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These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Dimension Reduction in Euclidean Space

Consider n vectors in Euclidean space of some large dimension. These n vectors reside in an n
dimensional subspace. By rotation, we can assume that n vectors lie in Rn. On the other hand, it
is easy to see that n mutually orthogonal unit vectors cannot reside in a space with dimension less
than n.

Moreover, it is not possible to have three mutually almost orthogonal vectors placed in 2 dimensions.

Definition 1.1 We say two unit vectors u and v are ε-orthogonal to one another if their dot product
satisfies |u · v| ≤ ε.
One might think that n mutually almost orthogonal vectors require n dimensions. Hence, it might
come as a surprise that n vectors that are mutually ε-orthogonal can be placed in a Euclidean space
with O( logn

ε2
) dimensions.

Observer that for any three points, if the three distances between them are given, then the three
angles are fixed. Given n−1 vectors, the vectors together with the origin form a set of n points. In
fact, given any n points in Euclidean space (in n−1 dimensions), the Johnson-Lindenstrauss Lemma
states that the n points can be placed in O( logn

ε2
) dimensions such that distances are preserved with

multiplicative error ε, for any 0 < ε < 1.

Theorem 1.2 (Johnson-Lindenstrauss Lemma [JL84]) Suppose U is a set of n points in Eu-
clidean space Rn. Then, for any 0 < ε < 1, there is a mapping f : U → RT , where T = O( logn

ε2
),

such that for all x, y ∈ U ,

(1− ε)||x− y||2 < ||f(x)− f(y)||2 < (1 + ε)||x− y||2.

Remark 1.3 1. Since for small ε, (1 + ε)2 = 1 + Θ(ε) and (1 − ε)2 = 1 − Θ(ε), it follows that
the squared of the distances are preserved iff the distances themselves are.

2. Note that ||x − y|| is a norm between 2 vectors in Euclidean space Rn and ||f(x) − f(y)|| is
one between 2 vectors in RT . Be careful that, ||x− f(x)|| is not well-defined.

Corollary 1.4 (Almost Orthogonal Vectors) Suppose u1, u2, . . . , un are mutually orthogonal
unit vectors in Rn. Then, for any 0 < ε < 1, there exists a mapping f : U → RT , where T = O( logn

ε2
)

such that | f(ui)||f(ui)|| ·
f(uj)
||f(uj)|| | ≤ ε.

Proof: We apply Johnson-Lindenstrauss’ Lemma with error ε
8 to the set U of vectors u1, u2, . . . , un

together with the origin to obtain f : U → RT , where T = O( logn
ε2

).
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Hence, it follows that for all i, 1− ε
8 ≤ ||f(ui)||2 ≤ 1 + ε

8 .

Moreover, for i 6= j, (1− ε
8)||ui − uj ||2 < ||f(ui)− f(uj)||2 < (1 + ε

8)||ui − uj ||2.
Observe that ||ui − uj ||2 = 2 and ||f(ui)− f(uj)||2 = ||f(ui)||2 + ||f(uj)||2 − 2f(ui) · f(uj).

So, from (1− ε
8)||ui − uj ||2 < ||f(ui)− f(uj)||2, we conclude f(ui) · f(uj) ≤ ε

4 .

On the other hand, from ||f(ui)− f(uj)||2 < (1 + ε
8)||ui − uj ||2, we have f(ui) · f(uj) ≥ − ε

4 .

Hence, we have |f(ui) · f(uj)| ≤ ε
4 . However, observe that f(ui) and f(uj) might not be unit

vectors. We know that ||f(ui)|| · ||f(uj)|| ≥ (1− ε
8)2 ≥ 1

4 . Therefore, we have | f(ui)||f(ui)|| ·
f(uj)
||f(uj)|| | ≤ ε.

2 Random Projection

Several proofs [DG03, Ach03] of the theorem are based on random projection. The construction
can be derandomized [EIO02], but the argument is quite involved.

For point x, suppose f(x) := (fi(x))i∈[T ]. Then, ||f(x)− f(y)||2 =
∑

i∈[T ] |fi(x)− fi(y)|2.
We have learned that the sum of independent random variables concentrate around its mean. Hence,
the goal is to design a random mapping fi : U → R such that E[|fi(x)− fi(y)|2] = 1

T · ||x− y||
2, in

which case we have E[||f(x)− f(y)||2] = ||x− y||2.
Note that fi takes a vector and returns a number. Observe that Euclidean space is equipped with
dot product. Note that dot product with a unit vector gives the magnitude of the projection on
the unit vector. Hence, we can take a random vector r in space Rn, and let fi have the form
fi(x) := r · x.

