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Abstract

Various methods have been proposed for fitting subdivisioiases to different forms of shape data (e.g., dense
meshes or point clouds), but none of these methods eflgctigals with shapes with sharp features, that is,
creases, darts and corners. We present an effective maghfitlihg a Loop subdivision surface to a dense triangle
mesh with sharp features. Our contribution is a new exaduat@mn scheme for the Loop subdivision with all types
of sharp features, which enables us to compute a fitting Labpgigision surface for shapes with sharp features
in an optimization framework. With an initial control meshtained from simplifying the input dense mesh using
QEM, our fitting algorithm employs an iterative method toveoa nonlinear least squares problem based on
the squared distances from the input mesh vertices to theyfitibdivision surface. This optimization framework
depends critically on the ability to express these distasequadratic functions of control mesh vertices using our
exact evaluation scheme near sharp features. Experimezgalts are presented to demonstrate the effectiveness
of the method.

Categories and Subject Descript@scording to ACM CCS) 1.3.1 [Computer Graphics]: Surface Modeling

1. Introduction control vertices near them. Our method follows the same
Data reduction in computer graphics and CAD calls for fit- qptlmlzatlon framewo_rk of YIKO5, WPLO§ in shape f'.t' .
ting that solves a nonlinear least squares problem defined in

ting smooth parametric or implicit surfaces to mesh sugace terms of the squared distances from the inbut mesh vertices
or 3D data points generated by laser range scanning systems, qu ! npu vert

Subdivision surfaces have been used in shape fitting due to to t_h € fitti_ng subdivision _surface. A key requirement_ of this
several favorable properties, such as smoothness, aybitra optimization framework IS to express the closeslt pomto(alls
control mesh connectivity, and intuitive shape controlw-o cgl_ledfoot poiny of an Input mes_,h ".e”ex on the limit Squl'
ever, the research on subdivision surface fitting has sofar f vision surface asa I|ne_ar combination Qf.the control veEtlc_
cused mainly on accuracy and efficiency issues with general through the basis functions of the subdivision surface.lgvhi
smooth shapesWQ*07, MKOS5], without adequate empha- this task is straightforward for B-spline surfaces, which a
sis on preservation of s:harp sf;ape features. that is. aease well parameterized everywhere, it becomes a difficult prob-

darts, and corners. Normally, a dense set of control vesrtice lem when one has to deal with a subdivision surface n the
re used 1 aproinat a regon of ighcuaure. Ths s (010" S o ce beciuneof e spec s
clearly inefficient when it comes to faithful representataf ¢ int findi bl 9 )

sharp features. Fitting subdivision surfaces with featuse oot point finding problem

first considered inHIDD*94], but Hoppe et al.’s algorithm
uses piecewise linear approximation to represent a smooth
surface, making exact error evaluation impossible.

Our contribution is an exact evaluation scheme of the
Loop subdivision surface for various types of control ver-
tex configurations near sharp features — an exact evaluation

We present a new method for fitting a Loop subdivision scheme means a method that can be used to exactly compute
surface to a dense triangle mesh with sharp features. Thethe point on the limit subdivision surface corresponding to
fitting surface we compute faithfully captures the sharp fea any parameter valugs,t). This allows the parametrization
tures of the input shape without increasing the density of of the fitting Loop subdivision surface near sharp features,
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therefore enables us to solve the foot point finding prob- using special subdivision rules for features. Howeveris t

lem for Loop surfaces near sharp features. Based on this method the fitting errors are only measured from a small
result, we develop a subdivision surface fitting method that number of sampled points on the fitting surface to a fixed
faithfully reconstructs sharp features. Our work can be re- subset of data points, which are quite different from true ge

garded as an extension d¥IKO5] to include shapes pos-
sessing sharp features.

