in Figure 15.
These hints reduces Apache’s overhead from a 424% to
22.99%, and Mongoose’s from a 643% to 5.09%.

7.5 Sensitivity of Time Bubble Parameters

The two parameters Wtimeout and Nclock for time bubbling
have trade-off on performance. This trade-off also depends
on each server program as well as its performance work-
load. A smaller Wtimeout means the DMT scheduler can wait
less time and then proceed with granted logical clocks with
inserted time bubbles, but it also means that more time
bubbles and thus more PAXOS consensus are involved. A
smaller value also means time bubbling runs similar to a per-
request consensus approach. Figure 16 shows CRANE’s per-
formance by only adjusting this parameter. CRANE’s default

0

50

75

100

125

200

Apache ClamAV MediaTomb Mongoose MySQL

C
ra

ne
’s

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
) 100

1000 (default)
10000

Figure 17: CRANE’s performance with different settings on
Nclock. Normalized with the default parameter.

setting got the best result for both Apache and ClamAV, and
it got the second best result for the other three programs.

The Nclock parameter also faces trade-off on performance.
A smaller value means that servers can exhaust clocks in
a time bubble sooner, but if a server does lots of Pthreads
synchronizations to process a request, more time bubbles
and thus more PAXOS consensus are involved. Figure 17
shows CRANE’s performance by only adjusting this param-
eter. CRANE’s default setting got the best result for ClamAV,
MediaTomb, and Mongoose, and the second best result for
the other two programs.

7.6 Checkpoint and Recovery

To handle replica failures, CRANE periodically invokes a
checkpoint operation on one backup (§5.2). Each CRANE
checkpoint operation contains four time consuming parts:
(1) using CRIU to dump the state of a server process (and its
child processes, if any); (2) stopping and restarting a LXC
container; (3) doing an incremental checkpoint on a server’s
current working directory and installation directory between
the LXC stop and start; and (4) restoring a process’s state
after the LXC restart.

Table 2 shows time costs for each process and file sys-
tem checkpoint operation, and all are median values with
20 runs. In sum, a process checkpoint or restore took at
most 415ms, and a file system checkpoint or restore took
less than 7s except MySQL. MySQL took about one minute

Program C p (ms) R p (ms) C fs (ms) R fs (ms)
Apache 33 48 3,069 237
ClamAV 415 353 6,963 6,128
MediaTomb 17 27 2,852 213
Mongoose 15 31 1,294 169
MySQL 88 81 53,473 712

Table 2: Average time cost for CRANE’s checkpoint and restoring
component. “C p” means “Checkpoint process”, “R p” means
“Restore process”, “C fs” means “Checkpoint file system”, and
“R fs” means “Restore file system”.

to checkpoint its file system because SysBench generated
a large database in MySQL’s installation directory. For each
program, a file system restore operation took much less time
than its checkpoint operation because a restore operation
patches only files modified by the server program. A com-
mon LXC stop and restart operation took 2∼5s depending
on the daemon processes’ bootstrap progress within the con-
tainer. Although each of these four steps in a CRANE check-
point operation costs time, such a checkpoint is done on only
one backup replica, its performance impact was negligible in
our evaluation (the other replicas formed a quorum).

To evaluate the speed of CRANE’s PAXOS protocol on
replica failure and recovery, we manually restarted the pri-
mary replica running a Mongoose server. The other two
backups in the system then invoked a leader election with
three steps (§5.1), which took 1.97ms. After the old pri-
mary’s machine restarted, CRANE restarted the proxy and
the consensus component, extracted the latest Mongoose

checkpoint on the local machine and restored the Mongoose
process and its file system. On the full restore of this CRANE
instance, it received the new primary’s heart beat message in
0.36s and downgraded itself to a backup. Overall, both the
PAXOS leader election and the restarted old primary’s self-
downgrading took sub-seconds.

8. Related Work

State machine replication (SMR). SMR has been studied
by the literature for decades, and it is recognized by both in-
dustry and academia as a powerful fault-tolerance technique
in clouds and distributed systems [43, 63]. As a common
practice, SMR uses PAXOS [42, 44, 65] and its popular en-
gineering approaches [23, 52] as the consensus protocol to
ensure that all replicas see the same input request sequence.
Since consensus protocols are the core of SMR, a variety
of study improve different aspects of consensus protocols,
including performance [45, 55] and understandability [57].
Although CRANE’s current implementation takes a popular
engineering approach [52] for practicality, it can also lever-
age other consensus protocols and approaches.

