The Need for Design Patterns

+ New designers are overburdened by the options

Provides pointers
Introducing ===
available, and fall back to non-OO techniques

D e Sign P attems + Experienced designers make good designs

» They do not solve every problem from first principles

Prof. T.H. Tse = No need to reinvent the wheel
/ Department of Computer Science = Reuse solutions that have worked for them
Email: thtse@cs.hku.hk

Web: hku.hk/thtse Let usreuse solutions of
experienced designers

Design Patterns Usefulness of Design Patterns
o Target f(_)r a general design problem + Many objects come from the analysis model

in a particular context Examples o But designs often need classes with no counterparts
¢ Identify common class structures| « Sort by subject in the real world

for reusable OO designs + Sort by date

+ Design patterns help to identify less-obvious

+ Show participating objects, abstractions and objects

collaborations, and division of
labour

Other Usefulness of Design Patterns

+ Relate compile-time and run-time structures
+ Enhance delegation Via encapsulation

Enhance reuse e -
¢ Viainheritance

Design Patterns # Frameworks

+ Frameworks are another source of reference for
experienced design

o A framework’k is a partially completed software
system customized for a specific applicationx

Example
HSBC e-banking system

+ Design patterns are more general than frameworks

= A pattern can be used in any kinds of applications

Other Usefulness of Design Patterns

Design for change: Avoid unnecessary redesigns
due to

® Specific object representation

® Specific operations, implementation, and algorithms
® Dependence on hardware and software platforms

@ Tight coupling Classes
® Cannot replace classes easily depend on

one another

Design Patterns # Frameworks

¢ Design patterns are more fundamental than
frameworks
m Frameworks are in compilable programming languages

» Design patterns are language independent and have to be
implemented every time they are used

» Design patterns also explain the intent, trade-offs, and

consequences of a design
Learn how

tolearn

Note

for those who wish me to write down what | say

o It is fairly difficult to teach design patterns by
means of lectures

+ It involves hands-on experience with real systems

+ I can only go through the concepts, philosophy,
and a few examples

Design Patterns
4 Essential Elements (Continued)

¢ Solution

= Describes the elements that make up the design, their
relationships, responsibilities, and collaborations

= Not a particular concrete design or implementation,
but a general arrangement of elements

+ Consequences

= Results and (space and time) trade-offs, useful for
evaluating design alternatives

Design Patterns
4 Essential Elements

+ TheProblem
= Describes when to apply the pattern
= Explains the problem and its context
= May include a list of conditions for application
+ Pattern Name
= Allows us to design at a higher level of abstraction
» Free from the details

Example . =r = =

Chain of Responsibility

——— Tompiate Method [———— e

Prototyp fa..._
- oiguee sack — Factory Method
Y

—— Facade

Example (Continued)
GoF Design Patterns

+ Gang-of-Four: Gamma, Helm, Johnson, and
Vlissides

o Three categories

m Behavioural How to build powerful behaviour
s Creational How to build complex objects
s Structural How to build flexible structures

Behavioural Pattern Example

Strategy

Consider Sorting of Meeting Schedule

= - -

ahin Davis eeting on Thursday
hristy Elm RE: Mew Repors 459596
ndrew YWall Lunch®? 418597
Cpen |
by Marme
Delete
hy Date
1

= Behavioural How to build powerful behaviour

Behavioural Pattern Example

Strategy

Traditional Technique

Inbox
sort()

I

A lot of work when we
need to change the
sorting algorithm

Behavioural Pattern Example

Strategy

Object-Oriented Design

Inbox

m—h o S Sorter

setStrategy() sort()

Delegate the
sorting algorithm

to another object .

Behavioural Pattern Example

Strategy

Behavioural Pattern Example

Strategy

Consider Sorting of Meeting Schedule

2 i
ChristyElm ~ RE: New Reports
fndrewWall Lunch?
|

Use quicksort
for subject

Open

Delete |

Useinsertion sort

for date .
|

Behavioural Pattern Example

Strategy

Problem

+ We want an adaptive method with various
implementations selected at run time

+ We need different algorithms to accomplish
the same task in different circumstances .

Behavioural Pattern Example

Strategy

Design Pattern Solution

¢ Define a family of algorithms,
and encapsulate each one

o The strategy pattern lets the algorithm
vary according to clients ...

20

Behavioural Pattern Example

Strategy

= Creational

Inbox

sort o—> sS:rl;t(E;r

setStrategy()
SubjectQuickSort DatelnsertSort
sort() sort() .

