
Unified Process
Acknowledgement
Some of the slides are adapted from the course
“Object-Oriented Analysis and Design Using UML”
by IBM Rational .

Introducing the

2

Objectives
 Explain the six best practices
 Present the (Rational) Unified Process in the

context of the six best practices .

3

 User requirements are not met
 Users have mixed requirements
 Modules cannot integrate
 Difficult to maintain
 Late discovery of errors
 Poor user experience
 Poor performance under load
 Team effort not coordinated
 Build-and-release issues .

Software Development Problems
Symptoms

Patient’s
experience of
disease

4

 Insufficient requirements analysis
 Ambiguous interfaces
 Fragile architecture
 Unnecessary complexity
 Undetected inconsistencies
 Poor testing
 Subjective assessment
 Waterfall development
 Uncontrolled change
 Insufficient automation .

Software Development Problems
Diagnosis

Root causes
identified by
doctor

Symptoms
 Needs are not met
 Mixed

requirements
 Modules can’t fit
 Hard to maintain
 Late discovery
 Poor experience
 Poor performance
 Team effort is not

coordinated
 Build-and-release

Root Causes
 Insufficient analysis
 Ambiguous interfaces
 Fragile architecture
 Unnecessary complexity
 Undetected inconsistencies
 Poor testing
 Subjective assessment
 Waterfall development
 Uncontrolled change
 Insufficient automation

Best Practices
 Develop

iteratively
 Manage

requirements
 Use component

architecture
 Model visually
 Continuously

verify quality
 Manage change

Best Practices to Cure Root Causes

6

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change

Best Practices
Harvested from ...
 Thousands of

customers
 Thousands of

projects
 Industry experts .

7

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices
What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

Waterfall Development

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

9

Waterfall Development
Characteristics

 Delays handling of
critical subsystems
 All subsystems are

treated equal .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

10

Waterfall Development
Characteristics

 Cannot predict
time-to-completion
 50% of the project

completed here? .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

11

Waterfall Development
Characteristics

 Disallows early
deployment
 How much of the

system can be run
here? .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

12

Waterfall Development
Characteristics

 Delays integration
and testing
 Most difficult phase

here .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

13

Waterfall Development
Characteristics

 Frequently results in
major unplanned iterations
 What if a requirements fault

is found here? .

14

Analysis & Design
Planning

Requirements

Iterative Development

Initial
Planning

Test

Deployment

Evaluation

Each iteration results
in an executable

release

Implementation

Risk Profiles

Time

Ri
sk

Waterfall
development

Iterative
development

16

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

Requirements Management
 Make sure you

 Address the right issues
 Build the system right

Requirements Management
 Need a systematic approach to

 capturing

the changing requirements of a software
application

 organizing
 documenting
 and managing

19

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

20

Component-Based Architecture
 Reuse or customize components
 Select from commercially-available components
 Evolve existing software incrementally .

21

 Basis for reuse
 Component reuse
 Architecture reuse

 Basis for project management
 Planning
 Staffing
 Delivery

 Intellectual control
 Manage complexity
 Maintain integrity .

Component-Based Architecture

System-
software

Middleware

Business-
specific

Application-
specific

Layered
component-based

architecture
22

Resilient Architecture
 Meets current and future requirements
 Improves extensibility
 Enables reuse
 Encapsulates system dependencies .

23

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

24

Common Types of
Specification Languages
 Textual
 Formal
 Graphic .

25

Example of Textual Specification
McDull https://www.youtube.com/watch?v=0oCP7nZhZJo

麥兜與雞 曲: 舒伯特 詞: 謝立文 編: 何崇志

我個名叫麥兜兜，我啊媽叫麥太太，
我最喜愛食麥甩咯，一起吃雞一起在歌唱。
我個名叫麥兜兜，我老師叫 Miss Chan Chan，
我最喜愛食碟雞飯，一起吃雞一起在歌唱。
但現實就似一只鴨，吓吓一定要 duck duck。
唔得！唔得！點算嘞？點樣令只雞變做鴨？
含住個雞包仔，望住四寶雞扎，
可嘆現實系要一只鴨，加塊荔芋共我一起扎。
我最喜愛食啫啫雞，我最喜愛食雞 pat pat，
我最喜愛食豉油皇雞翼，一起吃雞一起在歌唱。
我最想吃雞，我最終變臘鴨！鴨！鴨！鴨！鴨！

26

Textual Specification
Problems:
 Structures are implicit and obscured

 Lists, tables and hypertext are partial solutions to
this problem

 Natural language is prone to ambiguity
 Unless expressed as long and complex sequences

of text, as in legal documents

Hence, only plays supplementary role in
analysis and design .

