Introducing the
Unified Process

Acknowledgement

Some of the slides are adapted from the course
“Object-Oriented Analysis and Design Using UML”
by IBM Rational

Software Development Problems

Symptoms

+ User requirements are not met

+ Users have mixed requirements o g
¢ Modules cannot integrate Systems Analysis
+ Difficult to maintain from user

¢ Late discovery of errors reguirements

+ Poor user experience

Poor performance under load
o Team effort not coordinated
+ Build-and-release issues

Objectives

+ Explain the six best practices

+ Present the (Rational) Unified Process in the

context of the six best practices

Software Development Problems
Diagnosis

Insufficient requirements analysis
Ambiguous interfaces

Fragile architecture

Unnecessary complexity
Undetected inconsistencies

Poor testing

Subjective assessment

Waterfall development
Uncontrolled change

Insufficient automation

L 2R R R JEE JER JEE R JEE R 2

®)
i ‘ v~
Systems Design
by innovation
and invention

Best Practices to Cure Root Causes

Symptoms Root Causes Best Practices

o Needs are not met & Insufficient analysis + Develop

¢ Mixed TS I/\mbiguous imcrfhccsl iteratively
requirements o Fragile architecture + Manage

#|Modules can’t fit I + Unnecessary complexity requirements

Best Practices

¢ Hard to maintain 4 |Undetected inconsistencies| .
v

.) _ Use component
o Late discovery 4 Poor testing

architecture

¢ Poor experience o Subjective assessment
¢ Poor performance o Waterfall development

+ |Model visually

¢ Team effortis not o Uncontrolled change ¢ Cor;tmuous}y
coo.rdmaled [nsufficient automation verify quality
+ Build-and-release 'S Manage Change

Best Practices

+ Develop iteratively

+ Manage requirements

+ Use component architectt
o Model visually

+ Continuously verify quality

+ Manage change .

¢ Develop iteratively Harvested from ...
e + Thousands of
& Manage requirements
customers
o Use component architecture | ¢ Thousands of
projects

& Model visually
+ Industry experts .

o Continuously verify quality

& Manage change

Waterfall ModelNI S

L <KL

+ Traditional
devel opment process
« Strictly analysis
followed by design
« Noiteration allowed .

Waterfall Model

What Fundamentalsare | mportant in SE?

What are the Tasks in SE?

+ Feasibility Study

+ Requirements Analysis
+ Design

+ Programming

+ Unit test

« Integration test

o User training

+ Deployment

+ Maintenance

Waterfall Development
Characteristics

What Fundamentals are | mportant in SE?

What are the Tasks in SE?

+ Feasibility Study

Waterfall Development
Characteristics

What Fundamentals are Important in SE?

What are the Tasks in SE?

+ Feasibility Study

« Requirements Analysis
« Design
+ Programming

« Unit test
S IntegrationNI
« User training

+ Delays handling of
critical subsystems

= All subsystems are
treated equal

+ Deployment
¢ Maintenance

Waterfall Development
Characteristics

What Fundamentals are Important in SE?

What are the Tasks in SE?

+ Requirements Analysis 5
¥ Y + Cannot predict
Design -)
¢ Programming time-to-completion
+ Unit test

. = 50% of the project
+ Integration test completed here?
o User training

+ Deployment
& Maintenance

+ Feasibility Study

+ Requirements Analysis
+ Design

+ Programming
« Unit test

« Integration test
« User training
+ Deployment

+ Disallows early
deployment
= How much of the

system can be run
here?

¢ Maintenance

Waterfall Development
Characteristics

What Fundamentals are mportant in SE?

What are the Tasks in SE?

+ Feasibility Study

Waterfall Development
Characteristics

What Fundamentals are Important in SE?

What are the Tasks in SE?

+ Requirements Analysis * De]ays integration
¢ Design and testing

Programming]

o Unit test = Most difficult phase
+ Integration test here

+ User training
+ Deployment
+ Maintenance

Iterative Development

Requirements) .
Analysis & Design
Planning
Initial
Planning Implementation
Evaluatior\ /
Test
Each iteration results Deployment
in an executable
release

+ Feasibility Study

« Requirements Analysis
« Design

+ Programming

« Unit test

« Integration test

« User training

+ Deployment

+ Maintenance

Risk Profiles

+ Frequently results in
major unplanned iterations

= What if a requirements fault
is found here?

Risk

Iterative
development

Waterfall
development

Time

Best Practices

o Develop iteratively

+ Manage requirements
+ Use component architecture
+ Model visually

o Continuously verify quality

o Manage change .