At a system implementation level, SMR typically takes
the “agree-execute” approach: replicas first “agree” on a to-
tal order of input request as a input sequence, and then “ex-
ecute” the requests that have reached this consensus. Such
typical systems include Chubby [21], ZooKeeper [6], and the
Microsoft PAXOS [44] implementation, and they have been
widely used to maintain critical distributed systems config-
urations (e.g., group leaders, distributed locks, and storage
meta data). SMR has also been applied broadly to build var-
ious highly available services, including storage [19, 27, 61]
and wide-area network [51]. Hypervisor-based Fault Toler-
ance [20] leverages a hypervisor to build a primary-back
system for single-core machines. Unlike CRANE, these sys-
tems are not designed to transparently replicate general mul-

tithreaded server programs. Nevertheless, CRANE takes the
typical “agree-execute” approach.

In order to support multi-threading in SMR, Eve [37] in-
troduces a new “execute-verify” approach: it first executes
a batch of requests speculatively, and then verifies whether
these requests have conflicts that cause execution state di-
vergence. If so, Eve rolls back the program to a state before
executing these requests and re-execute these requests se-
quentially. Both Eve’s execution divergence verification and
rollbacks require developers to manually annotate all shared
states, which is time consuming and error-prone.

Rex [33] addresses the thread interleaving divergence
problem with a “execute-agree-follow” approach: it first
records thread interleavings on the primary by executing
requests, and then replays these interleavings on the other
backups. If the executed interleavings in the primary may
not be agreed on the other replicas, then Rex rollbacks the
primary’s states. These rollbacks/checkpoints also require
developers’ manual efforts for every program. Furthermore,
Rex requires frequently shipping thread interleavings across
replicas, which may be slow. Unlike CRANE’s transparent
checkpoint-restore mechanism, Rex requires program devel-
opers to implement the checkpoint-restore logic.

To improve performance, some SMR systems [6, 22, 25,
37, 38] perform read-only optimization on request interface
and allow these requests to be processed rapidly without
consensus. CRANE currently does not explore this direction
mainly for two reasons. First, CRANE’s performance over-
head is already moderate in our evaluation. Second, some
read requests may still modify programs’ internal execution
states (e.g., Apache’s internal HTTP cache) and affect out-
puts. Thus, ensuring whether a request is indeed read-only
for a general server program may require understanding or
crafting the program significantly, which may trade off trans-
parency. However, exploring the trade-off between CRANE’s
transparency and performance is an interesting direction.
DMT and StableMT systems. In order to make multi-
threading easier to understand, test, analyze, and repli-
cate, researchers have built two types of reliable multi-
threading systems: (1) stable multi-threading systems (or
StableMT) [12, 16, 48] that aim to reduce the number of
possible thread interleavings for program all inputs, and
(2) deterministic multi-threading systems (or DMT) [13–
15, 18, 31, 34, 56] that aim to reduce the number of possible
thread interleavings on each program input. Typically, these
systems use deterministic logical clocks instead of nonde-
terministic physical clocks to make sure inter-thread com-
munications (e.g., pthread mutex lock() and accesses to
global variables) can only happen at some specific logical
clocks. Therefore, given the same or similar inputs, these
systems can enforce the same thread interleavings and even-
tually the same executions. These systems have shown to
greatly improve software reliability, including coverage of

testing inputs [15] and speed of recording executions[14] for
debugging.

Typical DMT systems, including Kendo [56], CORE-
DET [13], and COREDET-related systems [14, 34], improve
performance by balancing each thread’s load with low-level
instruction counts, so they are unstable to input perturba-
tions. DDOS [34] demonstrates that a distributed system can
be made deterministic. However, our CRANE approach is
more flexible, because we can choose to focus on replicat-
ing servers’ execution states only and discard clients’ states,
then CRANE has fewer scheduling constraints and can be
more efficient.
Concurrency. CRANE are mutually beneficial with much
prior work on concurrency error detection [32, 49, 50, 62,
69, 71], diagnosis [58, 59, 64], and correction [35, 36, 67,
68]. On one hand, these techniques can be deployed in
CRANE’s backups and help CRANE detect data races. On
the other hand, CRANE’s asynchronous replication architec-
ture can mitigate the performance overhead of these power-
ful analyses [30].