2. Related work

Several algorithms for fitting subdivision surfaces to data
points have been presented in recent yead@@8v{* 04,
CWQ*07, MKO5]. Following [PLHO0Z, Cheng et al.
[CWQ*04] presented a method for smooth subdivision sur-
faces using the second order approximation of the square
distance from sampled points on the fitting surface to atarge
shape defined by a noise-free point cloud. This method can-
not deal with data points with noise or sharp features prop-

erly.
: Al
\

Figure 1: Comparison between subdivision surfaces gen-
erated by a fitting method without using subdivision rules
for features (e.g.,JMIKO05]) and our method proposed in this
paper. Close-up views of the subdivision surfaces and their
control meshes are shown on the right.

d

Marinov et al. MKO05] developed a subdivision surface
fitting method based oparameter correctiono achieve bet-
ter error measurement. For each given data point, the clos-
est point (orfoot poin) on the limit subdivision surface is
found and this foot point needs to be expressed as a linear
function of the control mesh vertices via the basis funaion
An objective function, which is a function of the control
points, is then defined in a least squares sense as the sum

mation of the squared distances between the data points and

their foot points. This objective function is minimizedriae
tively with repeated computation of the foot points to ugdat
the control points. The method yields a final fitting subdi-
vision surface upon convergence. In curve or surface fitting
computing the foot points amountsdata parametrization
and updating the foot points of the data points due to the
change of the control points is call@drameter correction
[Hos88 WPLOS.

Only smooth fitting surfaces are generated by the algo-
rithms above (i.e. QWQ*04,MKO05]). Given an input model
with sharp features, these algorithms fail to accuratepy ca
ture these features, since they do not use special sulagtivisi
rules for sharp features. One possible but inefficient rgmed
is local refinement that uses a set of dense control vertices
— this handles regions of high curvature very well but can-
not resolve the case of sharp features satisfactorily,@srsh
in Fig. 1. Aiming to preserve the sharp features in the fit-
ting surface, Ma et al.NIMTPO04] proposed an algorithm

ometric errors, especially near sharp features. Whilecihis
cumvents the need to accurately compute the foot points of
all data points, it prevents the method from properly measur
ing and reducing the fitting error around sharp features thu
leading to poor fitting quality, as also discussedMKD5].

Fitting subdivision surfaces to a general shape, includ-
ing sharp features, has been considered by Hoppe et al.
[HDD*94]. Their algorithm uses a piecewise linear approxi-
mation of the subdivision surface for fitting error evaloati
leaving much room for improvement in efficiency and accu-
racy. This issue has been resolved by Marinov and Kobbelt
[MKO5] for fitting subdivision surface without sharp fea-
tures, based on Stam’s exact evaluation scheSte9p.

We present an algorithm for fitting a Loop subdivision sur-
face to a shape represented as a triangle mesh with sharp
features. It consists of two main phases:

1. Phase 1 (Initialization): An initial control meshM is
obtained by simplifying the input dense mesHy us-

ing quadric error metric (QEM) based methad@dH97.
Sharp features are detected and labeled on the control
mesh M. Then a feature-sensitive edge flip operation
is performed onM1 to reduce the number of its extraor-
dinary control points.

Phase 2 (lterative optimization) Gradient-based opti-
mization is run iteratively by performing the following
two steps alternatively until convergencé: finding the

foot points of the data points (i.e., input mesh vertices)
to compute fitting errors; andi) updating the control
mesh points to further reduce the fitting errors by solving
a linear system of equations. (The convergence analysis
of this type of iterative procedures is similar to that for
B-spline curve fitting YWPLO0§.)

Our contribution is a new evaluation scheme for the Loop
subdivision surface near sharp features, covering all gonfi
urations of mesh connectivity with respect to differentesp
of sharp features. The main idea is to enumerate all these
configurations and map them into the regular cases using
a series of geometric transformations, so that Stam’s exact
evaluation scheme for the smooth case can be applied. This
evaluation scheme is the key to enabling us to accurately
compute the foot points on a Loop surface near sharp fea-
tures, as required in Phase 2 of our method. Note that another
evaluation method for subdivision surfaces at sharp featur
has also been presented by Zorin et 2K02], which gen-
erates piecewise smooth surfaces different from what gener
ated in the present paper using the scheméeiD)*94].

