
Unified Process
Acknowledgement
Some of the slides are adapted from the course
“Object-Oriented Analysis and Design Using UML”
by IBM Rational .

Introducing the

2

Objectives
 Explain the six best practices
 Present the (Rational) Unified Process in the

context of the six best practices .

3

 User requirements are not met
 Users have mixed requirements
 Modules cannot integrate
 Difficult to maintain
 Late discovery of errors
 Poor user experience
 Poor performance under load
 Team effort not coordinated
 Build-and-release issues .

Software Development Problems
Symptoms

Systems Analysis
from user
requirements

4

 Insufficient requirements analysis
 Ambiguous interfaces
 Fragile architecture
 Unnecessary complexity
 Undetected inconsistencies
 Poor testing
 Subjective assessment
 Waterfall development
 Uncontrolled change
 Insufficient automation .

Software Development Problems
Diagnosis

Systems Design
by innovation
and invention

Symptoms
 Needs are not met
 Mixed

requirements
 Modules can’t fit
 Hard to maintain
 Late discovery
 Poor experience
 Poor performance
 Team effort is not

coordinated
 Build-and-release

Root Causes
 Insufficient analysis
 Ambiguous interfaces
 Fragile architecture
 Unnecessary complexity
 Undetected inconsistencies
 Poor testing
 Subjective assessment
 Waterfall development
 Uncontrolled change
 Insufficient automation

Best Practices
 Develop

iteratively
 Manage

requirements
 Use component

architecture
 Model visually
 Continuously

verify quality
 Manage change

Best Practices to Cure Root Causes

6

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change

Best Practices
Harvested from ...
 Thousands of

customers
 Thousands of

projects
 Industry experts .

7

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices Waterfall Model

 Traditional
development process

 Strictly analysis
followed by design

 No iteration allowed .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

Waterfall Model
What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

10

Waterfall Development
Characteristics

 Delays handling of
critical subsystems
 All subsystems are

treated equal .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

11

Waterfall Development
Characteristics

 Cannot predict
time-to-completion
 50% of the project

completed here? .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

12

Waterfall Development
Characteristics

 Disallows early
deployment
 How much of the

system can be run
here? .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

13

Waterfall Development
Characteristics

 Delays integration
and testing
 Most difficult phase

here .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

14

Waterfall Development
Characteristics

 Frequently results in
major unplanned iterations
 What if a requirements fault

is found here? .

15

Analysis & Design
Planning

Requirements

Iterative Development

Initial
Planning

Test

Deployment

Evaluation

Each iteration results
in an executable

release

Implementation

Risk Profiles

Time

Ri
sk

Waterfall
development

Iterative
development

17

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices Requirements Management
 Make sure you

 Address the right issues

Systems Analysis
from user
requirements

Requirements Management
 Make sure you

 Address the right issues
 Build the system right

Systems Design by
innovation and
invention

Requirements Management
Examples
 Make sure you

 Address the right issues

⊗

Requirements Management
Examples
 Make sure you

 Address the right issues
 Build the system right

⊗

Requirements Management
 Need a systematic approach to

 capturing

the changing user requirements of
software application

 organizing
 documenting
 and managing

23

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

24

Component-Based Architecture
 Reuse or customize components
 Select from commercially-available components
 Evolve existing software incrementally .

25

 Basis for reuse
 Component reuse
 Architecture reuse

 Basis for project management
 Planning
 Staffing
 Delivery

 Intellectual control
 Manage complexity
 Maintain integrity .

Component-Based Architecture

System-
software

Middleware

Business-
specific

Application-
specific

Layered
component-based

architecture
26

Resilient Architecture
 Meets current and future requirements
 Improves extensibility
 Enables reuse
 Encapsulates system dependencies .

27

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

28

Common Types of
Specification Languages
 Textual
 Formal
 Graphic .

29

Example of Textual Specification
McDull https://www.youtube.com/watch?v=0oCP7nZhZJo

麥兜與雞 曲: 舒伯特 詞: 謝立文 編: 何崇志

我個名叫麥兜兜，我啊媽叫麥太太，
我最喜愛食麥甩咯，一起吃雞一起在歌唱。
我個名叫麥兜兜，我老師叫 Miss Chan Chan，
我最喜愛食碟雞飯，一起吃雞一起在歌唱。
但現實就似一只鴨，吓吓一定要 duck duck。
唔得！唔得！點算嘞？點樣令只雞變做鴨？
含住個雞包仔，望住四寶雞扎，
可嘆現實系要一只鴨，加塊荔芋共我一起扎。
我最喜愛食啫啫雞，我最喜愛食雞 pat pat，
我最喜愛食豉油皇雞翼，一起吃雞一起在歌唱。
我最想吃雞，我最終變臘鴨！鴨！鴨！鴨！鴨！

30

Textual Specification
Problems:
 Structures are implicit and obscured

 Lists, tables and hypertext are partial solutions to
this problem

 Natural language is prone to ambiguity
 Unless expressed as long and complex sequences

of text, as in legal documents

Hence, only plays supplementary role in
analysis and design .

31

Formal Specification
 Mathematically defined syntax and semantics
 Helps to reason on the problems and solutions
 Helps to verify against ambiguities, inconsistencies,

and incompleteness .

