Dynamic Modelling
with Sate Machines

Prof. T.H. Tse
/ Department of Computer Science
Email: thtse@cs.hku.hk
Web: hku.hk/thtse

State Machines

Motivation

(1) Continuous Activities Alarm ringing
or Inactivities Alarm being off

+ An activity or inactivity takes time
+ Persists until it is
= either completed 15 min has passed
= Of interrupted by an action
Press“ Stop” button

State Machines
Motivation

Two types of operationsin real life
(1) Continuous Activities or I nactivities
(2) Actions

State Machines
Motivation

An activity or inactivity is modelled by a state in

state machines

A state is a collection of the attribute values and
links of an object . R

Example: Airplane Mode is “on™, o
which represents izinduiniend
R v me Wi-Fi

= Wi-Fi is “oft” and 8
[

s Bluetooth is “off”
A state specifies the response of the object to input
events
Corresponds to time interval between 2 events
received by an object

State Machines
Motivation

(1) Continuous Activities or I nactivities

State Machines
Motivation

(2) ACtiONS et click (0k) button

+ Everything takes time in real life

wipethe dider
+ The time actually taken is

[D slide to power a
= either negligible

= Or of no interest to the user plane takes ff_- |

State Machines

+ Formerly known as state-transition diagrams
A transition is

+ achange of state | will use
+ caused by an triggering event 5 different
+ possibly with a guard condition colours .

+ may result in an effect action

& An action is modelled by an event in state machines:

Events

+ An event occurs when a
message is passed

= between an object and an Caller
external party hands up
« or between two objects &
e . Disconnect
+ Happens at a point in time i “ phones

and has no duration

+ Information may exchange
through parameters . 6

State Machines

Example 1
Before debit (amm{nt) [amount < balance] After
debit / ok debit

Guard
condition

State! | Transition | | Triggering| | Effect
event action .

Example 1 (Continued) Example 1 (Continued)

Triggering Events Effect Action

debit (amount)

Event received by

/ ok

Event sent to
another object

present object
State Machines States
Guard Conditions Example 1
+ A condition is a Boolean expression relating Alarmringing
attributes or values
= Example: debit (amount) [AIMOUNT < balance]) Need

o . programming
+ Conditions are used as guards on transitions

+ A transition fires
+ when the triggering event occurs, and
¢ if the guard condition is satisfied

States

Example 1 (Continued) [Difficult to connect

with other events
Traditional Documentation < and states.

State Machines | UML Syntax
Overview Triggering event| |Guard condition

movi

+ State. Alarm ringing

« Previous State. Alarm being turned on

« Triggering Event. Reach target time

« Guard Condition. Sound being turned on
+ Subsequent Events Accepted:

= Press (snooze) button
» Press {ok) button

State Machines | UML Syntax
State

+ A state is generally shown as a rectangle with
rounded corners, with the state name inside:

Ty ping
Password

+ Optionally, it may have an attached name tab:

[Typing Password [~==mm=—m"N ormally used for

J a composite state .

request(floor direction) [floor = 0]

Continuous
aCtIVI ty after (3 seconds) e goToFloor(n

reguest(floor direction) [floor == 0]

T

I n I tl al arrive()
State after (3 seconds) / close doors

after (3 seconds) artive()

State Machines | UML Syntax

+ A state machine describes the dynamic behaviour
of one object

+ A node represents a state:

{ State 1 @

L do / activi ty)
triggering event [condition]
/ effect action .

State Machines | UML Syntax

+ “do / activity” represents the continuous activity
during that state

(Sate 1 @

L do / activi ty)
triggering event [condition]
/ effect action

State Machines | UML Syntax

+ The transition may result in a effect action
(an outgoing event)

Sate | @

k do / activi tyJ

[condition]
/ effect action

State Machines | UML Syntax

+ An arrow represents a transition, causing a change
of state

o It is due to a triggering event (an incoming event)
Sate |
kdo / activityJ ©
\lltriggering event [condition]

/ effect action .