2.

3. Generation of initial control mesh

The initial control mesh used in our algorithm is obtained by
simplifying the input triangle mesh in three stepssampli-
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fication b) feature detectiorand (c)regularization of vertex preserve crease edges, we defimeg(e) = 0 for any crease

valence edgee. Then we perform edge flif§lG03 to reduce the ver-
tex irregularity of the mesi\ 1, by minimizing the function

Simplification The input shape is represented by a dense B

triangle mesh\M, whose vertices will be calledata points R(M) = o Irreg(e). )

The meshM is first normalized by uniform scaling to fit
all of its data points in the cubi, 1°. Then we use a QEM-
based method3@H97 with edge length aspect ratio control
to simplify Mg to obtain a coarse mesht;. In our optimization method, we need to repeatedly compute
accurately the foot point of a data point (that is, a vertex of
Feature detection Sharp features on a surface can be cor- the input meshM,) on the fitting subdivision surface and
ners or creases. An edge of a mesh caristbeoth edger express the foot point as a linear combination of the con-
crease edgedepending on whether it lies on a crease. All trol points via the basis functions of the subdivision scefa
boundary edges of an open mesh are classified as creaseTlhis calls for a method for exact evaluation of the subdivi-

4. Evaluation of subdivision surface near features

edges. A mesh vertex issmooth vertexdart vertex crease sion surfaceP(s,t) for any given parameter valués,t); in
vertex or corner vertexf it is incident to exactly 0, 1 and 2, other words, it is necessary to have the parametrization of
or more than 2 crease edges, respectively. the subdivision surface, especially near sharp features.

For each edge of the simplified meshM 4, we use a 4.1. Subdivision rules
thresholddc, the angle between the normals of the two faces ) ) )
incident toe, to detect ife is a candidate crease edge. Al- A face of a triangle mesh is calledsmooth facsf all of
though QEM simplification tends to preserve sharp features, IS three vertices are non-feature vertices; otherwiss, at
there is certain loss of details. Therefore candidate ereas featyre facealso called anon-smooth facelf all the tlhree
edges detected solely based on the coarse tvégheed to vertices of a featu_re face have regular_valences (i.e., 6 for
be validated. For this purpose, we also detect featurecesrti smooth or dart vertices, 4 for crease vertices, and 2 forszorn

(i.e., dart vertices, crease vertices or corner verticasghe vertices), then it is @egular feature faceotherwise, it is an
input meshM using a similar threshold approach, but with irregular feature face We will focus on subdivision rules
an appropriate threshold valfg that is larger thafc. Then involving irregular feature faces

a candidate crease edge on the coarse nvéshwill be vali- The Loop’s subdivision rule for a smooth face uses

dated as a true crease edge ifmliniformly sampled points 5 1.4 splitting operator Ljoo87], which updates every

on the edge are close to some feature vertices on the densegyisting vertex and adds a new vertex associated with
meshMog. We use the valuen= 5 in our implementation. each edge, as illustrated in Fig. Here the weighf3 =
Note that once a mesh vertex 8f1 is labeled as a feature 1 {5 o

n

2
3.1 :
vertex, its identity as a feature vertex will remain when its 6~ (é 2 COS?) } , wherenis the vertex valence.
position is updated by subsequent optimization.

Note that detecting feature edges and vertices is a well
studied topic in geometric processing. Here we have ap-
plied only the simplest intuitive approach to this problem
and found that it produced acceptable results to be used sub-
sequently in the fitting stage. In this sense, other possibly
superior sharp feature detection methods (e-GQ1]) can ) L
also be used to provide the initial control mesh with labeled Figure 2: Loop subdivision masks: (left) for an updated po-
sharp features. Our contribution lies only in the optinimat ~ Sition of a vertex; (right) for a newly vertex on an edge.
method that uses this initial control mesh as an input.