Requirements Management

Requirements Management

+ Make sure you
m Address the right issues

= Build the system right

b1

Systems Design by
innovation and
invention

+ Make sure you
= Address the right issues

Systems Analysis
from user
requirements

Requirements Management
Examples

+ Make sureyou
= Address the right issues

Requirements Management

Examples Requirements Management
. + Need a systematic approach to
. m capturing
= Build the system right = organizing
= documenting

and managing

the changing user requirements of
software application

Component-Based Architecture

+ Reuse or customize components
+ Select from commercially-available components

+ Use component architecture ¢ Evolve existing software incrementally

Component-Based Architecture Resilient Architecture

weare ¢ Basis for reuse & Meets current and future requirements

Business- L] Component reuse
1 specific

; o Improves extensibility
= Architecture reuse

] Middleware ¢ Enables reuse

+ Basis for project management

] System- = Planning + Encapsulates system dependencies
= Staffing
= Delivery
Layered o Intellectual control
component-based = Manage complexity
architecture = Maintain integrity

Common Types of
Specification Languages

o Textual

o Formal

o Graphic
+ Model visually

Example of Textual Specification
MCDUH https://www.youtube.com/watch?v=00CP7nZhZJo

Zongagr b (A% S B & SRS

TERIZERT - B
BREEERTANE —HIZH—HEIUE -
FrfE Oz yRyE > FRFEEFIY Miss Chan Chan
REEETRMEHN - g EERE -
EIREBLI— IR > IFF—EZ duck duck -
WEAS | NEAS | BRE) 0 BAES R ERS R ©
EEERET EEUERL
HEIRE HE R IR FERR L -
RREEREEE REESE R patpat >
REEERHEHE - —FEERE -
BREEZE RESERISIIE R8I

Formal Specification

+ Mathematically defined syntax and semantics
+ Helps to reason on the problems and solutions

+ Helps to verify against ambiguities, inconsistencies,
and incompleteness

Textual Specification

Problems:
o Structures are implicit and obscured

= Lists, tables and hypertext are partial solutions to
this problem

+ Natural language is prone to ambiguity

= Unless expressed as long and complex sequences
of text, as in legal documents

Hence, only plays supplementary role in
analysis and design

Example of Formal Specification

NEW_MACHINE
= (coindot.$5
— (coinglot.$5 — hatch.cappucino - NEW_MACHINE
0 drink_button.press — hatch.tea — NEW_MACHINE)
| coinglot.$10
— (change_button.press — change.$5 — hatch.tea
— NEW_MACHINE
0 drink_button.press — hatch.cappucino
— NEW_MACHINE))

Formal Specification

Problems:

+ Involve unfamiliar concepts and complex notation
+ Difficult in large-scale systems

Use only when necessary, such as

+ Defense systems

+ Safety critical systems

+ Situations where other specifications do not work

Graphic Specification

+ Capture the structure and behavior of architectures
and components

+ Easily show how all the pieces fit together

+ Help maintain consistency between design and
implementation

+ Promote human communication
+ Hide or expose details as appropriate
+ Most popular in analysis and design

Example of Graphic Specification
McDull

Graphic Specification

Problems:
+ Lack of precise syntax and semantics

+ May be interpreted differently by different
designers and users

Multiple Languages =
Communication Barriers

‘
v =

- o HTML
W Requirements CcGl
- and XML

Business _)
Analyst Business JavaScript

Models

SQL
ER Models

Programmer

History of UML

| ntegration of

+ Object Modelling Technique
* by James Rumbaugh

+ Objectory Process
= by Ivar Jacobson

+ Booch Method
= by Grady Booch

UML: One Language for All
Practitioners

UNIFIED O

d MODELING - 2
\ LANGUAGE ‘/' Web
Analyst Content

Web
Creator

Gontent
Creator .
* Requirements

. ﬂ‘f“‘! " / * Data \ J: HM-.
é 3 v » :

¢ Structure e &
7
+ Behavior f
Databaser” Database”
Admministrator Progidiher Adnfinistrator

Visual Modelling with UML

+ Multiple views
+ “Semi-formal” syntax and semantics

Visual Modelling with UML

Use case
Diagram

Class Diagram

§ Sequence

State L [Diagram
Machine

e — Deployment

Diagram

Communication

C t i
Diagram omponen

Diagram

Forward Target

and Reverse System
Engineering

Mode! Ana Develop System’ Solution Test
& Specify &D Tost

& Test & Deploy

Most problems d
Itis more productive currently found her_e*_ removal

to find problems earlier
e

Iterative Process

Earlier detection and repair

+ Problems found earlier are less costly to repair

+ Fixing problems earlier leads to higher quality
software

+ Identifying and resolving problems earlier result in
more realistic and reliable development schedule

