
Unified Process
Acknowledgement
Some of the slides are adapted from the course
“Object-Oriented Analysis and Design Using UML”
by IBM Rational .

Introducing the

2

Objectives
 Explain the six best practices
 Present the (Rational) Unified Process in the

context of the six best practices .

3

 User requirements are not met
 Users have mixed requirements
 Modules cannot integrate
 Difficult to maintain
 Late discovery of errors
 Poor user experience
 Poor performance under load
 Team effort not coordinated
 Build-and-release issues .

Software Development Problems
Symptoms

Systems Analysis
from user
requirements

4

 Insufficient requirements analysis
 Ambiguous interfaces
 Fragile architecture
 Unnecessary complexity
 Undetected inconsistencies
 Poor testing
 Subjective assessment
 Waterfall development
 Uncontrolled change
 Insufficient automation .

Software Development Problems
Diagnosis

Systems Design
by innovation
and invention

Symptoms
 Needs are not met
 Mixed

requirements
 Modules can’t fit
 Hard to maintain
 Late discovery
 Poor experience
 Poor performance
 Team effort is not

coordinated
 Build-and-release

Root Causes
 Insufficient analysis
 Ambiguous interfaces
 Fragile architecture
 Unnecessary complexity
 Undetected inconsistencies
 Poor testing
 Subjective assessment
 Waterfall development
 Uncontrolled change
 Insufficient automation

Best Practices
 Develop

iteratively
 Manage

requirements
 Use component

architecture
 Model visually
 Continuously

verify quality
 Manage change

Best Practices to Cure Root Causes

6

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change

Best Practices
Harvested from ...
 Thousands of

customers
 Thousands of

projects
 Industry experts .

7

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices Waterfall Model

 Traditional
development process

 Strictly analysis
followed by design

 No iteration allowed .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

Waterfall Model
What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

10

Waterfall Development
Characteristics

 Delays handling of
critical subsystems
 All subsystems are

treated equal .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

11

Waterfall Development
Characteristics

 Cannot predict
time-to-completion
 50% of the project

completed here? .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

12

Waterfall Development
Characteristics

 Disallows early
deployment
 How much of the

system can be run
here? .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

13

Waterfall Development
Characteristics

 Delays integration
and testing
 Most difficult phase

here .

What Fundamentals are Important in SE?
What are the Tasks in SE?
 Feasibility Study
 Requirements Analysis
 Design
 Programming
 Unit test
 Integration test
 User training
 Deployment
 Maintenance

14

Waterfall Development
Characteristics

 Frequently results in
major unplanned iterations
 What if a requirements fault

is found here? .

15

Analysis & Design
Planning

Requirements

Iterative Development

Initial
Planning

Test

Deployment

Evaluation

Each iteration results
in an executable

release

Implementation

Risk Profiles

Time

Ri
sk

Waterfall
development

Iterative
development

17

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices Requirements Management
 Make sure you

 Address the right issues

Systems Analysis
from user
requirements

Requirements Management
 Make sure you

 Address the right issues
 Build the system right

Systems Design by
innovation and
invention

Requirements Management
Examples
 Make sure you

 Address the right issues

⊗

Requirements Management
Examples
 Make sure you

 Address the right issues
 Build the system right

⊗

Requirements Management
 Need a systematic approach to

 capturing

the changing user requirements of
software application

 organizing
 documenting
 and managing

23

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

24

Component-Based Architecture
 Reuse or customize components
 Select from commercially-available components
 Evolve existing software incrementally .

25

 Basis for reuse
 Component reuse
 Architecture reuse

 Basis for project management
 Planning
 Staffing
 Delivery

 Intellectual control
 Manage complexity
 Maintain integrity .

Component-Based Architecture

System-
software

Middleware

Business-
specific

Application-
specific

Layered
component-based

architecture
26

Resilient Architecture
 Meets current and future requirements
 Improves extensibility
 Enables reuse
 Encapsulates system dependencies .

27

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

28

Common Types of
Specification Languages
 Textual
 Formal
 Graphic .

29

Example of Textual Specification
McDull https://www.youtube.com/watch?v=0oCP7nZhZJo

麥兜與雞 曲: 舒伯特 詞: 謝立文 編: 何崇志

我個名叫麥兜兜，我啊媽叫麥太太，
我最喜愛食麥甩咯，一起吃雞一起在歌唱。
我個名叫麥兜兜，我老師叫 Miss Chan Chan，
我最喜愛食碟雞飯，一起吃雞一起在歌唱。
但現實就似一只鴨，吓吓一定要 duck duck。
唔得！唔得！點算嘞？點樣令只雞變做鴨？
含住個雞包仔，望住四寶雞扎，
可嘆現實系要一只鴨，加塊荔芋共我一起扎。
我最喜愛食啫啫雞，我最喜愛食雞 pat pat，
我最喜愛食豉油皇雞翼，一起吃雞一起在歌唱。
我最想吃雞，我最終變臘鴨！鴨！鴨！鴨！鴨！

30

Textual Specification
Problems:
 Structures are implicit and obscured

 Lists, tables and hypertext are partial solutions to
this problem

 Natural language is prone to ambiguity
 Unless expressed as long and complex sequences

of text, as in legal documents

Hence, only plays supplementary role in
analysis and design .

31

Formal Specification
 Mathematically defined syntax and semantics
 Helps to reason on the problems and solutions
 Helps to verify against ambiguities, inconsistencies,

and incompleteness .