The masks for a Loop subdivision surface at corner ver-
Feature-sensitive edge flipSince the Loop subdivision sur-  fices and creases edges are giverHDP*94] and shown in
face has onlyC! continuity at an irregular vertex (i.e., the  Fi9-3-
valence is not 6), we perform feature-sensitive edge flip fol
lowing the method of$G03 to reduce the number of irreg-
ular mesh vertices. Specifically, we define the irregulanfty
a smooth edge as

0, s 0

Irreg(e) = |val(vo) —opt(vo)| + [val(vi) —opt(v1)[, (1)

Figure 3: Loop subdivision marks for features: (left) for a
corner vertex; (middle) for a crease vertex; (right) for a
newly inserted vertex on a crease edge.

wherevg andv; are the two endpoints of the edgeval(v)
is the valence of the vertex opt(v) = 6 for a smooth vertex
andopt(v) = 4 for a crease vertex. To make the operation
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4.2. Mirror vertices for regular feature faces By exhaustive enumeration it can be shown that, besides
the case of a regular smooth face shown in Bighere are
in total four cases of regular feature faces and eight céases o
irregular feature faces. For reference, the basis funstion
evaluating a regular smooth face based on the mask ir6Fig.
are listed in AppendiA. We will enumerate all the cases of
feature faces in the remaining subsections and explain how
For an internal smooth face, Stam’s technique for exact these cases are handled.
evaluation on a subdivision surface needs a mask of 12 ver-

The evaluation technique for internal smooth faces is pre-
sented in $ta99. The method for computing the exact limit
position of a feature vertex is proposed i8ch9¢ and used

in [MMTPO04]. These techniques are applied in our method,
but we will skip the details due to the space limitation.

tices, as shown in Figs. However, these rules cannot be r;
applied directly to the case where the face is incident to a pret

surface boundary or a sharp feature (that is, dart, corner or . \\ -
crease), due to missing vertices or the special subdivision B

. . p§*t P Py
rules for features. Our solution to this problem adopts a two ¢ ! !

step strategy: 1) Resolve the caseredular feature faces
usingmirror vertices(see below); 2) resolve the caseiof
regular feature facedy reducing it to the case of regular
feature faces.

Figure 5: (Left) the smallest invariant stencil for a regular
feature face containing a corner vertex; (right) after aclgli
mirror vertices.

The concept of mirror vertices is introduced iB8ch96
for analyzing regular feature faces. The idea is as follows.
Referring to Fig4, to provide the missing vertices required
for evaluating a regular face with one crease edge, the-exist
ing verticesp'é and p'§ are reflected in the crease edd}qoﬁ
to obtain themirror verticesf)é and pfé, which are expressed
asph = pb-+ p{ — b5, P = p§+ P — P

In Fig. 4, p<tt

. ' ~s are new vertices in the next level of sub-
division generated by special rules for a regular featuce fa
in Fig. 4 (left) and rules for a smooth face in Fig.(right).
The region bounded by the dash lines is called tiigor 4.3. Exact evaluation for regular feature faces
region and the region bounded by the solid lines is called
the non-mirror region It is shown in Bch9§ that the upper
half of the smooth subdivision surface generated by smooth
scheme using the complete mask in Figright) is the same

as the limit surface that is generated using the subdivision
rules for features using the “half mask” in Fig(left). This
observation allows us to perform exact evaluation on a regu-
lar feature face containing a crease edge.

Figure 6: The mask for evaluating a smooth internal face.

In the following we will list the four cases of regular feagur
faces and show how the mirror vertices can be generated to
provide the full mask for exact evaluation.

k k b k
Py oF Ps P2
YA //pjm it

ko .

x

?; By PERR, Sy Py

p4k¢1 P: plku plk
Figure 7: (Left) Case 1: a regular feature face having one
crease edge; (right) Case 2: a regular feature face having
one crease vertex.