9. Conclusion
We have presented CRANE, a SMR system that transparently
replicates general server programs without requiring server
developers’ intervention. It provides a new state machine in-
terface compatible to socket API, and it leverages determin-
istic multithreading to enforce the same schedules for a mul-
tithreaded server program across replicas. CRANE creates a
time bubbling technique to efficiently enforce consistent log-
ical times on admitting network requests across replicas.

Evaluation on five widely used server programs shows that
CRANE is easy to use, has moderate overhead, and provides
practical recovery support. CRANE has the potential to ex-
pand the adoption of SMR and to provide transparent fault-
tolerance support for general server programs. CRANE’s
source code is at github.com/columbia/crane.

Acknowledgments
We thank Marcos K. Aguilera (our shepherd), Yinzhi Cao,
Adrian Tang, David Williams-King, and anonymous review-
ers for their many helpful comments. This work was sup-
ported in part by AFRL FA8650-11-C-7190 and FA8750-
10-2-0253; ONR N00014-12-1-0166; NSF CCF-1162021,
CNS-1054906; an NSF CAREER award; an AFOSR YIP
award; and a Sloan Research Fellowship.

References
[1] Boost C++ Libraries. http://www.boost.org/.

[2] LXC. https://linuxcontainers.org/.

[3] MySQL. http://www.mysql.com/, .

[4] MySQL Replication. https://dev.mysql.com/doc/
refman/5.0/en/replication.html, .

[5] SQLite. https://www.sqlite.org/.

[6] ZooKeeper. https://zookeeper.apache.org/.

github.com/columbia/crane
http://www.boost.org/
https://linuxcontainers.org/
http://www.mysql.com/
https://dev.mysql.com/doc/refman/5.0/en/replication.html
https://dev.mysql.com/doc/refman/5.0/en/replication.html
https://www.sqlite.org/
https://zookeeper.apache.org/

[7] SysBench: a system performance benchmark. http://
sysbench.sourceforge.net, 2004.

[8] MediaTomb - Free UPnP MediaServer. http://
mediatomb.cc/, 2014.

[9] Apache. Apache web server. http://www.apache.org,
2012.

[10] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-
box mitigation of timing channels. In Proceedings of the 17th
ACM conference on Computer and communications security
(CCS ’10), Oct. 2010.

[11] A. Aviram, S. Hu, B. Ford, and R. Gummadi. Determinating
timing channels in compute clouds. In Proceedings of the
2010 ACM Workshop on Cloud Computing Security Workshop
(CCSW ’10), Oct. 2010.

[12] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proceedings of the
Ninth Symposium on Operating Systems Design and Imple-
mentation (OSDI ’10), Oct. 2010.

[13] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. CoreDet: a compiler and runtime system for deter-
ministic multithreaded execution. In Fifteenth International
Conference on Architecture Support for Programming Lan-
guages and Operating Systems (ASPLOS ’10), pages 53–64,
Mar. 2010.

[14] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Determin-
istic process groups in dOS. In Proceedings of the Ninth
Symposium on Operating Systems Design and Implementation
(OSDI ’10), Oct. 2010.

[15] T. Bergan, L. Ceze, and D. Grossman. Input-covering sched-
ules for multithreaded programs. In Proceedings of the 2013
ACM SIGPLAN international conference on Object oriented
programming systems languages & applications, pages 677–
692. ACM, 2013.

[16] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. Novark. Grace:
safe and efficient concurrent programming. In Conference
on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’09), pages 81–96, Oct. 2009.

[17] Berkeley DB. http://www.sleepycat.com.

[18] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system for de-
terministic parallel java. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA ’09), pages 97–116, Oct. 2009.

[19] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and
P. Li. Paxos replicated state machines as the basis of a high-
performance data store. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementa-
tion, NSDI’11, Berkeley, CA, USA, 2011. USENIX Associa-
tion.

[20] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault
tolerance. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP ’95), Dec. 1995.

[21] M. Burrows. The chubby lock service for loosely-coupled dis-
tributed systems. In Proceedings of the Seventh Symposium on

Operating Systems Design and Implementation (OSDI ’06),
pages 335–350, 2006.

[22] M. Castro and B. Liskov. Practical byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems
Design and Implementation (OSDI ’99), Oct. 1999.

[23] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made
live: An engineering perspective. In Proceedings of the
Twenty-sixth Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC ’07), Aug. 2007.