27

Formal Specification
 Mathematically defined syntax and semantics
 Helps to reason on the problems and solutions
 Helps to verify against ambiguities, inconsistencies,

and incompleteness .

28

Example of Formal Specification
NEW_MACHINE
= (coinslot.$5

→ (coinslot.$5 → hatch.cappucino → NEW_MACHINE
drink_button.press → hatch.tea → NEW_MACHINE)

| coinslot.$10
→ (change_button.press → change.$5 → hatch.tea

→ NEW_MACHINE
drink_button.press → hatch.cappucino
→ NEW_MACHINE))

29

Formal Specification

Problems:
 Involve unfamiliar concepts and complex notation
 Difficult in large-scale systems
Use only when necessary, such as
 Defense systems
 Safety critical systems
 Situations where other specifications do not work .

Example of Graphic Specification
McDull

31

Graphic Specification
 Capture the structure and behavior of architectures

and components
 Easily show how all the pieces fit together
 Help maintain consistency between design and

implementation
 Promote human communication
 Hide or expose details as appropriate
 Most popular in analysis and design .

32

Graphic Specification

Problems:
 Lack of precise syntax and semantics
 May be interpreted differently by different

designers and users .

Multiple Languages =
Communication Barriers

UML: One Language for All
Practitioners

History of UML

Integration of
 Object Modelling Technique
 by James Rumbaugh

 Objectory Process
 by Ivar Jacobson

 Booch Method
 by Grady Booch .

36

Visual Modelling with UML
 Multiple views
 “Semi-formal” syntax and semantics .

Visual Modelling with UML

Target
System .

Actor A

Use Case 1

Use Case 2

Actor B

Use Case 3

Use case
Diagram

user

mainWnd fileMgr :
FileMgr

repositorydocument :
Document

gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName ()

Æ¯Á¤¹®¼¿¡ ´ëÇÑ º̧ ±â ¦̧
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

ÈÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼ÀÇ Á¤º¸ ¦̧ ÇØ´ç ¹®¼
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

Á¤·ÄÀ» ½ÃÄÑ È¸é¿¡

È¸é °´Ã¼´Â ÀÐ¾îµéÀÎ
°´Ã¼µé¿¡ ´ëÇØ ÀÌ̧ §º°·Î

º¸¿©ÁØ´Ù.

Sequence
Diagram

Openning

Writing

Reading
Closing

add file [numberOffile==MAX] /
flag OFF

add file

close file

close file

State
Machine

Forward
and Reverse
Engineering

Class Diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

user : »ç¿ëÀÚ

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository

gFile : GrpFile

9: sortByName ()

1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

Communication
Diagram

document : Document

Document

FileManager

GraphicFile
File

Repository DocumentList

FileList

Component
Diagram

Window95

¹®¼°ü¸®
Å¬¶óÀÌ¾ðÆ®.EXE

¹®¼°ü¸® ¿£Áø.EXE

Windows95

ÀÀ¿ë¼¹ö.EXE

Alpha
UNIX

Windows95

¹®¼°ü¸® ¾ÖÇÃ¸´

Deployment
Diagram

Windows
NT

Solaris

Windows
NT

IBM
Mainframe

µ¥ÀÌÅ º̧£ÀÌ½º¼¹ö

38

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

Continuously Verify Software
Quality

Earlier detection and repair
 Problems found earlier are less costly to repair
 Fixing problems earlier leads to higher quality

software
 Identifying and resolving problems earlier result in

more realistic and reliable development schedule .
40

Test All Dimensions of Software
Quality

Reliability
 Test the application behaves

consistently and predictably

Performance
 Test online response under

average and peak loading

Functionality
 Test the accurate
workings of each usage

scenario

Usability
 Test application from the
perspective of convenience to

end-user

Supportability
 Test the ability to maintain
and support application under

production use

 UML
models and
implemen-
tations

 Tests

41

Test Each Iteration

42

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

REPORT

ALERT

43

Change Management for
Development Team

Establish secure
workspace for
each developer

Iterative development

Controlled
parallel
development

Automated
build and
integration
management

44

Best Practices Reinforce One Another
 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change

45

Unified Process

46

Unified Process

47

Major Phases in Unified Process
 Inception

 Mainly to specify project scope
 Elaboration

 Mainly to analyse problem domain, plan project, and
establish baseline architecture

 Construction
 Mainly to develop system

 Transition
 Mainly to pass final system to users .