State Machines | UML Syntax

+ Square brackets represent a guard condition

A guard condition is
not a trigger by itself

Sate | @

k do / activityJ

[condition]
/

State Machines | UML Syntax

¢ State machines can be
= One-shot life cycles, with initial and final states:

State Machines | UML Syntax

Sate) @4 Final

k do / activi tyJ State.
Initial triggering event [condition]
State / effect action

State Machines | UML Syntax
Other Activity Labels

State machines can be
= One-shot life cycles, with initial and final states
= Or transition loops:

Sate |

k do / activity

I nitial ¢
State Transition
loop .

State Machines | UML Syntax
Other Activity Labels (Continued)

/Sate) Effect action upon

S /‘ entry to the state
entry / effect action -

Effect action upon

exit / effect action ") == exit from the state

+ Example: ﬁecture \

do / listening
entry / turn iPhoneringer off
exit / turn iPhoneringer on.

@tate \ Same as

do / activity triggering event
- > Sate
entry / effect action / €f fect\actlon (Sate)
We recommend

putting it outside
the state for clarity .

State Machines | UML Syntax
Other Activity Labels (Continued)

Sate

do / activity

exit / effect action

Same as

triggering event

ST effect action

We also recommend putting it
outside the state for clarity

Composite States

Example 1

apply

Taking Course

l pass / pass course

Need more
details

State Machines | UML Syntax
Composite States

Composite Sate

—(O—| Satel J:@]

Composite States

Example 2

Approving

meet prerequisite

' Assessing '

029

O Explicit
entry
point

X Explicit
exit
point

Composite States

Example 3

@ Default

entry

Approving

meet prerequisite

l Assessing '

@

Composite States

Example 4

O aowove

preapproved ~

enroll

X

point

@ Default
exit
point

miss
&\ prerequisite

Composite States

Example 2 versus Example 3

Approving

Composite States

Example 5

meet prerequisite

Assessing

¥/ drop course

&\ fail

—

X / fail course

preapproved ~

Approving

meet prerequisite

Assessing

miss
\prerequisite

(e)

enroll

N—

/ drop course

& fail

®

"/ fail course

Composite States

Example §

® Normal,
default entry

Composite States
Example 4 versus Example 5

O Alternative,

explicit entry

N

Alternative,
explicit exit

@ —————

@ Normal,
default exit

State Machines | UML Syntax
Fork and Join

B1 B2

2

Cl1 C2

Fork Join

Thetwo streams are donein parallel

@ Avpmosing |

T el s)
—©
State Machines | UML Syntax
Choice Pseudostate
[id >=10] lid <10]

[>=10] [=10]

+ Recall that a guard condition is only part of a transition
+ Very confusing to beginners
+ Avoid at all costs

Warning

+ Semantics (meaning) is more important than syntax
+ Processis also more important than syntax

Alarm

Dynamic Modelling s |

Process
+ Prepare interface formats
+ Identify scenarios from use cases

+ Identify event interactions among objects
according to class diagram

+ Prepare sequence diagrams for scenarios
« Prepare a state machine for each class
+ Match events among objects to verify consistency

Dynamic Modelling

Philosophy

+ Specify the time-dependent behaviour of the system
and its objects

+ Draw sequence diagrams and state machines
+ Important for interactive systems

Preparing Scenarios

& Prepare normal scenario
¢ Consider alternative scenarios

Class Diagram versus

Identifying Events Sequence Diagram
+ Examine the scenarios to identify all events + Relationships in class diagrams
external to an object are persistent
+ Events may include + They show potential How many class
= user inputs information flows diagram(s)?
m user choices such as {ok) and {(cancel) + Paths in sequence diagrams
= inputs from external devices are transient
m signals from other objects o They show interactions I-!OW sequence
= interrupts diagram(s)?
» effect actions
Building State Machines Building State Machines
Prepare a state machine for each class with
dynamic behaviour
+ Pick a scenario from sequence diagram + Iteratively add other paths to the state machine
o Arrange the events into a path in state machine, = Find a point in the scenario where it diverges
with transitions labelled by the input/output events = Attach the new event sequence to the existing state as
along a lifeline an alternative path
+ Replace repeating sequences of events with loops ¢ Add any other possible events, such as boundary

