Identifying Objects and Classes

Practical Guidelines Recall:
for Identifying Classes and Relationships

Objects

+ An object is an individual. identifiable

PrOf TH TSG ilf:m. unit, or entity.

. either real or abstract.
Department of Computer Science with a well-defined role.
Email: thtse@cs.hku.hk

Web: hku.hk/thtse

Identifying Objects and Classes Identifying Objects and Classes
+ Objects must either be + Objects must either be
m physical entities (such as persons), or m physical entities (such as persons), or
= conceptual entities on their own (such as accounts) m conceptual entities on their own (such as accounts)
+ Must be meaningful in the application domain + Must be meaningful in the application domain
(not just the target system) (not just the target system)
= Example: queue ?? s Example: queue ??

I Back Front
. Dequeue
-
Enqueue IIIII h Or

I Back Front
. Dequeue
-
Enqueue IIIII h Or




Identifying Objects and Classes Identifying Objects and Classes

Recall: + An object has observable attributes, which can be
changed using its encapsulated methods

+ But an object should not simply be a convenient
collection of attributes and methods

Object-Oriented Concepts
Persistence

+ Unlike a transient data item. an object must be
persistent and have a life history

+ An object is created at some point in time,
undergoes changes in states. and is only destroyed
at the direct request of the user or via authorized
objects

+ [t must have an identity.

Identifying Objects and Classes Example: ATM Classes

‘Accessl ‘Accountl ‘Account dataI ‘ATMI ‘Bankl

+ Classes are collections of related objects
. They are usually described by ‘ Bank computer I ‘ Banking networkl ‘ Cash I ‘ Cash cardl ‘ Cashierl
= nouns (such as Account), or
= noun phrases (such as Cheque Account)
* During Systems Analysis, a class should not be ‘Consortiuml ‘Costl ‘Customerl ‘Receiptl
considered for normalization or implementation

‘Cashier stationl ‘Central computerl ‘Communications lineI

‘ Recordkeeping provision I ‘ Security provision I ‘ Software I ‘ System I

‘Transactionl ‘Transaction dataI ‘Transaction logI ‘User I




Example: ATM Classes
Find Problematic Classes

Account data

‘ Banking network I ‘ Cash I

‘ Communications line I

Recordkeeping provisionl ’ Security provisionl ‘ Software I ’ Systeml

‘Transaction datal ‘Transaction logI ‘User I

Keeping the Right Classes

¢ Redundant Classes

m [f 2 classes express very similar information,
select only the more descriptive one

U9®VGI‘SUS Customer

o Irrelevant Classes

» Eliminate classes having little to do with the
problem Cost

Example: ATM Classes
Keep the Right Classes

Account

Bank computer ‘ Cash card I ‘ Cashier I

Cashier station I ‘ Central computer I

Consortium Customer

Transaction

Keeping the Right Classes

+ Vague Classes
m Reconsider ill-defined boundaries

System
Security provision
Recordkeeping provision

Banking network



Keeping the Right Classes Keeping the Right Classes

+ Attributes + Roles
» Names that describe properties of objects should » A class name should reflect its intrinsic nature
be restated as attributes and not the role of an association
Account data | | Cash | | Receipt| | Transaction data Owner
+ Operations Rename as | cystomer
= Reconsider classes whose names describe
operations |y ephone call
Keeping the Right Classes Identifying Associations
o I mplementation Constructs + Correspond to verbs or verb phrases connecting

= During Systems Analysis, eliminate constructs related to 2 or more classes

implementation, rather than user requirements ¢ Often related with ownership
has-a
Access| | Communication line Student Program
T has-many R
Software | | Transaction log ucen ourse
can-use-a .
Student Library
More about can-use-many
this later Student Workstation
15




Identifying Associations

& May also be related with

supervises

m directed action: |Professor Student
) ) iIsin —
= physical location Lab Building
o teaches
= communication: |Professor Course
o has-taken
= some condition Students Course

+ Depends on user requirements

Keeping the Right Associations

& Actions

= An association describes a persistent property,
not a transient event

accepts
ATM S Card| ?7?

Keeping the Right Associations

& Associations between Eliminated Classes

m If a class in the association has been eliminated,
then eliminate the association or reinstate the
class

+ Irrelevant or I mplementation Associations

= Eliminate associations dealing with
Implementation constructs unrelated to user
reguirements

Keeping the Right Associations

+ Derived Associations
» Cancel associations defined indirectly in terms of
other associations
= Examples:
= Multiple paths
¢ “Grandparent of ”
= Conditions on attributes
+ Define “younger than” using birth dates



Keeping the Right Associations

o Misnamed Associations
m Avoid name that reflect historical event

opens
Customer D Account | 77

has
Customer Account

Keeping the Right Associations

+ Multiplicity
» Specify multiplicity
m Challenge 1:1 multiplicities

= But do not put too much effort into getting
multiplicities, since they often change during
analysis

» Ask whether the objects need to be ordered

Keeping the Right Associations

+ Role Names
= Add role name to clarify ambiguous situation

supervises
Person - - Person
supervisor subordinate.

Keeping the Right Associations

+ Missing Associations
» Add any missing association discovered

opens
Customey =——————— Account These are

enters _ actually
CUSIOMEY == T @NSACLI ON assoclations

enrols



Identifying Attributes

+ Attributes are observable properties of objects

+ Usually corresponds to noun followed by preposition
= colour of |Car white

s State of |Button

pressed

+ Adjective may indicate attribute value

Divergent Attributes

Example

Student The same course Course
student ID name duplicated in course ID
student name many student objects | |¢ourse name
course D student ID
course name student name
ar ade The same student grade

name duplicated in

many course objects.