[24] Clam AntiVirus. http://www.clamav.net/.

[25] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services. In Pro-
ceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), Oct. 2009.

[26] concoord. Openreplica. http://openreplica.org/
download/, 2015.

[27] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. Oct. 2012.

[28] criu. Criu. http://criu.org, 2015.

[29] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang,
G. A. Gibson, and R. E. Bryant. Parrot: a practical runtime
for deterministic, stable, and reliable threads. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(SOSP ’13), Nov. 2013.

[30] H. Cui, R. Gu, C. Liu, and J. Yang. Repframe: An efficient
and transparent framework for dynamic program analysis. In
Proceedings of 6th Asia-Pacific Workshop on Systems (APSys
’15), July 2015.

[31] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: determin-
istic shared memory multiprocessing. In Fourteenth Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’09), pages 85–
96, Mar. 2009.

[32] D. Engler and K. Ashcraft. RacerX: effective, static detec-
tion of race conditions and deadlocks. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP ’03), pages 237–252, Oct. 2003.

[33] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang.
Rex: Replication at the speed of multi-core. In Proceedings
of the 2014 ACM European Conference on Computer Systems
(EUROSYS ’14), page 11. ACM, 2014.

[34] N. Hunt, T. Bergan, , L. Ceze, and S. Gribble. DDOS: Taming
nondeterminism in distributed systems. In Eighteenth Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’13), pages 499–
508, 2013.

[35] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu. Auto-
mated concurrency-bug fixing. In Proceedings of the Tenth
Symposium on Operating Systems Design and Implementation
(OSDI ’12), pages 221–236, 2012.

http://sysbench.sourceforge.net
http://sysbench.sourceforge.net
http://mediatomb.cc/
http://mediatomb.cc/
http://www.apache.org
http://www.sleepycat.com
http://www.clamav.net/
http://openreplica.org/download/
http://openreplica.org/download/
http://criu.org

[36] H. Jula, D. Tralamazza, Z. Cristian, and C. George. Deadlock
immunity: Enabling systems to defend against deadlocks. In
Proceedings of the Eighth Symposium on Operating Systems
Design and Implementation (OSDI ’08), pages 295–308, Dec.
2008.

[37] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi,
M. Dahlin, et al. All about eve: Execute-verify replication for
multi-core servers. In Proceedings of the Tenth Symposium on
Operating Systems Design and Implementation (OSDI ’12),
volume 12, pages 237–250, 2012.

[38] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative byzantine fault tolerance. In Proceed-
ings of the 21st ACM Symposium on Operating Systems Prin-
ciples (SOSP ’07), Oct. 2007.

[39] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight
application execution replay on commodity multiprocessor
operating systems. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS ’10), pages 155–166, June 2010.

[40] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight
application execution replay on commodity multiprocessor
operating systems. In ACM SIGMETRICS Performance Eval-
uation Review, volume 38, pages 155–166, 2010.

[41] O. Laadan, N. Viennot, C. che Tsai, C. Blinn, J. Yang, and
J. Nieh. Pervasive detection of process races in deployed
systems. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP ’11), Oct. 2011.

[42] L. Lamport. Paxos made simple. http://research.
microsoft.com/en-us/um/people/lamport/
pubs/paxos-simple.pdf.

[43] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. ACM, 21(7):558–565, 1978.

[44] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, 1998.

[45] L. Lamport. Fast paxos. Fast Paxos, Aug. 2006.

[46] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: efficient online multiprocessor re-
playvia speculation and external determinism. In Fifteenth In-
ternational Conference on Architecture Support for Program-
ming Languages and Operating Systems (ASPLOS ’10), pages
77–90, Mar. 2010.

[47] libevent. libevent. libevent.org/, 2015.

[48] T. Liu, C. Curtsinger, and E. D. Berger. DTHREADS: effi-
cient deterministic multithreading. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP
’11), pages 327–336, Oct. 2011.

[49] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomic-
ity violations via access interleaving invariants. In Twelfth In-
ternational Conference on Architecture Support for Program-
ming Languages and Operating Systems (ASPLOS ’06), pages
37–48, Oct. 2006.

[50] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou. Muvi: automatically inferring multi-variable access
correlations and detecting related semantic and concurrency
bugs. In Proceedings of the 21st ACM Symposium on Operat-
ing Systems Principles (SOSP ’07), pages 103–116, 2007.