Figure 4: (Left) the smallest invariant stencil for regular fea- Case 1:(See Fig7 (left)): The triangular face has a crease
ture faces containing crease edges; (right) after adding mi  edge and two smooth edges. The mirror vertices are given by
ror vertices. Plo= Pi-+ p5— 5. Pia = P+ Pl — P, andpi, = pi+pj -

Extending this idea of using suitable reflections to obtain c (S ) iaght): The lar f has th
mirror vertices to make up for the missing vertices, we can ase 2:(See Fig7 (right)): The triangular face has three

also construct a complete mask for parameterizing a regular smooth edges and one crease vertex. The mirror vertices are
in Fi : : given by By = P+ pk — b, B2 = P+ plo— P

corner face as shown in Fi§. Here the mirror vertices are 11— K5 kFe™ Fa F12 = Fe ™ 10 :

given byp4§ = p('§+ p'§ - p'{, ﬁ'ﬁ = 2|0('§ - p'{. ﬁ'é = 2p|8 - p'é. Case 3:(See Fig.8 (left)): The triangular face has two

B = p+ Pk — . crease edges, two crease vertices and one corner vertex. The

(© 2008 The Author(s)
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mirror vertices are given bp'é”: p'{ + p'§ - p'é, ﬁ'é = p'é +
Pl — &, 95 = 2pff — pS, o= 205 — P, Py = P+ pE— 1,
P2 = pS+ Pk — P5.

Case 4:(See Fig8 (right)): The triangular face has three

smooth edges and two crease vertices. The mirror vertices

k sk _
b7, P11 =
Pk, P, = pk+ p — pk. Note that the corner vertex

are given byp‘é = p'§,+ pé— p'fp o= Ps+ Pk —
p7+ ps

patches —in this case, the subset contains 9 vertices fdr pat
1, 10 vertices for patch 2, and 12 vertices for patch 3.

Let us denote the subsets of control vertices by matrices
By with i = 1,2,3. Then it follows that

Bk = PCk,i =1,2,3. (6)

The matrix size is % M for the pickup matrixP;, 10x M
for P,, and 12x M for P3. Each sub triangular patch is then

(i.e. p8)|n this mask can be replaced by a crease vertex and defined as

the computation of the mirror vertices remains the same.

o
P1o

Pio Pg

PR P
Figure 8: (Left) Case 3: a regular feature face having one
corner vertex; (right) Case 4: a regular feature face having
two crease vertices but no crease edge.

4.4. Exact evaluation of irregular feature faces

There are in total eight cases of irregular feature facegtwh
are faces that contain at least one irregular feature veftex
to its incidence to either a crease edge or a dart/creasefcor

i (WW) = Brbn(ww) =GR bn(vw),  (7)
whereby, is given in AppendixA. Hereh = Il wheni =1,
h =11l wheni =2 andh =1 if i = 3, since different basis

functions are given for different types of faces.

Whenk > 1 andi = 1,2, 3, the subdomains are defined as
used in Stam’s technique:

Bk = PCi,i =1,2,3. ®)

With the modified pickup matrix and basis functions, we can
find a parametrizatios(v,w) for all (v,w) € Q. The parame-
ter domain is partitioned into an infinite set of t|IQ§ with

k> 1andi = 1,2, 3. The subdomains are defined by:

Q= {(vw)lve [27% 271 we [0, 27K )},
ok = {(v,w)|ve [QZ"‘LWG [0,v]};
Q5= {(vw)lve[0,27,we 27K 271 _y]}.

