Dynamic Modelling
with Sequence Diagrams

Prof. T.H. Tse
/ Department of Computer Science
Email: thtse@cs.hku.hk
Web: hku.hk/thtse

Importance of Dynamic Modelling

Importance of Dynamic Modelling

Dynamic Models

+ Specify behaviour of objects by describing
sequentiality and interaction control of their
operations

o Disregard

= what the operations do
= how they are implemented

Dynamic Models

+ Represented graphically by

= sequence diagrams Can also be regarded
» state machines as a use case model

but never asa program

Can also beregarded
as a design model

Examples of Events
Possibly with Objects and Attributes

o caller hangs up

o car has just exceeded speed limit

o caller dials (digit) Current object isan
« debit (amount) implicit parameter
¢ user enters (text) Current object isan
o transfer to (Account, amount) | IMplicit parameter
¢ depart (Airport, date, time) Current object isan
implicit parameter

Events

+ An event occurs when a
message is passed

= between an object and an Ealler
external party ands up
= or between two objects :
o k Disconnect
& Happens at a point in time %’ phones
and has no duration
+ Information may exchange
through parameters
Example
Scenario for Phone Call
« caller lifts receiver « called phone begins ringing
« dial tone begins « ringing tone appears in calling
« caller dials digit (2) phone
« dial tone ends o called party answers
o caller dials digit (8) + called phone stops ringing
« caller dials digit (5) + ringing tone disappears in
calling phone

« caller dials digit (9)
« caller dials digit (2)
« caller dials digit (1)
« caller dials digit (8)
« caller dials digit (0) ...

« connect phones

o called party hangs up
« disconnect phones

« caller hangs up

Sequence Diagrams

+ A sequence diagram is a graphical representation
of related scenarios

+ Shows
m Objects as vertical dotted lines

m events as horizontal arrows from sender object
to receiver object

Message Types

o Asynchronous message =—————>
+ Synchronous message |

(with operation call)
+ Reply message <4+ - - -
+ Object creation message == == == —>
+ Lost message @

+ Found message ()

Sequence Diagrams
Syntax Overview [rane

sd borrowBook’ Y :
ctors
% :Book rl:Reader r2:Reader a_nd
Time 5 Objects
dateDue
— ———3! reminder H . .
5 e
g - — Lifelines
Message bl Execution
Lo occurrence
borrow
&~~~ N Bomon] e Condlition .

Asynchronous Messages ————>

o Caller does not wait for the message to be
handled before continuing with other messages

o Most messages in sequence diagrams are
asynchronous

Asynchronous Messages

Asynchronous Messages

Example 2

+ Word Processor object sends an asynchronous
message to Printer object asking it to print a file

+ Printer object can print the file at any time when it
is free

& Word Processor object can do anything after it has
sent off the asynchronous message

Synchronous Messages ——p

Example 1
:Professor :Student
doYouUnderstand
nextSlide
Asynchronous Messages
Example 2
it :Printer
Processor -
print
=

callHelp

o Caller waits for the message to be handled
before continuing with other messages

o Typically implemented together with
operation call

Synchronous Message and Synchronous Call

Example 1

+ Model synchronous call by execution occurrence

:Professor :Student

Return Values € — — -

Execution

occurrence

Caller doYouUnderstand
blocked ¢

Return Values <« — - -

+ Must specify the return value when we need
to use it elsewhere

= Say, when total is used as parameter in another
message

My recommendation:
A lot of manual checksif
you skipped the obvious

+ Indicated by dashed arrow, together with the
actual value returned

Can skip the return value when it is obvious
= Such as total after calling getTotal

UML recommendation:
Skip the obvious

My recommendation:
Don’t skip

Synchronous Message and Synchronous Call

Example 2

+ Word Processor object sends a synchronous
message to Printer object asking it to print a file

& Word Processor object does not do anything until it
receives a (software) acknowledgement from Printer
object saying that printing is complete

Synchronous Message and Synchronous Call

Example 2 Object Creation Messages — — — —>
“Word = + An object may create another object via an object
Processor . n:mer creation message
. : Execution
Caller print occurrence :Customer
blocked ¢
printComplete — —_—— —> :Order
Constructor
Lost Messages @ Found Messages @
:Professor :Student :Professor :Student
doYouUnderstand (L doYouUnderstand (')
no yes

o<1 «----

Duration Constraints

¢ Example 1: Mouse
Single click chck
’ highlight
+ Example 2: f{ _ ‘Mouse
Double click L click o
click open
I >:

Duration Constraints

Time Constraints

X

t=now ;
1
1
1

t+1s

A

t=now

t+ {0.1 5} —|

N
{0..1 s}
=

Control Information
CombinedFragments

+ Used to describe control information in sequence
diagrams

They are only for modeling simple combinations of
scenarios

Control Information CombinedFragments

CombinedFragments Alternatives (alt)