(interface) cases and exceptional cases

Relating Sequence Diagram
and State Machines

% P Q

i | oneslide
that helps
you obtain

GradeAor B

Example 1: Screen Control System
Sequence Diagram (1st Draft)

i :Screen
:Screen
Professor Controller :

down button

) down signal

ack

7= reached
i] bottom

bottom signal

How Many State Machines?

L -

N]
AmEpm G
-
T State Machines

Example 1: Screen Control System
(For Students Who Like Synchronous Version)

d butt
Sl on» down signal

+ Screen controller ack
blocked . e«

+ Not suitablein
real life < bottom signal

Screen Controller

State Machine (1st Draft)

Screen

State Machine (1st Draft)

(1

| Pending I

ack

down button / down signal

bottom
signal

[Screen moving down

Screen Control System

Sequence Diagram (2nd Draft)

display please select

down button

display please wait

display screen
moving down

<€

display please select

down signal

ack

reached

) bottom
bottom signal

Top

[Moving Down I

| Bottom I

Screen Control System

down signal / ack

reached bottom / bottom signal

Sequence Diagram (2nd Draft)

display please select
<€

down button

display please wait

display screen
moving down

<€

display please select
<€

dow

Should not be events, but
acceptable in sequence
diagrams (only)

bottom

Screen Controller

State Machine (2nd Draft)

do / display please select

do / display please wait

do / display screen moving down

Screen Control System

Sequence Diagram (2nd Draft)

down bufton
down signal

ack

Screen

State Machine (2nd Draft)

do / moving down

Screen Control System
Sequence Diagram (3rd Draft)

What if the screen
is at the bottom?

reached

bottom

down button

opt J[screen not at bottom] down signal

ack

Screen Controller Screen Control System

State Machine (3rd Draft) Sequence Diagram (3rd Draft)

do / display please select Town button

[screen not at bottom]

down signal

What if the screen

ack .]
do / display please wait is not working?
do / display screen moving down
Sequence Diagram Sequence Diagram
(4th Draft: New Scenario) (For Students Who Like to Combine Scenarios)
down button
down button :
opt J [screen not at bottom| down signal t = now
opt) [screen not at bottom|
ional alt ack
down signa > reached
<display please select 2s bottom
" 7 7 display pleaseselect.
€ play p t+2 s

Screen Controller

State Machine (4th Draft)

UML
keyword . I
Idle
do / display please select
after (2 seconds) down button [screen not at bottom]
Pending)/ down signal bottom
do / display please wait signal
iack
Screen moving down
do / display screen moving down

Example 2
Lecture Materials

\What showid Firefo o with this fike?

B Cpenwith | Adsbe Aciobat (delaull]

We Learn from Mistakes | ...

6] Do this uteenaticalty fer files ke this fram now on.

]

ACROBAT VERSION FOR PRINTING

\Wihat should Firefox do wath this fe?

®) Qpenwith | Adobe Acrobat (default)
1. Introduction OSuar
2. Fundamentals in Relation to Software Engineeri 2
= Supplimentary Slides

El Do this putomaticalty for files like this from now on.

Settings can be changed uting the Apphcations tab in Firefoa's Opticns.

5] | o

3. Fundamentals in Relation to Object-Orientation

\What showid Firefo o with this fike?

B Cpenwith | Adsbe Aciobat (delaull]

We Learn from Mistakes | ...

6] Do this uteenaticalty fer files ke this fram now on.

(5] e
. press save .
Selecting button Saving
press open button
Opening Open and save modes
are conditions, not

triggers.

[save mode]

Selecting

Saving

[open mode]

Opening A_conditi on cannot
trigger a change of

State .

