
1

Practical Guidelines
for Identifying Classes and Relationships

Prof. T.H. Tse
Department of Computer Science
Email: thtse@cs.hku.hk

Web: hku.hk/thtse .

Recall:

2

Identifying Objects and Classes

Identifying Objects and Classes
 Objects must either be

 physical entities (such as persons), or
 conceptual entities on their own (such as accounts)

 Must be meaningful in the application domain
(not just the target system)
 Example: queue ?? ...

or

Identifying Objects and Classes
 Objects must either be

 physical entities (such as persons), or
 conceptual entities on their own (such as accounts)

 Must be meaningful in the application domain
(not just the target system)
 Example: queue ?? ...

or

5

Identifying Objects and Classes

Recall:

6

Identifying Objects and Classes
 An object has observable attributes, which can be

changed using its encapsulated methods
 But an object should not simply be a convenient

collection of attributes and methods .

7

Identifying Objects and Classes
 Classes are collections of related objects
 They are usually described by

 nouns (such as Account), or
 noun phrases (such as Cheque Account)

 During Systems Analysis, a class should not be
considered for normalization or implementation .

8

Example: ATM Classes
Access Account Account data ATM Bank

Banking networkBank computer CashierCash Cash card

Central computerCashier station Communications line

CustomerCostConsortium Receipt

Recordkeeping provision SoftwareSecurity provision System

Transaction User .Transaction data Transaction log

9

Example: ATM Classes
Find Problematic Classes
Access Account Account data ATM Bank

Banking networkBank computer CashierCash Cash card

Central computerCashier station Communications line

CustomerCostConsortium Receipt

Recordkeeping provision SoftwareSecurity provision System

Transaction User .Transaction data Transaction log

10

Example: ATM Classes
Keep the Right Classes

Account ATM Bank

Bank computer CashierCash card

Central computerCashier station

CustomerConsortium

Transaction .

Keeping the Right Classes
 Redundant Classes

 If 2 classes express very similar information,
select only the more descriptive one

Cost .

User Customer⊗
 Irrelevant Classes

 Eliminate classes having little to do with the
problem

versus

12

Keeping the Right Classes

 Vague Classes
 Reconsider ill-defined boundaries

System

Security provision

Recordkeeping provision

Banking network .

13

Keeping the Right Classes

 Attributes
 Names that describe properties of objects should

be restated as attributes
Account data Cash Receipt Transaction data

 Operations
 Reconsider classes whose names describe

operations Telephone call .
14

Keeping the Right Classes

 Roles
 A class name should reflect its intrinsic nature

and not the role of an association

Rename as Customer .

Owner

15

Transaction log

Communication lineAccess

Keeping the Right Classes

 Implementation Constructs
 During Systems Analysis, eliminate constructs related to

implementation, rather than user requirements

Software

More about
this later .

16

Identifying Associations
 Correspond to verbs or verb phrases connecting

2 or more classes
 Often related with ownership:

ProgramStudent
has-a

CourseStudent
has-many

LibraryStudent
can-use-a

Workstation .Student
can-use-many

17

Identifying Associations
 May also be related with

StudentProfessor
supervises

BuildingLab
is-in

CourseProfessor
teaches

CourseStudents
has-taken

 directed action:

 physical location:

 communication:

 some condition:

 Depends on user requirements .
18

Keeping the Right Associations

 Associations between Eliminated Classes
 If a class in the association has been eliminated,

then eliminate the association or reinstate the
class

 Irrelevant or Implementation Associations
 Eliminate associations dealing with

implementation constructs unrelated to user
requirements .

19

Keeping the Right Associations

 Actions
 An association describes a persistent property,

not a transient event:

CardATM
accepts

?? .

20

Keeping the Right Associations

 Derived Associations
 Cancel associations defined indirectly in terms of

other associations
 Examples:

 Multiple paths
 “Grandparent of ”

 Conditions on attributes
 Define “younger than” using birth dates .

Keeping the Right Associations

 Misnamed Associations
 Avoid name that reflect historical event:

Account Customer
opens

Account .Customer
has

??

 Role Names
 Add role name to clarify ambiguous situation:

Keeping the Right Associations

PersonPerson
supervises

subordinate .supervisor

23

Keeping the Right Associations

 Multiplicity
 Specify multiplicity
 Challenge 1:1 multiplicities
 But do not put too much effort into getting

multiplicities, since they often change during
analysis

 Ask whether the objects need to be ordered .

24

Keeping the Right Associations

 Missing Associations
 Add any missing association discovered:

AccountCustomer
opens

TransactionCustomer
enters

CourseStudent
enrols

These are
actually
associations .

These are
actually
associations .

These are
actually
associations .

These are
actually
associations .

 state of

25

Identifying Attributes
 Attributes are observable properties of objects
 Usually corresponds to noun followed by preposition:

 colour of Car

Button

 Adjective may indicate attribute value

white

pressed .

26

Keeping the Right Attributes

 Divergent Attributes
 A class with 2 sets of attributes unrelated to

each other may indicate the need for splitting ...

Divergent Attributes
Example

Student
student ID
student name

Course
course ID
course name

course ID
course name
grade

The same course
name duplicated in
many student objects

student ID
student name
gradeThe same student

name duplicated in
many course objects . * * .

