
Introducing
Design Patterns

Prof. T.H. Tse
Department of Computer Science
Email: thtse@cs.hku.hk
Web: hku.hk/thtse

Provides pointers
to students . The Need for Design Patterns

 New designers are overburdened by the options
available, and fall back to non-OO techniques

 Experienced designers make good designs
 They do not solve every problem from first principles
 No need to reinvent the wheel
 Reuse solutions that have worked for them

Let us reuse solutions of
experienced designers .

3

Design Patterns
 Target for a general design problem

in a particular context
 Identify common class structures

for reusable OO designs
 Show participating objects,

collaborations, and division of
labour .

Examples
 Sort by subject
 Sort by date

Usefulness of Design Patterns
 Many objects come from the analysis model
 But designs often need classes with no counterparts

in the real world
 Design patterns help to identify less-obvious

abstractions and objects .

4

5

Other Usefulness of Design Patterns
 Relate compile-time and run-time structures
 Enhance delegation
 Enhance reuse

Via encapsulation

Via inheritance .

Other Usefulness of Design Patterns

Classes
depend on
one another

Design for change: Avoid unnecessary redesigns
due to
 Specific object representation
 Specific operations, implementation, and algorithms
 Dependence on hardware and software platforms
 Tight coupling
 Cannot replace classes easily .

Design Patterns ≠ Frameworks
 Frameworks are another source of reference for

experienced design
 A framework`k is a partially completed software

system customized for a specific applicationx
Example
HSBC e-banking system

 Design patterns are more general than frameworks
 A pattern can be used in any kinds of applications .

Design Patterns ≠ Frameworks
 Design patterns are more fundamental than

frameworks
 Frameworks are in compilable programming languages
 Design patterns are language independent and have to be

implemented every time they are used
 Design patterns also explain the intent, trade-offs, and

consequences of a design

8

Learn how
to learn .

9

Note
for those who wish me to write down what I say

 It is fairly difficult to teach design patterns by
means of lectures

 It involves hands-on experience with real systems
 I can only go through the concepts, philosophy,

and a few examples .

Design Patterns
4 Essential Elements
 The Problem

 Describes when to apply the pattern
 Explains the problem and its context
 May include a list of conditions for application

 Pattern Name
 Allows us to design at a higher level of abstraction
 Free from the details .

10

Design Patterns
4 Essential Elements (Continued)
 Solution

 Describes the elements that make up the design, their
relationships, responsibilities, and collaborations

 Not a particular concrete design or implementation,
but a general arrangement of elements

 Consequences
 Results and (space and time) trade-offs, useful for

evaluating design alternatives .

11

Example

13

Example (Continued)
GoF Design Patterns
 Gang-of-Four: Gamma, Helm, Johnson, and

Vlissides
 Three categories

 Behavioural How to build powerful behaviour
 Creational How to build complex objects
 Structural How to build flexible structures .

14

About the GoF Design Patterns
 Gang-of-Four: Gamma, Helm, Johnson, and

Vlissides
 Three categories

 Behavioural How to build powerful behaviour
 Creational How to build complex objects
 Structural How to build flexible structures.

15

Consider Sorting of Meeting Schedule

Behavioural Pattern Example
Strategy

16

Behavioural Pattern Example
Strategy

Traditional Technique
Inbox
sort()

A lot of work when we
need to change the
sorting algorithm .

17

Behavioural Pattern Example
Strategy

Object-Oriented Design

Delegate the
sorting algorithm
to another object .

Sorter
sort()

Inbox
sort()
setStrategy()

18

Behavioural Pattern Example
Strategy

Problem
 We want an adaptive method with various

implementations selected at run time
 We need different algorithms to accomplish

the same task in different circumstances .

Behavioural Pattern Example
Strategy

Use insertion sort
for date .

Use quicksort
for subject

20

Behavioural Pattern Example
Strategy

Design Pattern Solution
 Define a family of algorithms,

and encapsulate each one
 The strategy pattern lets the algorithm

vary according to clients ...

21

Behavioural Pattern Example
Strategy

Design Pattern Solution (Continued)

Sorter
sort()

SubjectQuickSort
sort()

DateInsertSort
sort() .

Inbox
sort()
setStrategy()

22

Behavioural Pattern Example: Strategy
Potential Implementation in C#
// Strategy pattern -- Structural example
using System;
namespace DoFactory.GangOfFour.Strategy.Structural
{
// MainApp test application
class MainApp
{
static void Main()
{
Context context;
// Three contexts following different strategies
context = new Context(new ConcreteStrategyA());
context.ContextInterface();
context = new Context(new ConcreteStrategyB());
context.ContextInterface();
context = new Context(new ConcreteStrategyC());
context.ContextInterface();
// Wait for user
Console.Read();

}
}
// "Strategy"
abstract class Strategy
{
public abstract void AlgorithmInterface();

}
// "ConcreteStrategyA"
class ConcreteStrategyA : Strategy
{
public override void AlgorithmInterface()
{
Console.WriteLine(
"Called ConcreteStrategyA.AlgorithmInterface()");