« Alternatives (alt) + Represents a choice of behavior

+ Option (opt) + At most one of the operands will be chosen

« Parallel (par) o The chosen operand have an explicit or implicit
o Critical Region (critical) guard expression that evaluates to true

¢ Iteration (loop) ke“if then e
Like“if then else”

¢ Continuation _ _
in programming

CombinedFragments Alternatives
Alternatives (alt) Single and Double Clicks
B No explicit guard
Bs o condition in this
Alt o i iy‘ weractionConstraint alt exampl e
2]
Explicit guard I oo s
Con dl tl On I n foolfoo_par=xi otz
thisexample - ||l L _i_______i_____7]
Separator | __[as:]————;n.:hf _______ < L
Else :E__d_uﬁlvﬂ

Alternatives

We Learn from Mistakes

alt
[single
click]

[double
click]

CombinedFragments

Option (0opt)

We do not know
what the user will
do in advance

opt

[valid
card]

Explicit guard
condition in this
example

CombinedFragments

Option (0Opt)

+ Represents a choice of behavior where

m cither the (sole) operand happens
= or nothing happens

CombinedFragments

Option (Opt)

opt J

Like“alt” where
the second
operand is empty

Like"if then”
without “else” in
programming

Highlight in any
case

No explicit guard
condition in this
example

Alternatives and Option
We Learn from Mistakes

CombinedFragments

Parallel (par)

¢ NoO
¢ Wedo not
know what the
user will doin
advance
opt
[one more
click]

CombinedFragments

+ Represents a parallel merge of the behavior of
the operands

+ Different operands can be interleaved in any way
as long as the order within each operand is
preserved

CombinedFragments
Critical Region (critical)

Parallel (par)
sd CriticalRegion)
I:Emetgemy| | [Operator | :Caller | Callee

Par par call{100) i

call(100) | E
Different calls e — — A T T
can befregly | " o | R
interleaved :

+ Events in a critical region must be handled first

« Events in a critical region cannot be interleaved
with events outside the region

CombinedFragments
Critical Region (critical)

CombinedFragments
Iteration (loop)

|_sdCioaRegion) + Normal calls
[Emergency l | :Oparator l :Callar | :Calles l Ca.n be freely
! ! interleaved
par, | call(100) ,
Critical cal(100 X + 911-call must
inside Par |} cuon : be contiguously
| call{101) handled
“; c_a_“’f ________ L calle1) . * Operator must
Ei calory | forward the
| 911-call before
anything else
CombinedFragments
Continuation
sd Question J

nonono

notoOK

sd Continue ,l

[loop) loop (3) —1 1
[condition] d _Exact'ly 3
Iterations
[loop (3,5) / loop (3, *)] A loadt 3
iterations
CombinedFragments
Continuation
Contin),l
C9)

CombinedFragments

Warning

¢ Remember:

Dynamic Models

+ Represented graphically by
= sequence diagrams Can also be regarded
= state machines as a use case model

but never as a program

Can ailso be regarded
asatlesign model

InteractionUse (ref)

¢ An InteractionUse refersto an Interaction

o The InteractionUse is a shorthand for copying the
contents of the referred Interaction to where the
InteractionUse is

+ The copying may involve substituting parameters
with actual values

CombinedFragments
Warning

+ The modelling of real-life applications are usually
much simpler than my examples

+ Consider drawing several diagrams for modeling
complex combinations

+ Do not use sequence diagrams for detailed
modelling of program algorithms

= Better done using state machines, activity diagrams, or
pseudo-code

I nteractionUse (ref)
Example

sd UserAccess) This I nteractionUse
refersto an I nteraction
; ; : EstablishAccess with

ot ,] input parameter PIN
stablishAccess (PIN) I ‘
[oBt] 1 meaceaseener) | | ThisInteractionUse
(o] openboor] without parameter
| refersto an Interaction

:OpenDoor

I nteractionUse (ref)

Too Complicated Use

sd a_op_b(int x, inout int w):Verdict)

a_op_b ‘

T
1

—

- =

: s1(x) i
I

ref

XX.xc=a_util_b(31,w:12):9

put(fail

put(pass) |
]

Interaction a_op_b with input
integer parameter X,
input/output integer parameter
w, and return parameter Verdict

« Refer to a_util_b with input
31 and input parameter w
with value 12

+ Return value 9 to the attribute
XC of :xx

The return value from the
Interaction a_op_b is passed to
Lifeline a_op_b

I nteractionUse (ref)

xx.xc=a_util_b(31,w:12):9

L3
Warning
sd a_op_b(int x, inout int w):Verdict)
]] =]
" ew] 1
|
I

|
I
alt J [xc>8] put(xc)

put(fail

i | put(pass) }
T

+ Do you find this
example difficult?

o Your usersfindit
even more so

+ Sequence
diagrams are not
for Programmers

+ Avoid combining
many scenarios
together