32

Example of Formal Specification
NEW_MACHINE
= (coinslot.$5

→ (coinslot.$5 → hatch.cappucino → NEW_MACHINE
drink_button.press → hatch.tea → NEW_MACHINE)

| coinslot.$10
→ (change_button.press → change.$5 → hatch.tea

→ NEW_MACHINE
drink_button.press → hatch.cappucino
→ NEW_MACHINE))

33

Formal Specification

Problems:
 Involve unfamiliar concepts and complex notation
 Difficult in large-scale systems
Use only when necessary, such as
 Defense systems
 Safety critical systems
 Situations where other specifications do not work .

Example of Graphic Specification
McDull

35

Graphic Specification
 Capture the structure and behavior of architectures

and components
 Easily show how all the pieces fit together
 Help maintain consistency between design and

implementation
 Promote human communication
 Hide or expose details as appropriate
 Most popular in analysis and design .

36

Graphic Specification

Problems:
 Lack of precise syntax and semantics
 May be interpreted differently by different

designers and users .

Multiple Languages =
Communication Barriers

UML: One Language for All
Practitioners

History of UML

Integration of
 Object Modelling Technique
 by James Rumbaugh

 Objectory Process
 by Ivar Jacobson

 Booch Method
 by Grady Booch .

40

Visual Modelling with UML
 Multiple views
 “Semi-formal” syntax and semantics .

Visual Modelling with UML

Target
System .

Actor A

Use Case 1

Use Case 2

Actor B

Use Case 3

Use case
Diagram

user

mainWnd fileMgr :
FileMgr

repositorydocument :
Document

gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName ()

Æ¯Á¤¹®¼¿¡ ´ëÇÑ º̧ ±â ¦̧
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

ÈÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼ÀÇ Á¤º¸ ¦̧ ÇØ´ç ¹®¼
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

Á¤·ÄÀ» ½ÃÄÑ È¸é¿¡

È¸é °´Ã¼´Â ÀÐ¾îµéÀÎ
°´Ã¼µé¿¡ ´ëÇØ ÀÌ̧ §º°·Î

º¸¿©ÁØ´Ù.

Sequence
Diagram

Opening

Writing

Reading
Closing

add file [numberOfFile==MAX] /
flag OFF

add file

close file

close file

State
Machine

Forward
and Reverse
Engineering

Class Diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

user : »ç¿ëÀÚ

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository

gFile : GrpFile

9: sortByName ()

1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

Communication
Diagram

document : Document

Document

FileManager

GraphicFile
File

Repository DocumentList

FileList

Component
Diagram

Window95

¹®¼°ü¸®
Å¬¶óÀÌ¾ðÆ®.EXE

¹®¼°ü¸® ¿£Áø.EXE

Windows95

ÀÀ¿ë¼¹ö.EXE

Alpha
UNIX

Windows95

¹®¼°ü¸® ¾ÖÇÃ¸´

Deployment
Diagram

Windows
NT

Solaris

Windows
NT

IBM
Mainframe

µ¥ÀÌÅ º̧£ÀÌ½º¼¹ö

42

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

Continuously Verify Software
Quality

Earlier detection and repair
 Problems found earlier are less costly to repair
 Fixing problems earlier leads to higher quality

software
 Identifying and resolving problems earlier result in

more realistic and reliable development schedule .
44

Test All Dimensions of Software
Quality

Reliability
 Test the application behaves

consistently and predictably

Performance
 Test online response under

average and peak loading

Functionality
 Test the accurate
workings of each usage

scenario

Usability
 Test application from the
perspective of convenience to

end-user

Supportability
 Test the ability to maintain
and support application under

production use

 UML
models and
implemen-
tations

 Tests

45

Test Each Iteration

46

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

REPORT

ALERT

47

Change Management for
Development Team

Establish secure
workspace for
each developer

Iterative development

Controlled
parallel
development

Automated
build and
integration
management

48

Best Practices Reinforce One Another
 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change

49

Unified Process

50

Unified Process

51

Major Phases in Unified Process
 Inception

 Mainly to specify project scope
 Elaboration

 Mainly to analyse problem domain, plan project, and
establish baseline architecture

 Construction
 Mainly to develop system

 Transition
 Mainly to pass final system to users .

Major Phases in Unified Process

Inception Elaboration Construction Transition

Time

Major Major MajorMajor Milestones

53

Bringing it All Together:
The Iterative Approach Disciplines group

activities logically

Walk through all
disciplines in

every iteration

Each iteration
results in an

executable release

54

Within Each Phase
Disciplines and Models

Implementation
Implementation Model

Test
Test Model

Requirements
Capture Use Case Model

Business
Modelling Business Model Business

Object Model

Analysis and
Design Design ModelAnalysis Model

Each discipline
describes how to
create and maintain
a set of models

realized by

implemented by

verified by

Compared with
Waterfall Development Finish each discipline

before the next

Cannot go back to a
previous discipline

No deliverables
until all done .

56

Disciplines Guide Iterative
Development

Business Modeling:
Discipline Details

Requirements:
Discipline Details

57

Disciplines Guide Iterative
Development

Analysis and Design:
Discipline Details

Implementation:
Discipline Details

58

Disciplines Guide Iterative
Development

Test:
Discipline Details

Deployment:
Discipline Details

59

Disciplines Guide Iterative
Development

Configuration and
Change Management:
Discipline Details

Disciplines Guide Iterative
Development

Project Management:
Discipline Details

Environment:
Discipline Details