How to build complex objects

Behavioural Pattern Example: Strategy
Potential Implementation in C#

"ConcreteStrategyB"
o StrategyB : Strategy
ul void AlgorithmInterface()
{

Console. WriteLine(
"Called ConcreteStrategyB. AlgorithmInterface()");

e
‘oncreteStrategyC()); creteStrategyC. Algorithmlnterface()");

y
// "Context”
class Context

Stratg

Con
(Strategy strategy)
gorithminterface();
regy = strategy;
A : Strategy face()
{
public 0id AlgorithmInterface() strategy. AlgorithmInterface();

Console. WriteLine(}
"Called ConcreteStrategyA. Algorithmnterface()"); }
i

Creational Pattern Example

Abstract Factory

Problem
+ Sometimes constructing an object is very
complicated

m The object is made of many different kinds of
complexly interconnected parts

= The object is made from two or more sets of compatible
parts, but the sets are incompatible to each other .

Creational Pattern Example

Abstract Factory

Application: Graphical User Interface
+ Constructing user interface widgets

= Windows, scrollbars, radio buttons, menus, ...
¢ Various platforms to support

= Microsoft Windows, Apple macOS, Apple iOS,
Unix-like X Window system .

Creational Pattern Example

Abstract Factory

Solution in GUI App
r-——---- >! Window

Widget Factory 1 %

Client —>{newWindow() |~ —'

<

newScrollBar() 1 >l WinWindow | | MacWindow
| 1
[| L- :— - — = =>{ScrollBar
WinWidgetFactory | | MacWidgetFactory : é
newWindow() newWindow() |
newScrollBar() newScrollBar() 1 | WinScrollBar | | MacScrollBar
L s | I |) N
__________ H===oooe---
L::__:____:__:____::__:___J___

Creational Pattern Example

Abstract Factory

General Recommendation

o Use an abstract class (called pure fabrication)
to do the construction

Client >| AbstractCreator |- — — | AbstractProduct

i 7

ConcreteCreator ConcreteProduct .

1
|
Vi

Creational Pattern Example: Abstract Factory
Potential Implementation in C++

#include <memory>
using std::auto_ptr;
class Control { };
class PushControl : public Control { };
class Factory {

public:

/I Returns Factory subclass based on classKey.

// Each subclass has its own getControl() implementation.

// This will be implemented after the subclasses have been declared.

static auto_ptr<Factory> getFactory(int classKey);

virtual auto_ptr<Control> getControl() const = 0;
i
class ControlFactory : public Factory {
public:

virtual auto_ptr<Control> getControl() const {

return auto_ptr<Control>(new PushControl());

}
IS
auto_ptr<Factory> Factory::getFactory(int classKey) {

// Insert conditional logic here. Sample:

switch(classKey) {

default:

return auto_ptr<Factory>(new ControlFactory());

} 28
}

Structural Pattern Example

About the GoF Design Patterns Proxy
¢ Gang-of-Four: Gamma, Helm, Johnson, and Common Types of Proxies
Vlissides + Virtual Proxy
o Three categories = Lightweight object that creates heavyweight object
= on demand .

n Behayi oural How to bu%ld powerful l?cha\:iour « Device Proxy

= Creational How to build problematic objects = Logical device that manages physical device

= Structural . How to build flexible structures . + Remote Proxy oh engine

» Local representation of remote object
o Protection Proxy Search engine .
. = Sentry (soldier) that guards secure object

Structural Pattern Example Structural Pattern Example

Proxy Proxy

General Recommendation Problem

+ Create an abstract class to specify the logical + We do not want to directly access an object, but
interface to the object through an intermediary or agent

o Create two subclasses m This may arise from reliability or complexity concerns .

» The proxy and the actual object class
+ The proxy forwards messages to actual object

+ Actual object returns messages through the proxy
after actual operation .

Structural Pattern Example

Proxy

General Recommendation
AbstractClass

?

I I
Client ProxyClass >[RealClass

Structural Pattern Example: Proxy
Potential Implementation in Java

import java.util.*; class ProxyExample {
interface Image { public static void main(String[] args) {
public void displaylmage(); ArrayList<Image> images = new ArrayList<Image>();
} images.add(new ProxyImage("HiRes_10MB_Photol"));
class Reallmage implements Image { images.add(new Proxylmage("HiRes_10MB_Photo2"));
private String filename; images.add(new Proxylmage("HiRes_10MB_Photo3"));
public Reallmage(String filename) { images. get(0).displaylmage(); // loading necessary
this.filename = filename; images.get(1).displaylmage(); // loading necessary
System.out.println("Loading "filename); images.get(0).displayImage();
) // no loading necessary; already done
public void displaylmage() { System.out.println("Displaying "+filename); } // the third image will never be loaded - time saved!

} }
class Proxylmage implements Image {
private String filename;
private Reallmage image;
public Proxylmage(String filename) { this.filename = filename; }
public void displayImage() {
if (image == null) image = new Reallmage(filename);
// load only on demand
image displayfmage();
}

} 35

Structural Pattern Example
Proxy

Printer Application

Printer

status

print(pdf)

PdfDocument PrinterProxy

2| status

RealPrinter

print() print(pdf)

status

print(pdf) .

34