Major Phases in Unified Process

Inception Elaboration Construction Transition

Time

Major Major MajorMajor Milestones

49

Bringing it All Together:
The Iterative Approach Disciplines group

activities logically

Walk through all
disciplines in

every iteration

Each iteration
results in an

executable release

50

Within Each Phase
Disciplines and Models

Implementation
Implementation Model

Test
Test Model

Requirements
Capture Use Case Model

Business
Modelling Business Model Business

Object Model

Analysis and
Design Design ModelAnalysis Model

Each discipline
describes how to
create and maintain
a set of models

realized by

implemented by

verified by

Compared with
Waterfall Development Finish each discipline

before the next

Cannot go back to a
previous discipline

No deliverables
until all done .

52

Disciplines Guide Iterative
Development

Business Modeling:
Discipline Details

Requirements:
Discipline Details

53

Disciplines Guide Iterative
Development

Analysis and Design:
Discipline Details

Implementation:
Discipline Details

54

Disciplines Guide Iterative
Development

Test:
Discipline Details

Deployment:
Discipline Details

55

Disciplines Guide Iterative
Development

Configuration and
Change Management:
Discipline Details

Disciplines Guide Iterative
Development

Project Management:
Discipline Details

Environment:
Discipline Details

 Most software teams still use a waterfall process for
development projects, completing in strict sequence the
phases of requirement analysis, design, implementation,
integration and test

 UP represents an iterative approach:
 It lets you take into account changing requirements
 Integration is not one “big bang” at the end; instead, elements are

integrated progressively
 With UP, what used to be a lengthy time of uncertainty and pain

− taking up to 40% of the total effort at the end of a project − is
broken down into six to nine smaller integrations involving fewer
elements .

More Reading Material at Student Request
Develop Iteratively

58

 Risks are usually discovered or addressed during integration.
With the iterative approach, you can mitigate risks earlier.

 Iterative development provides management with a means of
making tactical changes to the product − to compete with existing
products, for example. It allows you to release a product early
with reduced functionality to counter a move by a competitor, or
to adopt another vendor for a given technology.

 Iteration facilitates reuse; it is easier to identify reusable
components as they are partially designed or implemented than to
recognize them during planning

 When you can correct errors over several iterations, the result is a
more robust architecture .

More Reading Material
Develop Iteratively

59

 Project managers often resist the iterative approach,
seeing it as a kind of endless and uncontrolled
hacking

 In UP, the iterative approach is very controlled; the
number, duration, and objectives of iterations are
carefully planned, and the tasks and responsibilities
of participants are well defined .

More Reading Material
Develop Iteratively

 UP is a use-case-driven approach
 The use cases defined for the system can serve as the

foundation for the rest of the development process
 Use cases used for capturing requirements play a major

role in several of the process disciplines, especially
design, test, user-interface design, and project
management

 They are also critical to business modeling
 Use cases provide a consistent, visible thread

through the system when it performs certain tasks .

More Reading Material
Manage Requirements

61

 They provide an important link between system
requirements and other development artifacts, such
as design and tests

 Other object-oriented methods provide use-case-
like representation but use different names for it,
such as scenarios or threads .

More Reading Material
Manage Requirements

62

 Use cases drive UP throughout the entire lifecycle,
but design activities center on architecture

 The main focus of early iterations is to produce and
validate a software architecture

 In the initial development cycle, this takes the form
of an executable architectural prototype that
gradually evolves, through subsequent iterations,
into the final system .

More Reading Material
Use Component Architectures

63

 A component can be defined as a nontrivial piece of
software: a module, package, or subsystem that fulfills a
clear function, has a clear boundary, and can be integrated
into a well-defined architecture
 Physical realization of abstraction in your design

 In defining a modular architecture, you identify, isolate,
design, develop, and test well-formed components. These
components can be individually tested and gradually
integrated to form the whole system.
 Exploiting the concepts of modularity and encapsulation .