32

Example of Formal Specification
NEW_MACHINE
= (coinslot.$5

→ (coinslot.$5 → hatch.cappucino → NEW_MACHINE
drink_button.press → hatch.tea → NEW_MACHINE)

| coinslot.$10
→ (change_button.press → change.$5 → hatch.tea

→ NEW_MACHINE
drink_button.press → hatch.cappucino
→ NEW_MACHINE))

33

Formal Specification

Problems:
 Involve unfamiliar concepts and complex notation
 Difficult in large-scale systems
Use only when necessary, such as
 Defense systems
 Safety critical systems
 Situations where other specifications do not work .

Example of Graphic Specification
McDull

35

Graphic Specification
 Capture the structure and behavior of architectures

and components
 Easily show how all the pieces fit together
 Help maintain consistency between design and

implementation
 Promote human communication
 Hide or expose details as appropriate
 Most popular in analysis and design .

36

Graphic Specification

Problems:
 Lack of precise syntax and semantics
 May be interpreted differently by different

designers and users .

Multiple Languages =
Communication Barriers

UML: One Language for All
Practitioners

History of UML

Integration of
 Object Modelling Technique
 by James Rumbaugh

 Objectory Process
 by Ivar Jacobson

 Booch Method
 by Grady Booch .

40

Visual Modelling with UML
 Multiple views
 “Semi-formal” syntax and semantics .

Visual Modelling with UML

Target
System .

Actor A

Use Case 1

Use Case 2

Actor B

Use Case 3

Use case
Diagram

user

mainWnd fileMgr :
FileMgr

repositorydocument :
Document

gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName ()

Æ¯Á¤¹®¼¿¡ ´ëÇÑ º̧ ±â ¦̧
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

ÈÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼ÀÇ Á¤º¸ ¦̧ ÇØ´ç ¹®¼
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

Á¤·ÄÀ» ½ÃÄÑ È¸é¿¡

È¸é °´Ã¼´Â ÀÐ¾îµéÀÎ
°´Ã¼µé¿¡ ´ëÇØ ÀÌ̧ §º°·Î

º¸¿©ÁØ´Ù.

Sequence
Diagram

Opening

Writing

Reading
Closing

add file [numberOfFile==MAX] /
flag OFF

add file

close file

close file

State
Machine

Forward
and Reverse
Engineering

Class Diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

user : »ç¿ëÀÚ

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository

gFile : GrpFile

9: sortByName ()

1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

Communication
Diagram

document : Document

Document

FileManager

GraphicFile
File

Repository DocumentList

FileList

Component
Diagram

Window95

¹®¼°ü¸®
Å¬¶óÀÌ¾ðÆ®.EXE

¹®¼°ü¸® ¿£Áø.EXE

Windows95

ÀÀ¿ë¼¹ö.EXE

Alpha
UNIX

Windows95

¹®¼°ü¸® ¾ÖÇÃ¸´

Deployment
Diagram

Windows
NT

Solaris

Windows
NT

IBM
Mainframe

µ¥ÀÌÅ º̧£ÀÌ½º¼¹ö

42

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

Continuously Verify Software
Quality

Earlier detection and repair
 Problems found earlier are less costly to repair
 Fixing problems earlier leads to higher quality

software
 Identifying and resolving problems earlier result in

more realistic and reliable development schedule .
44

Test All Dimensions of Software
Quality

Reliability
 Test the application behaves

consistently and predictably

Performance
 Test online response under

average and peak loading

Functionality
 Test the accurate
workings of each usage

scenario

Usability
 Test application from the
perspective of convenience to

end-user

Supportability
 Test the ability to maintain
and support application under

production use

 UML
models and
implemen-
tations

 Tests

45

Test Each Iteration

46

 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change .

Best Practices

REPORT

ALERT

47

Change Management for
Development Team

Establish secure
workspace for
each developer

Iterative development

Controlled
parallel
development

Automated
build and
integration
management

48

Best Practices Reinforce One Another
 Develop iteratively
 Manage requirements
 Use component architecture
 Model visually
 Continuously verify quality
 Manage change

49

Unified Process

50

Unified Process

51

Major Phases in Unified Process
 Inception

 Mainly to specify project scope
 Elaboration

 Mainly to analyse problem domain, plan project, and
establish baseline architecture

 Construction
 Mainly to develop system

 Transition
 Mainly to pass final system to users .

Major Phases in Unified Process

Inception Elaboration Construction Transition

Time

Major Major MajorMajor Milestones

53

Bringing it All Together:
The Iterative Approach Disciplines group

activities logically

Walk through all
disciplines in

every iteration

Each iteration
results in an

executable release

54

Within Each Phase
Disciplines and Models

Implementation
Implementation Model

Test
Test Model

Requirements
Capture Use Case Model

Business
Modelling Business Model Business

Object Model

Analysis and
Design Design ModelAnalysis Model

Each discipline
describes how to
create and maintain
a set of models

realized by

implemented by

verified by

Compared with
Waterfall Development Finish each discipline

before the next

Cannot go back to a
previous discipline

No deliverables
until all done .

56

Disciplines Guide Iterative
Development

Business Modeling:
Discipline Details

Requirements:
Discipline Details

57

Disciplines Guide Iterative
Development

Analysis and Design:
Discipline Details

Implementation:
Discipline Details

58

Disciplines Guide Iterative
Development

Test:
Discipline Details

Deployment:
Discipline Details

59

Disciplines Guide Iterative
Development

Configuration and
Change Management:
Discipline Details

Disciplines Guide Iterative
Development

Project Management:
Discipline Details

Environment:
Discipline Details