}
}

// "ConcreteStrategyB"
class ConcreteStrategyB : Strategy
{
public override void AlgorithmInterface()
{
Console.WriteLine(
"Called ConcreteStrategyB.AlgorithmInterface()");

}
}
// "ConcreteStrategyC"
class ConcreteStrategyC : Strategy
{
public override void AlgorithmInterface()
{
Console.WriteLine(
"Called ConcreteStrategyC.AlgorithmInterface()");

}
}
// "Context"
class Context
{
Strategy strategy;
// Constructor
public Context(Strategy strategy)
{
this.strategy = strategy;

}
public void ContextInterface()
{
strategy.AlgorithmInterface();

}
}

}

23

About the GoF Design Patterns
 Gang-of-Four: Gamma, Helm, Johnson, and

Vlissides
 Three categories

 Behavioural How to build powerful behavior
 Creational How to build complex objects
 Structural How to build flexible structures .

24

Creational Pattern Example
Abstract Factory

Problem
 Sometimes constructing an object is very

complicated
 The object is made of many different kinds of

complexly interconnected parts
 The object is made from two or more sets of compatible

parts, but the sets are incompatible to each other .

25

Creational Pattern Example
Abstract Factory

Application: Graphical User Interface
 Constructing user interface widgets

 Windows, scrollbars, radio buttons, menus, …
 Various platforms to support

 Microsoft Windows, Apple macOS, Apple iOS,
Unix-like X Window system .

26

Creational Pattern Example
Abstract Factory

General Recommendation
 Use an abstract class (called pure fabrication)

to do the construction

Client AbstractProduct

ConcreteProduct .

AbstractCreator

ConcreteCreator

Creational Pattern Example
Abstract Factory
Solution in GUI App

Client

ScrollBar

WinScrollBar MacScrollBar.

Window

WinWindow MacWindow

Widget Factory
newWindow()
newScrollBar()

WinWidgetFactory
newWindow()
newScrollBar()

MacWidgetFactory
newWindow()
newScrollBar()

28

Creational Pattern Example: Abstract Factory
Potential Implementation in C++
#include <memory>
using std::auto_ptr;
class Control { };
class PushControl : public Control { };
class Factory {
public:
// Returns Factory subclass based on classKey.
// Each subclass has its own getControl() implementation.
// This will be implemented after the subclasses have been declared.
static auto_ptr<Factory> getFactory(int classKey);
virtual auto_ptr<Control> getControl() const = 0;

};
class ControlFactory : public Factory {
public:

virtual auto_ptr<Control> getControl() const {
return auto_ptr<Control>(new PushControl());

}
};
auto_ptr<Factory> Factory::getFactory(int classKey) {
// Insert conditional logic here. Sample:
switch(classKey) {
default:
return auto_ptr<Factory>(new ControlFactory());

}
}

29

About the GoF Design Patterns
 Gang-of-Four: Gamma, Helm, Johnson, and

Vlissides
 Three categories

 Behavioural How to build powerful behaviour
 Creational How to build problematic objects
 Structural How to build flexible structures .

Structural Pattern Example
Proxy
Common Types of Proxies
 Virtual Proxy

 Lightweight object that creates heavyweight object
on demand

 Device Proxy
 Logical device that manages physical device

 Remote Proxy
 Local representation of remote object

 Protection Proxy
 Sentry (soldier) that guards secure object

Printer

Printer

Search engine

Search engine .

31

Structural Pattern Example
Proxy

General Recommendation
 Create an abstract class to specify the logical

interface to the object
 Create two subclasses

 The proxy and the actual object class
 The proxy forwards messages to actual object
 Actual object returns messages through the proxy

after actual operation .
32

Structural Pattern Example
Proxy

Problem
 We do not want to directly access an object, but

through an intermediary or agent
 This may arise from reliability or complexity concerns .

33

Structural Pattern Example
Proxy

General Recommendation

Client RealClass .

AbstractClass

ProxyClass

34

Structural Pattern Example
Proxy

Printer Application
Printer
status
print(pdf)

PrinterProxy
status
print(pdf)

RealPrinter
status
print(pdf) .

PdfDocument

print()

35

Structural Pattern Example: Proxy
Potential Implementation in Java
import java.util.*;
interface Image {

public void displayImage();
}
class RealImage implements Image {

private String filename;
public RealImage(String filename) {

this.filename = filename;
System.out.println("Loading "+filename);

}
public void displayImage() { System.out.println("Displaying "+filename); }

}
class ProxyImage implements Image {

private String filename;
private RealImage image;
public ProxyImage(String filename) { this.filename = filename; }
public void displayImage() {

if (image == null) image = new RealImage(filename);
// load only on demand
image.displayImage();

}
}

class ProxyExample {
public static void main(String[] args) {

ArrayList<Image> images = new ArrayList<Image>();
images.add(new ProxyImage("HiRes_10MB_Photo1"));
images.add(new ProxyImage("HiRes_10MB_Photo2"));
images.add(new ProxyImage("HiRes_10MB_Photo3"));
images.get(0).displayImage(); // loading necessary
images.get(1).displayImage(); // loading necessary
images.get(0).displayImage();
// no loading necessary; already done
// the third image will never be loaded - time saved!

}