+ Continuously verify quality

Test All Dimensions of Software
Quality

Usability

+ Test application from the
. p perspective of convenience to
Functionality end-user

+ Test the accurate
workings of each usage
scenario

Reliability
1" * Test the application behaves

consistently and predictably
Supportability

¢ Test the ability to maintain
and support application under

production use Performance

¢ Test online response under
average and peak loading

Test Each Iteration

models and
implemen-
tations

o Tests

Change Management for
Development Team

Establish secure
workspace for
each developer

| ter ative devel opment

Controlled
parallel
development

Automated
build and
integration
management

Iteration)

+ Manage change

Best Practices Reinforce One Another

+ Develop iteratively

+ Manage requirements

+ Use component architecture
+ Model visually

o Continuously verify quality
+ Manage change

Unified Process

Phases
Disciplines | | Inception | Elaboration | Construction | Transition |

Business Modeling
Requirements

Analysis & Design

—
-
o

itation 4
Test SN
Deployment L
Configuration {
& Change Mgmt PR ==
Project Management | s | H .
Environment | s .h-— -:'——
i 322X el el Pl A
Iterations 19

Major Phases in Unified Process

+ Inception
= Mainly to specify project scope
+ Elaboration

= Mainly to analyse problem domain, plan project, and
establish baseline architecture

+ Construction
= Mainly to develop system

+ Transition
= Mainly to pass final system to users .

Unified Process

Business Modeling
Requirements

Analysis & Design

Implementation .-
Test
Deployment
Configuration
& Change Mgmt
Project M. g et T
Environment | o h-— e
Const || Tran || Tran
Initial || Elab #1 uﬂ:n“m[ml i " I'i
Iterations 50

Major P

hases in Unified Process

=9)))

DMMMM)N)))) e

\
Inception

Time
Elaboration | Construction | Transition

Major Milestones

Bringing it All Together:
The Iterative Approach

Disciplines group
activities logically

Within Each Phase
Disciplines and Models

-8

Each discipline
describes how to
create and maintain
a set of models

. Q--' 'I
Business in So-®
Modelling Business Model l?usiness
Object Model
Requirements }\ﬂ realized by
Capture Use Case Model
: = _=
Analysis and e =

. e- R implemented by
DeSIgn Analysis Model ~ Design Model

Phases
Disciplines | | Inception|| Elaborats c Tronsition |
Business Modeling Wa'lk Fhrf)ugh all
Requirements dlSCl[).llneS.ln
Analysis & Design PO | [e every 1teration
lmplementation - e I
Test
Deployment Each iteration
Configuration results in an
& Change Mgmt
Project Manag e ==y === executable release
Environment k
Initial || Elab #1 |mﬂ”m Const | Const E@
Iterations
Compared with

Waterfall Development

a7

Implementation

Implementation Model

Test

\verified by
gw

Test Model

Finish each discipline
before the next

Disciplines Guide Iterative

Development

Disciplines | | Inception|| Elaboration | C

e

Business Modeling
Requirements

Analysis & Design

Implementation
Ti

est

. . | Cannot go back to a

Bubnens —
Pt
Anatysis & Design \
st 2 i
e _%_'_
-
Taren g | NG

No deliverables

Deployment .
¥ ; : until all done
Configuration H i
& Change Mgmt e .

Project Management | s ;
Environment

Iterations

— — —
[1) oo g [

Business Modeling:
Discipline Details

nnnnn

Requirements:
Discipline Details

Disciplines Guide Iterative

Development

Implementation:
Discipline Details

Analysisand Design:
Discipline Details

Disciplines Guide Iterative

Disciplines Guide Iterative

Development
pon, - — . 5]
: ZZC?:; g
B = . * =z

uuuuu

Configuration and

Change Management:

Discipline Details

Development

Test:
Discipline Details

Deployment: .
Discipline Details)

Disciplines Guide Iterative

Development
[Phases []
Anly Desgn N -.-__H_'-:r'—‘-_,:‘_.:_
N— Treraticns — -
e = e
- Ervironment for Guldelines forl
Project Management: erston e
Discipline Details —r
i.»]
Environment: Sowpact Berommant

Discipline Details