Recommended Solution =

Example 3

Single and Double Clicks

OK
[save mode]
OK
[open mode]
We Learn from Mistakes
click
Pending click
no click Thelack of an event

cannot trigger a
E change of state

A double click ,@

single click

o Legitimate (high level) model

+ What if we would like to define “single click” and
“double click” via the state machine?

We Learn from Mistakes

[1 second] A condition cannot
trigger a change of
state

We Learn from Mistakes

wait (1 second) Waiting cannot

be an event

Example 4: ATM System
Sequence Diagram

HSBC) il

Recommended Solution

ATM Class
State

Machine

continue

after (1 second)

UML keyword

enter password / verify account

Main screen insert card]’
: : 1 A
do / display main | [readable] do / request do/ display
screen password verifying
account

OK

do / request
kind
enter
kind
do / request
amount
enter amount
/process
transaction
end of
take transaction do/ displ
do / request | cash do / dispense cash; | [successful] Oroce‘sss]i’nay
continuation request take cash P starts s

ATM Class
State
Machine

continue

Main screen
do / display main

insert card

enter password / verify account

[1

[readable]

d

screen

insert card [unreadable]

Unreadabl
do / display unreadable

Card rejected
do / eject card;

request take card

take

o / request do / display

password verifying

account

do / request

kind

enter

kind

do / request
amount

enter amount
process

transaction

end of
transaction

do / request
continuation

cash do / dispense cash;
request take cash

do/ display

processing

[successful]

starts

ATM Class
State

Main screen
do / display main

insert card

enter password / verify account

[1

[readable]

screen

do / request
password

N
do / display
verifying cancel/

M h . insert card [unreadable] account network
t
ac lne Unreadable:) OK reques
: cancel
do / display unreadable accob?:: do / request
acl u kind
E ——
;Za;-d.rejtecteg Cancel CM’ enter
rd; .
. ® ei:kca 5 do/ display <amoar] | kind
cquest take ca cancellation
continue end of printing do / request
N amount
Finish ac do / display
do / print receipt bad account enter amount after
process (5 secs)
no network transaction
response end of
take . (ransaction do/ displ
do/request | cash [do/ dispense cash; | [successful]| €07 QISPIay
N processing
continuation l request take cash
starts

do / display cancellation

cancel/network request

Interrupt

do / display

end of transaction [failed] failure

ATM ‘ Ia$ enter password / verify account
Main screen Insert (l‘;:ld l
i able .
State do / display main ! do / request do / display
screen password verifying
M] ° account
cancel
request
kind
- r
Card rejected ack Cancel enter
do / eject card; do / display kind
request take card 1lation
continue do / request
amount
enter amount
process
transaction
end of
take transaction)

do / dispense cash;

—
do / request | cash
continuation

request take cash

Recall

eoceupy] o/ display
[successful])
processing

starts

Sequence Diagram and
State Machines of two Objects

User E
—,.. i
a —_—
i b

Bank Class

State Machine

lverify account process
transaction

[do / verifying account I

do / updating
end verifying account account
[valid]

end updating /
[do / verifying password end of
transaction
end verifying password [valid] °
/ OK

©®

Bank Class

State Machine

Also acceptable,
but more clumsy

Bank Class

State Machine

end verifying account

[invalid]
/ bad account @

end verifying password

[1nva11d]
/ bad password @

Matching Events Between Objects

Check completeness and consistency
¢ A sender and a receiver for each event
+ Predecessors or successors for every state

+ Consistencies of corresponding events between
sequence diagrams and state machines

+ Consistencies of corresponding events between
different state machines

+ Potential synchronization errors, especially when
an input occurs at an awkward time

Matching Events Between Objects Matching Events Between Objects

Example 5 Example 6 How many objects?
Bank e D Hence, how many
This e = o — state machines?
syntax is B
. acceptable How many state
Need more details :l end verify machines here?
for consistency < card no.

with state machine State machine for

Consortium class
iIsmissing .

:| end verify
<« password

AN

81