Suppose we fix two points x and y. Since dot product is linear, we have fi(x)− fi(y) = fi(x− y).

Hence, we consider v := x− y = (v0, v1, . . . , vn−1), and let ν := ||v|| =
√∑

i v
2
i . Recall the goal is

to define fi, and hence find a random vector r such that E[(r · v)2] = 1
T · ||v||

2 = ν2

T .

Using Random Bits to Define a Random Projection. The following idea of using random
bits is due to Achlioptas [Ach03]. For each j ∈ [n], suppose γj ∈ {−1,+1} is a uniform random
bit such that γ’s are independent. Define the random vector r := 1√

T
(γ0, γ1, . . . , γn−1). Hence,

fi(v) = 1√
T

∑
j γjvj .

Check that E[(fi(v))2] = 1
T

∑
j v

2
j = ν2

T . Hence, we have found the required random mapping

fi : Rn → RT .

Remark 2.1 Observe that the mapping f : Rn → RT is linear.

3 Proof of Johnson-Lindenstrauss Lemma

We define Xi := fi(v)2 = 1
T (
∑

j γjvj)
2, and let Y :=

∑
iXi. Recall E[Xi] = ν2

T and E[Y ] = ν2.
Then, the desirable event can be expressed as:

Pr[(1− ε)||x− y||2 < ||f(x)− f(y)||2 < (1 + ε)||x− y||2] = Pr[|Y − E[Y ]| < εE[Y ]].
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The goal is to first find a T large enough such that the failing probability Pr[|Y −E[Y ]| ≥ εE[Y ]]
is at most 1

n2 . Since there are
(
n
2

)
such pairs of points, using union bound, we can show that with

probability at least 1
2 , the distances of all pairs of points are preserved.

We again use the method of moment generating function.

3.1 JL as a Measure Concentration Result

Using the method of moment generating function described in previous classes, the failure proba-
bility in question is at most the sum of the following two probabilities.

1. Pr[Y ≤ (1− ε)ν2] ≤ exp(−t(1− ε)ν2) ·
∏
iE[exp(tXi)], for all t < 0.

2. Pr[Y ≥ (1 + ε)ν2] ≤ exp(−t(1 + ε)ν2) ·
∏
iE[exp(tXi)], for all t > 0.

We next derive an upper bound for E[etXi ].

4 Upper Bound for E[etXi]

For notational convenience, we drop the subscript i, and write X := 1
T (
∑

j γjvj)
2, where ν2 =∑

j v
2
j , where γj ∈ {−1, 1} are uniform and independent. Hence, we have

E[etX ] = E[exp( tT (
∑

j v
2
j +

∑
i 6=j γiγjvivj))].

Although the γj ’s are independent, the cross-terms γiγj ’s are not. In particular, γiγj and γi′γj′ are
not independent if i = i′ or j = j′.

We compare X with another variable X̂, which we can analyze.

4.1 Normal Distribution

Suppose g is a random variable having standard normal distribution N(0, 1), with mean 0 and
variance 1. In particular, it has the following probability density function:

1√
2π
e−

x2

2 , for x ∈ R.

Suppose γ is a {−1, 1} is a random variable that takes value −1 or 1, each with probability 1
2 .

Then, the random variables g and γ have some common properties.

Fact 4.1 Suppose γ is a uniform {−1, 1}-random variable and g is a random variable with normal
distribution N(0, 1).

1. E[γ] = E[g] = 0.

2. E[γ2] = E[g2] = 1.

For higher moments we have,

1. For odd n ≥ 3, E[γn] = E[gn] = 0.
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2. For even n ≥ 4, 1 = E[γn] ≤ E[gn].

Normal distributions have the following important property.

Fact 4.2 Suppose gi’s are independent random variables, each having standard normal distribution
N(0, 1). Define Z :=

∑
j gjvj, where vj’s are real numbers. Then, Z has normal distribution

N(0, ν2) with mean 0 and variance ν2 :=
∑

i v
2
i .