9)

vertex. We will only explain in detail one of these cases and The surface patch is then defined as

list the other seven cases in the AppenBlix

Consider a face that has one crease edge, two smooth

edges, one irregular crease vertex, one regular crease verwhere

tex and one smooth regular vertex, as shown in iglere
the faceA p1 p2 ps is the patch which we are going to param-
eterize. Since the irregular crease vertex has valbhged,
there are in total = N + 5 vertices in the mask of this case.
We store the initiall control vertices in & x 3 matrix

Co = (P01, s Po)- (3)

After a step of subdivision, a new sethdf= N -+ 10 control
vertices are generated. The newly generated verticesdgrovi
us enough vertices to evaluate three-quarters of the triang
lar patch, as done ir§ta99. The new set of control vertices
are defined by

- P13)s
» P13, PLI+1,

Cl = (p1,--
{ Cl = (pr1, - @

s PLM)-

This step of subdivision can be represented in a matrix form:

Ci=AG andCl = ACO If we repeat the subdivision step,
we generate an infinite sequence of control vertices

Ck=AG1=AAICy, k> 1. ®)

For eactk > 1, the subset of vertices fro@form the control
vertices of a regular (feature) triangular patch. Note thist

step is different from Stam’s technique, because we select a

different number of vertices fror@ for different triangular

(© 2008 The Author(s)
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SV W) g = Sk (ti (% W) = CF (RAAH) Tyt (v w)),
(10)
tk,l(v7 W) = (2kv_ 17 2kW)7
tia(Vw) = (1— 24y, 1— 2w), (11)
ty 3(V, W) = (ka 2w— 1).

The parametrization of the triangular face with one crease
edge is defined by EQ.().

The parametrization for the seven other types of irregu-
lar feature faces is similar to the case discussed above, so
we skip the derivation here. The masks for those seven types
of feature faces are listed in Appends If two irregular
crease/dart/corner vertices are connected directly, vie-vi
ally subdivide the control mesh once and then evaluate on the
underlying control mesh. This is similar to the case of two
directly connected irregular smooth vertices, as adddesse
in [MKO5, CWQ"04].

5. Optimization of control mesh

Letx, i =1,2,3,...,n, denote input data points, i.e., the ver-
tices of the dense input meshly. We use the squared dis-
tance of eacly; to the limit subdivision surface to define the
objective function

Faist = Z||X|

D(s;,t) HZ (12)
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where {pci},i = 1,2,...,0, are the crease vertices of the
control mesh. Her& (-) is a discrete version of Laplacian

operator. Only consecutive crease vertices are considered
be neighbors ofy; in this case.

The energy function for fitting a subdivision surface with

AL 1 2 N#2 N+l 1 2 N42 N+6 features is finally given by
N+10 N+9

wes Ned Weswys/wed \use F = Faist+ 0Fs+ BFrt + YFy (16)

N+4  N+8 5 8
7 4“” AVA“ N whereq, B, yare constants. Our tests show than the range
AvAvA vAvAv VAVAV of [0.1,0.5] leads to good results. We uBe= 1.0 in all our
1 2

MEZEES L2 2 a2 Hag experiments. The selectionpWill be discussed in next sec-
tion. Since a foot poin{D(s;,tj)} and sampled points on
crease edgeépy i} are linear combinations of the control
points {p; }, the updated control pointsp;} can be com-

Figure 9: Top left: An irregular feature face defined by

J = N+ 5 control vertices. Top right: after one step of Loop

subdivision. M= N + 10 vertices in the new mesh. Bot- : - ;

tom: three regular meshes corresponding to the three shaded puted by solving a linear system of equations.

patches. The labeling system of the control vertices defines Because only a small number of control points contribute

the picking matrices. to D(s;,tj) or psti, the matrix for the linear system of equa-
tions is sparse. For efficiency, the conjugate gradient ateth
is used to exploit the sparsity of the coefficient matrix to

where(s;. t;) is the parameter values assigned;tsuch that solve the linear system of equations. The conjugate gradi-

D(s.t) is the foot point ofx, on the subdivision surface  ent solver is terminated if the relative error improvement i
D(st). less than a specific small value or the number of iterations