28

Divergent Attributes
Example (Continued)
 Learn from database normalization

Student
student ID
student name

Course
course ID
course name

Grade
student ID
course ID
grade

But not the result of
database normalization

Keeping the Right Attributes

 Classes
 Entities that have features of their own within the

given application constitute a class

City in a mailing list is an attribute

in a census is a class .City

Keeping the Right Attributes

 Classes (continued)
 If the independent existence of an entity

is important (rather than just the value),
we should have a class

Supervisor is a class

is an attribute .Salary

Keeping the Right Attributes

 Identifiers
 Distinguish between

 identifiers in the application domain
 object identifiers for implementation

 Should not specify pure object identifiers
in the analysis model

Account Code

Transaction ID

is an identifier used by the bank
may be an identifier in the
implemented system ?? . 32

Keeping the Right Attributes

 Internal Values
 Eliminate any attribute which describes the

internal state of an object and which is invisible
outside the object .

Aggregations
 A special type of association

UniversityStudent
is-part-of

StudentUniversity
is-aggregation-of

UniversityClassroom
is-part-of

Classroom .University
is-aggregation-of

 Class X is an aggregation of class Y if every object
in Y is-part-of some object in X:

Aggregations
We Learn from Mistakes
 Be careful with

 has-a
 has-many

ManagerBranch
has-a

BranchManager
is-part-of

 However, do not spend too much time trying to
distinguish between associations and aggregations .

ManagerEmployee
has-a

EmployeeManager
is-part-of

??

35

Identifying Inheritance
 Common descriptors to help to identify inheritance:

 is-a-kind-of
 is-a .

36

Identifying Inheritance
We Learn from Mistakes
 Be careful with

is-a-kind-of

is-an-instance-of .

CarBmw
is-a

CarMy Car
is-a

??

Identifying Inheritance

Two directions:
 Top down

 Refine classes into
specialized subclasses

 More common in analysis Inherits all methods
in Account plus
special operations
like “honour
cheque” .

Look for extra behavioural
constraints in the subclass
that differentiates it from
the superclass

AccountCheque
Account

is-a-kind-of

Identifying Inheritance
Two directions:
 Bottom up

 Generalize classes into a superclass

Look for classes with common
attributes, associations, or methods

Example: Generalize stack and queue
into a superclass “linked list”

 May not reflect the real world,
hence only recommended in
design .

But is a queue
a-kind-of
linked list ??

Multiple Inheritance
 A class inherits from

two superclasses
Cheque
Account

Savings
Account

Premium
Account

 May increase complexity

During analysis,
let the user decide .

39 40

Test the Access Paths
 Trace the access paths in a class diagram to see

whether they give sensible results
 Example:

 Unique result for 1-associations? .

41

Iterative Modelling
 The entire object-oriented development is a

continual iterative process
 Different parts of a model may be at different

stages of completion
 Refine the class diagram after dynamic modelling .

42

More Reading Materials at Student Request
Further Guidelines

(1) Common Operations
 The existence of operations common to 2 or more

objects indicate a high probability of identifying an
association, aggregation and/or inheritance .

43

Further Guidelines

(2) Polymorphic methods
 Polymorphic methods should not be considered as

common methods when reviewing objects and
relationships
 Examples: “open” and “close”

 On the other hand, we should not only look at the
name when deciding whether a method is
polymorphic ...

44

Further Guidelines

(2) Polymorphic methods
 Check whether the method have common behaviour

among related objects
 Example: To open a cheque account, we

 create account object
 copy information from customer object
 set the transaction history to nil

We do exactly the same things when opening a
savings account or reserve account .

45

Further Guidelines

(3) Normalization
 The usual recommendations on the normalization of

databases can be extended from associations to
aggregations and inheritance, and from attributes to
methods ...

46

Further Guidelines

(3) Normalization
 Example:

 Given 2 objects X and Y, an operation Z is
transitively dependent on one of them if
 Z is an operation of both X and Y
 There exists a relationship between X and Y

 The presence of transitive dependence indicates
a high probability that Z is a redundant operation
of either X or Y .

47

Further Guidelines

(4) Meaningfulness
 Look at the meaningfulness of the classes and their

relationships
 Especially if we attempt to create new classes

because of normalization
 Classes should not be factorized purely for the

convenience of implementation, or to reduce the
fan-in ratio

 Neither should new relationships be created for such
purposes . 48

Further Guidelines

(5) Reverse Associations
 For every

 has-a
 has-many
 uses-a
 uses-many

relationship between 2 objects, consider also the
reverse association, resulting in complete
multiplicities of the form
 1:1, 1:M, M:1, or M:M ...

49

Further Guidelines

(5) Reverse Associations
 Reverse associations may be only for human

consumption, to show users the full picture
 Not necessarily implemented in the final system

because of efficiency considerations .

50

Further Guidelines

(6) Resolving M:M Associations
 Most methodologies recommend specifying M:M

associations as two 1:M associations
 Example: Since there is an M:M association between

“student” and “teacher”, we create an artificial
“student-teacher” object

 Classical example of allowing design issues to
influence analysis ...

51

Further Guidelines

(6) Resolving M:M Associations
 Recommend retaining the M:M association unless

the need for a middle man is a genuine user
requirement (indicated by the presence of genuine
operations at the intersection) .

52

Further Guidelines

(7) Aggregations vs Inheritance
 If an object X is made of one or pieces of object Y,

together with other objects, then we have a
candidate for an aggregation

 If an object X is made of exactly one piece of object
Y, then we have a candidate for an inheritance
 Example: “A keyboard is-part-of a computer”
 “A notebook is-a-kind-of computer” .