[51] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building
efficient replicated state machines for wans. In Proceedings of
the 8th USENIX conference on Operating systems design and
implementation, volume 8, pages 369–384, 2008.

[52] D. Mazieres. Paxos made practical. Technical re-
port, Technical report, 2007. http://www. scs. stanford.
edu/dm/home/papers, 2007.

[53] mencoder. Mencoder. https://www.mplayerhq.hu/,
2015.

[54] Mongoose. https://code.google.com/p/
mongoose/.

[55] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
more consensus in egalitarian parliaments. In Proceedings
of the 13th ACM Symposium on Operating Systems Principles
(SOSP ’91), Nov. 2013.

[56] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient
deterministic multithreading in software. In Fourteenth In-
ternational Conference on Architecture Support for Program-
ming Languages and Operating Systems (ASPLOS ’09), pages
97–108, Mar. 2009.

[57] D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’14), June 2014.

[58] C.-S. Park and K. Sen. Randomized active atomicity violation
detection in concurrent programs. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT ’08/FSE-16), pages 135–
145, Nov. 2008.

[59] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity vi-
olation bugs from their hiding places. In Fourteenth Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’09), pages 25–
36, Mar. 2009.

[60] M. Primi. LibPaxos. http://libpaxos.
sourceforge.net/.

[61] J. Rao, E. J. Shekita, and S. Tata. Using paxos to build
a scalable, consistent, and highly available datastore. Proc.
VLDB Endow., Jan. 2011.

[62] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson. Eraser: A dynamic data race detector for multi-
threaded programming. ACM Transactions on Computer Sys-
tems, pages 391–411, Nov. 1997.

[63] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys (CSUR), 22(4):299–319, 1990.

[64] K. Sen. Race directed random testing of concurrent programs.
In Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation (PLDI
’08), pages 11–21, June 2008.

[65] R. Van Renesse and D. Altinbuken. Paxos made moder-
ately complex. ACM Computing Surveys (CSUR), 47(3):42:1–
42:36, 2015.

[66] VTune. http://software.intel.com/en-us/
intel-vtune-amplifier-xe/.

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
libevent.org/
https://www.mplayerhq.hu/
https://code.google.com/p/mongoose/
https://code.google.com/p/mongoose/
http://libpaxos.sourceforge.net/
http://libpaxos.sourceforge.net/
http://software.intel.com/en-us/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/intel-vtune-amplifier-xe/

[67] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke.
Gadara: Dynamic deadlock avoidance for multithreaded pro-
grams. In Proceedings of the Eighth Symposium on Operating
Systems Design and Implementation (OSDI ’08), pages 281–
294, Dec. 2008.

[68] J. Wu, H. Cui, and J. Yang. Bypassing races in live appli-
cations with execution filters. In Proceedings of the Ninth
Symposium on Operating Systems Design and Implementation
(OSDI ’10), Oct. 2010.

[69] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient de-
tection of data race conditions via adaptive tracking. In Pro-

ceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP ’05), pages 221–234, Oct. 2005.

[70] D. Zhang, A. Askarov, and A. C. Myers. Predictive mitigation
of timing channels in interactive systems. In Proceedings of
the 18th ACM conference on Computer and communications
security (CCS ’11), Oct. 2011.

[71] W. Zhang, C. Sun, and S. Lu. ConMem: detecting severe con-
currency bugs through an effect-oriented approach. In Fif-
teenth International Conference on Architecture Support for
Programming Languages and Operating Systems (ASPLOS
’10), pages 179–192, Mar. 2010.

	1 Introduction
	2 Crane Overview
	2.1 Architecture
	2.2 Example

	3 Crane's Synchronization Wrappers for a Server
	3.1 Background: the Parrot Scheduler
	3.2 Crane' Synchronization Wrappers for a Server

	4 The Time Bubbling Technique
	5 Implementation Details
	5.1 The Paxos Protocol
	5.2 Checkpoint and Restore

	6 Discussions
	6.1 Limitation
	6.2 Applications

	7 Evaluation
	7.1 Ease of Use
	7.2 Consistency of Network Outputs
	7.3 Performance Overhead in Normal Case
	7.4 Optimization of Parrot's Performance Hints
	7.5 Sensitivity of Time Bubble Parameters
	7.6 Checkpoint and Recovery

	8 Related Work
	9 Conclusion