. . ) exceeds a pre-specified number.
We compute the foot points using the same Newton iter-

ation scheme as used iMKO05], with necessary modifica- If the fitting result is not satisfied in a region due to too
tions when the foot point is found to be located in a crease few control vertices or local minima in that region, we use
edge. Here the exact evaluation rules discussed in thegsrece  local refinement operator to add new vertices. This strategy
ing sections are used within this Newton iteration to coraput  is fully discussed inCWQ" 04, MK05].

the exact surface point corresponding to updated parameter

values, converging to the true foot point.
ging P 6. Results

Following [LKEOO], we use the energy teris to con-

trol the smoothness of the control mesh and discourage self- N this section, we present some results to demonstrate the
intersection. effectiveness of our fitting method. All experiments were

m conducted on a PC with Intel Duo Core2 2.8 GHz CPU and
Fs= Ziv(pi)TV(pi)’ (13) 2GB RAM. The fitting errors are obtained after normalizing
i= the input dense mesh in the cujee1]®.

where{pi},i = 1,2,..,m, are the smooth or dart vertices of Fig. 11 shows a mechanical model, Fandisk. We yse
the control mesh an¥(-) is a discrete version of Lapla- 10 for Eq.16. Fig. 11 (bottom left) shows the initial error
cian. The crease and corner vertices are not included in this gistribution. We see that most of large initial errors lie in
smoothness term, for otherwise crease edges and cornersmgoth regions with higher curvature. The averagéitting
would be smoothed out. error (i.e., (Fyist/n)Y/?) decreases quickly in the first 3 it-

Let {xs; } denote the set of feature vertices on the dense €rations of optimization, beginning to decrease only sjow!
input meshMg. To ensure that the sharp features are well afterwards. The ratio between the number of vertices in the

fitted, we incorporate one more energy term defined as final control mesh and the initial dense mesh is 1.42% and
| the averagd.? fitting error is 581 x 10~%. The total time
Fro = zbnpf“ _Sft‘ng (14) consumed in the 22 iterations of optimization is 141 sec-
= onds.
where{ps},i =1,2,...,1, are the uniformly sampled posi- Fig. 12shows a model twisted in two directions. Since the
tions on the crease edges of the control meshxagyds the feature curves have larger curvature and torsion, extoateff
nearest point corresponding e  in {Xs¢ }. on smoothing the feature curves is needed by seftin.0

for this model. Fig13 shows another mechanical part. The

o optimized control mesh is generated usjng 1.0. From the

Fo — _Ziv(pcr,i)TV(pcr,i)7 (15) close-up views of the results, we see that the sharp features
1=

The next energy term is used for smoothing along creases,

are well reconstructed. The total time of the optimizatien i

(© 2008 The Author(s)
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Table 1: Statistics of the results (right)), whereby; = (byyy 1,...bur 10)":

, , bpa=hb by 2="02

Fandisk  D.twist  Mechpart burs=bia bura=bis—bre
Vert# of dense mesh 24322 32002 46076 bs=bs+bg bieg=be (19)
Initial avg L2 err 5643 59%3 1.022 b7 =017 -b12 big=bg+bo+bi 2
lteration# 22 7 9 bie =b 10 bt 10 =br11+0y 12
Total time (sec) 141 165 127 . .
Vert# of final mesh 346 1202 520 The basis functions for reguTIar feature case 3 (Mig.
Fitting avgL? err 5884 10%3 61%4 (Ileft)), wherebyy = (biv1,.-bive) -
Max fitting err 1382 14%2 1322 bvi=b1+bi>
Min fitting err 4686 1.2%5 7526 bIV.CZ — bl,1+bl.:3+bl,4—bl,lO—bI,ll

bvz=bs—b1-b12
biv.a=biz+bi 7420 6+ 2b 10+ by 11
bvs=bg+b11+b1o0—b3-Dbg
bive=bo+b 12

(20)

165 and 127 seconds, respectively. The ratios between the
vertex counts of the input dense mesh and the final control
mesh are 3.75% and 1.13%, respectively.

The basis functions for regular feature case 4 (Fig.