More Reading Material
Use Component Architectures

 Some of these components can be developed to be
reusable, especially components that provide solutions to a
wide range of common problems

 The advent of commercially successful infrastructures
supporting the concept of software components – such as
Common Object Request Broker Architecture (CORBA),
the Internet, and JavaBeans – has launched a whole
industry of off-the-shelf components for various domains,
allowing developers to buy and integrate components
rather than develop them in-house
 Shift software development from programming software (one

line at a time) to composing software (by assembling
components) .

More Reading Material
Use Component Architectures

 UP supports component-based development in several
ways
 The iterative approach allows developers to progressively

identify components and decide which ones to develop, which
ones to reuse, and which ones to buy

 The architecture defines the components and the ways they
integrate, as well as the fundamental mechanisms and patterns by
which they interact

 Concepts such as packages, subsystems, and layers are used
during analysis and design to organize components and specify
interfaces

 Testing is organized around single components first and then is
gradually expanded to include larger sets of integrated
components .

More Reading Material
Use Component Architectures

66

 Models are simplifications of reality; they help us to
understand and shape both a problem and its solution, and
to comprehend large, complex systems that we could not
otherwise understand as a whole

 A large part of UP is about developing and maintaining
models of the system under development

 The Unified Modeling Language (UML) is a Graphic
language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system .

More Reading Material
Model Visually

67

 UML does not tell you how to develop software
 UP is a guide to the effective use of UML for

modeling
 It describes the models you need, why you need them,

and how to construct them .

More Reading Material
Model Visually

68

 Our concern about quality is focused on two areas:
product quality and process quality

 Product quality
 The quality of the principal product being produced (the

software or system) and all the elements it comprises
(for example, components, subsystems, architecture,
and so on) .

More Reading Material
Continuously Verify Quality

69

 Process quality
 The degree to which an acceptable process (including

measurements and criteria for quality) was implemented
and adhered to during the manufacturing of the product

 Additionally, process quality is also concerned with the
quality of the artifacts (such as iteration plans, test
plans, use-case realizations, design model, and so on)
produced in support of the principal product .

More Reading Material
Continuously Verify Quality

70

 By allowing flexibility in the planning and
execution of the development and by allowing the
requirements to evolve, iterative development
emphasizes the vital issues of keeping track of
changes and ensuring that everything and everyone
is in sync

 Focused closely on the needs of the development
organization, change management is a systematic
approach to managing changes in requirements,
design, and implementation .

More Reading Material
Manage Change

71

 It also covers the important activities of keeping
track of defects, misunderstandings, and project
commitments as well as associating these activities
with specific artifacts and releases

 Change management is tied to configuration
management and measurements .

More Reading Material
Manage Change

More Reading Material
Inception Phase
 Purpose

 To establish the business case for a new system or for a major
update of an existing system

 To specify the project scope
 Outcome

 A general vision of the project’s requirements, that is, the core
requirements
 Initial use-case model and domain model (10−20% complete)

 An initial business case, including:
 Success criteria (such as revenue projection)
 An initial risk assessment
 An estimate of resources required

 Milestone: Lifecycle objectives .

More Reading Material
Elaboration Phase
 Purpose

 To analyze the problem domain
 To establish a sound architectural foundation
 To address the highest risk elements of the project
 To develop a comprehensive plan showing how the project will

be completed
 Outcome

 Use-case and domain model 80% complete
 An executable architecture and accompanying documentation
 A revised business case, including revised risk assessment
 A development plan for the overall project

 Milestone: Lifecycle architecture .

More Reading Material
Construction Phase
 Purpose

 To incrementally develop a complete software product which is
ready to transition into the user community

 Products
 A complete use-case and design model
 Executable releases of increasing functionality
 User documentation
 Deployment documentation
 Evaluation criteria for each iteration
 Release descriptions, including quality assurance results
 Updated development plan

 Milestone: Initial operational capability .

More Reading Material
Transition Phase
 Purpose

 To transition the software product into the user community
 Products

 Executable releases
 Updated system models
 Evaluation criteria for each iteration
 Release descriptions, including quality assurance results
 Updated user manuals
 Updated deployment documentation
 “Post-mortem” analysis of project performance

 Milestone: Product release .