We define X̂ := 1
T (
∑

j gjvj)
2 and let Z :=

∑
j gjvj . Notice that we have Z ∼ N(0, ν2).

Using Fact 4.1, we can compare the moments of X and X̂.

Lemma 4.3 Define X and X̂ as above.

1. For all integers n ≥ 0, E[Xn] ≤ E[X̂n].

2. Using the Taylor expansion exp(y) :=
∑∞

i=0
yi

i! , we have E[exp(tX)] ≤ E[exp(tX̂)], for t > 0.

Lemma 4.4 For t < T
2ν2

, E[exp(tX̂)] ≤ (1− 2tν2

T )−
1
2 .

Sketch Proof: Observe that X̂ = 1
T Z

2, where Z has normal distribution N(0, ν2).

Hence, it follows that E[etX̂ ] = E[exp( tT ·Z
2)]. We leave the rest of the calculation as a homework

exercise.

Therefore, for t > 0, we conclude that E[exp(tX)] ≤ E[exp(tX̂)] ≤ (1− 2tν2

T )−
1
2 , for t < T

2ν2
.

Claim 4.5 Suppose X := 1
T (
∑

j γjvj)
2, where ν2 =

∑
j v

2
j .

Then, for 0 < t < T
2ν2

, E[exp(tX)] ≤ (1− 2tν2

T )−
1
2 .

For negative t, we cannot argue that E[exp(tX)] ≤ E[exp(tX̂)]. However, we can still obtain an
upper bound using another method.

Claim 4.6 For t < 0, E[exp(tX)] ≤ 1 + tν2

T + 3
2 · (

tν2

T )2.

Proof:

We use the inequality: for y < 0, ey ≤ 1 + y + y2

2 .

Hence, for t < 0,

E[exp(tX)] ≤ E[1 + tX + t2

2X
2] = 1 + tν2

T + t2

2 E[X2].

We use the fact that E[X] = ν2

T . We next obtain an upper bound for E[X2]. From Lemma 4.3, we

have E[X2] ≤ E[X̂2].

Observe that X̂2 = Z4

T 2 , where Z has the normal distribution N(0, ν2). Hence, E[X̂2] = ν4

T 2E[g4],
where g has the standard normal distribution N(0, 1).

Through a standard calculation, we have E[g4] = 3, hence achieving the required bound.
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4.2 Finding the right value for t.

We now have an upper bound for E[etXi ] and hence we can finish the proof.

Positive t. For t > 0, we have Pr[Y ≥ (1 + ε)ν2] ≤ exp(−t(1 + ε)ν2) ·
∏
iE[exp(tXi)]

≤ exp(−t(1 + ε)ν2) · (1− 2tν2

T )−
T
2 ,

where t has to satisfy t < T
2ν2

too.

Remark 4.7 In this case, the upper bound is not of the form E[exp(tXi)] ≤ exp(gi(t)). Instead
of trying to find the best value of t by calculus, sometimes another valid value of t is good enough.

We try t := T
2ν2
· ε
1+ε . In this case, we have (1− 2tν2

T )−
1
2 ≤
√

1 + ε. Hence,

Pr[Y ≥ (1 + ε)ν2] ≤ (
√
e−ε(1 + ε))T ≤ exp(− ε2T

12 ),

where the last inequality comes from the fact that for 0 < ε < 1,√
e−ε(1 + ε) = exp(12(−ε+ ln(1 + ε))) ≤ exp(− ε2

12).

Negative t. For negative t, we use the bound E[etX ] ≤ 1 + tν2

T + 3
2 · (

tν2

T )2.

We can pick any negative t. So, we try t := − ε
2(1+ε) ·

T
ν2

.

Pr[Y ≤ (1− ε)ν2] ≤ [(1− ε
2(1+ε) + 3ε2

8(1+ε)2
) exp( ε(1−ε)2(1+ε))]

T .

We apply the inequality 1 + x ≤ ex, for any real x to obtain the following upper bound.

[exp(− ε
2(1+ε) + 3ε2

8(1+ε)2
+ ε(1−ε)

2(1+ε))]
T ≤ exp(− ε2T

12 ).

One can check that − ε
2(1+ε) + 3ε2

8(1+ε)2
+ ε(1−ε)

2(1+ε) ≤ −
ε2

12 , for 0 < ε < 1.