(right)), whereby = (by1,...bvg)":

Appendix A: Basis functions of regular cases

The basis functionsJta99 for smooth internal face (Fid), bui=bi1 buza=bz bys=bz+be
whereby — (by 1,..by 12): bva=ba—bg—bg bys=bs+byg
" " bve=Dbig+b7+b 10— b 12 (21)

b1 = (u*+2u3v)/12

by 2 = (U +2u3w) /12

b 3 = (U + 203w+ 6Usv + BUPvW+ 120PV2 + BUVPw+
6uvd + 23w+ v4) /12

bi 4 = (6u* + 243w+ 240PW? + 8uw® + W + 24uPv+
60uZvW-+ 36UV + BUWA + 24UPV2 4 36UV W+

bvz=bg+bg+b12—b 10
bveg=by10+b11+b 12

Appendix B: Types of irregular feature faces

Besides the case shown in Fy.Fig. 10 lists all other fea-

12202 + 8uv® + 63w +*) /12 ture types.
b5 = (u* 4 6UPw+ 120°W? + Buw® + W + 2uBv+ (a) Vertices one crease vertex with valend¢ and two
BUAVW+ BUVW + 2vwP) /12 regular smooth vertexedges three smooth edges.

b s = (2uv® +v*) /12

by 7 = (u* + 6UPw+ 1202w2 + 6uw® + W + 8ulv+
36UPVW+ 36UV + WP + 24UPVP + 60UV W
24°W 4 24uP + 247w+ 6v1) /12

by g = (U* + 8uPw+ 24uPW? + 24uw® + 6w + BUsv+
36UPVW+ 60UVW + 24vWP + 12U°V2 + 36UV W+
2420 + 6UV + 8w+ V) /12

b g = (2uw? +w?)/12

b|’10 = (2V3W+ \/4)/12

by 11 = (2uw? +w* 4 Buvw? + 6vw® + BuvPw + 122w
+2uv® + 6viw+v*) /12

by 12 = (W +2w?) /12

(b) Vertices one crease vertex with valence 2 and two reg-
ular crease verticeEdgestwo crease edges and one smooth
edge.

(c) Vertices one dart vertex with valenchl, one regu-
lar crease vertex and one regular smooth vertex. Edges: one
crease edge and two smooth edges.

(d) Vertices one dart vertex with valendd and two reg-
ular smooth vertice€dges three smooth edges.

(e) Vertices one corner vertex with valendd and two
regular smooth verticegEdges three smooth edges.

(f) Vertices two regular crease vertices and one regular
smooth verticesEdgesthree smooth edges. The orange ver-
tex is either a corner vertex or a crease vertex.

(17

The basis functions for regular feature case 1 (Fig.

(left)), whereby = (byj 1,...by o)

bii=b1+b2 byo=b1+b3+b4
bis=bs—b1 bia=bz+be+bz

bus=bg—bs bye=bg (18)
byz=bg+b1o bug=b11-be
bio=0b 12

The basis functions for regular feature case 2 (Fig.

(© 2008 The Author(s)
Journal compilatiorf©) 2008 The Eurographics Association and Blackwell Publighital.

(g) Vertices one corner vertex with valendé, one regu-
lar crease vertex and one regular smooth veliglges one
crease edge and two smooth edges.
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Figure 11: Fan disk. Top row: input dense mesh; initial control meshjmjzed control mesh; subdivision surface. Bottom row:
initial error distribution; final error distribution; aveage L2 error curve; close-up view of the subdivision surface.
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Figure 12: Double twist. Top row: input dense mesh; initial ~ Figure 13: Mechanical part. Top row: input dense mesh;
control mesh. Second row: optimized control mesh; subdivi- initial control mesh. Second row: optimized control mesh;
sion surface. Bottom row: averag@ error curve; close-up subdivision surface. Bottom row: averag@ error curve;
view of the subdivision surface. close-up view of the subdivision surface.
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