Keeping the Right Attributes

+ Divergent Attributes

m A class with 2 sets of attributes unrelated to
each other may indicate the need for splitting

Divergent Attributes
. But not the result of
Example (Continued) | database normalization

¢ Learn from database normalization

Student Course
student ID course ID
student name course name
\ Grade
student ID
* | course ID *
grade




Keeping the Right Attributes

o Classes

m Entities that have features of their own within the

given application constitute a class

City' in a mailing list is an attribute

City| ina census is a class

Keeping the Right Attributes

o ldentifiers

» Distinguish between
= identifiers in the application domain
» object identifiers for implementation
= Should not specify pure object identifiers
in the analysis model
Account Code | is an identifier used by the bank

may be an identifier in the

Transaction |D implemented system ??

Keeping the Right Attributes

+ Classes (continued)

» [f the independent existence of an entity
is important (rather than just the value),
we should have a class

Supervisor | is a class

Salary is an attribute

Keeping the Right Attributes

¢ Internal Values

» Eliminate any attribute which describes the
internal state of an object and which is invisible
outside the object



Aggregations

+ A special type of association

o Class Xis an aggregation of class Y if every object
in Y is-part-of some object in X

Is-part-of —

Student University
is-aggregation-of

University SIS Student

Is-part-of —

Classroom University
is-aggregation-of

University SIS Classroom

Identifying Inheritance

o Common descriptors to help to identify inheritance
m is-a-kind-of
miSa

Aggregations

We Learn from Mistakes

¢ Be careful with
= has-a
= has-many

has-a
Branch Manager
is-part-of
Manager Branch
has-a
Employee Manager
is-part-of
Manager D Employee | ?7?

+ However, do not spend too much time trying to
distinguish between associations and aggregations

| dentifying I nheritance

We Learn from Mistakes

¢ Be careful with
is-a

Bmw

is-a

Car

Car| ??

My Car

is-a-kind-of

is-an-instance-of



Identifying Inheritance

Two directions: Look for extra behavioural
constraintsin the subclass
+ Top down that differentiatesit from
= Refine classes into the superclass
specialized subclasses
= More common in analysis Inherits all methods
] . in Account plus
Cheque | is-a-kind-of A special operations
ccount S
Account like “honour
cheque”

Multiple Inheritance

+ A class inherits from Cheque Savings
two superclasses Account Account
+ May increase complexity ? [P
|
Premium
During analysis, Account

|et the user decide

Identifying Inheritance

Look for classes with common
attributes, associations, or methods

+ Bottom up
= Generalize classes into a superclass Butisa queue
Example: Generalize stack and queue a-kind-of
into a superclass “linked list” linked list ??

= May not reflect the real world,
hence only recommended in
design

Test the Access Paths

o Trace the access paths in a class diagram to see
whether they give sensible results

o BExample:
= Unique result for 1-associations?



Iterative Modelling

+ The entire object-oriented development is a
continual iterative process

+ Different parts of a model may be at different
stages of completion

+ Refine the class diagram after dynamic modelling

41

Further Guidelines

(2) Polymorphic methods

+ Polymorphic methods should not be considered as
common methods when reviewing objects and
relationships

= Examples. “open” and “close”

+ On the other hand, we should not only look at the
name when deciding whether a method is
polymorphic

More Reading Materials at Student Request
Further Guidelines

(1) Common Operations

+ The existence of operations common to 2 or more
objects indicate a high probability of identifying an
association, aggregation and/or inheritance

Further Guidelines

+ Check whether the method have common behaviour
among related objects
+ Example: To open a cheque account, we
= create account object
= copy information from customer object
= set the transaction history to nil
We do exactly the same things when opening a
savings account or reserve account "



Further Guidelines

(3) Normalization

¢ The usual recommendations on the normalization of
databases can be extended from associations to
aggregations and inheritance, and from attributes to
methods

Further Guidelines

(4) Meaningfulness

+ Look at the meaningfulness of the classes and their
relationships

+ Especially if we attempt to create new classes
because of normalization

+ Classes should not be factorized purely for the
convenience of implementation, or to reduce the
fan-in ratio

+ Neither should new relationships be created for such
purposes 4

Further Guidelines

+ Example:
= Given 2 objects X and Y, an operation Z is
transitively dependent on one of them if
m Zis an operation of both X and Y
» There exists a relationship between X and Y
= The presence of transitive dependence indicates
a high probability that Z is a redundant operation
of either Xor Y o

Further Guidelines

(5) Reverse Associations

+ For every
= has-a
= has-many
= uses-a
= uscs-many
relationship between 2 objects, consider also the
reverse association, resulting in complete
multiplicities of the form

= 1:1, 1:M, M:1, or M:M "



Further Guidelines

+ Reverse associations may be only for human
consumption, to show users the full picture

+ Not necessarily implemented in the final system
because of efficiency considerations

49

Further Guidelines

+ Recommend retaining the M:M association unless
the need for a middle man is a genuine user
requirement (indicated by the presence of genuine
operations at the intersection)

Further Guidelines

(6) Resolving M:M Associations
+ Most methodologies recommend specifying M:M
associations as two 1:M associations

= Example: Since there is an M:M association between
“student” and “teacher”, we create an artificial
“student-teacher” object
+ Classical example of allowing design issues to
influence analysis

Further Guidelines

(7) Aggregationsvs | nheritance

+ Ifan object X is made of one or pieces of object Y,
together with other objects, then we have a
candidate for an aggregation

+ If an object X is made of exactly one piece of object
Y, then we have a candidate for an inheritance

= Example: “A keyboard is-part-of a computer”
u “A notebook is-a-kind-of computer”