Hence, in conclusion, for 0 < ε < 1,

Pr[|Y − ν2| ≥ εν2] ≤ 2 exp(− ε2T
12 ). This probability is at most 1

n2 , if we choose T :=
⌈
12 ln 2n2

ε2

⌉
.

5 Lower Bound

We show that if we want to maintain the distances of n points in Euclidean space, in some cases,
the number of dimension must be at least Ω(log n).

5.1 Simple Volume Argument

Consider a set V = {u1, u2, . . . , un} of n points in n-dimensional Euclidean space. For instance, let
ui := ei√

2
, where ei is the standard unit vector, where the ith position is 1 and 0 elsewhere. Then,

for i 6= j, ||ui − uj || = 1.

We show the following result.

Theorem 5.1 Let 0 < ε < 1. Suppose f : V → RT such that for all i 6= j,

1 ≤ ||f(ui)− f(uj)|| ≤ 1 + ε.

Then, T is at least Ω(log n).
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Remark 5.2 Observe that if we have 1 − ε ≤ ||f(ui) − f(uj)|| ≤ 1 + ε, then we can divide the

mapping by (1− ε), i.e. f ′ := f
1−ε . Then, we have 1 ≤ ||f ′(ui)− f ′(uj)|| ≤ 1+ε

1−ε = 1 + Θ(ε).

Proof:

For each i, consider a ball B(f(ui),
1
2) of radius 1

2 around the center f(ui). Since for i 6= j,
||f(ui)− f(uj)|| ≥ 1, the balls are disjoint (except maybe for only 1 point of contact between two
balls).

On the other hand, for all i > 1, ||f(u1) − f(ui)|| ≤ (1 + ε). Hence, it follows the big ball
B(f(u1),

3
2 + ε) centered at f(u1) contains all the n smaller balls.

Note that the volume of a ball with radius r in RT is proportional to rT . Since there are n disjoint
smaller balls in the big ball, the ratio of the volume of the big ball to that of a smaller ball is at
least n.

Hence, we have n ≤ ( 3
2
+ε)T

( 1
2
)T
≤ 5T , for ε < 1. Therefore, it follows that T ≥ Ω(log n).

6 Homework Preview

1. Suppose g is a random variable with normal distribution N(0, 1). Prove the following.

(a) For odd n ≥ 1, E[gn] = 0.

(b) For even n ≥ 2, E[gn] ≥ 1.

(Hint: Use induction. Let In := E[gn] = 1√
2π

∫
R x

ne−
x2

2 dx. Use integration by parts to show

that In+2 = (n+ 1)In.)

2. Suppose γj ’s are independent uniform {−1, 1}-random variables and gj ’s are independent
random variables, each having normal distribution N(0, 1). Suppose vj ’s are real numbers,

and define X := (
∑

j γjvj)
2 and X̂ := (

∑
j gjvj)

2. Show that for all integers n ≥ 1, E[Xn] ≤
E[X̂n].

3. Suppose Z is a random variable having normal distribution N(0, ν2). Compute E[etZ
2
]. For

what values of t is your expression valid?

4. In this question, we investigate if Johnson-Lindenstrauss Lemma can preserve area.

(a) Suppose the distances between three points are preserved with multiplicative error ε. Is
the area of the corresponding triangle also always preserved with multiplicative error
O(ε), or even some constant multiplicative error?

(b) Suppose u and v are mutually orthogonal unit vectors. Observe that the vectors u and
v together with the origin form a right-angled isosceles triangle with area 1

2 . Suppose
the lengths of the triangle are distorted with multiplicative error at most ε. What is the
multiplicative error for the area of the triangle?

(c) Suppose a set V of n points are given in Euclidean space Rn. Let 0 < ε < 1. Give a
randomized algorithm that produces a low-dimensional mapping f : V → RT such that
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the areas of all triangles formed from the n points are preserved with multiplicative error
ε. What is the value of T for your mapping? Please give the exact number and do not
use big O notation.

(Hint: If two triangles lie in the same plane (a 2-dimensional affine space) in Rn, then
under a linear mapping their areas have the same multiplicative error. For every triangle,
add an extra point to form a right-angled isosceles triangle in the same plane.)
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