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Provides pointers
to students  . The Need for Design Patterns

 New designers are overburdened by the options 
available, and fall back to non-OO techniques

 Experienced designers make good designs
 They do not solve every problem from first principles
 No need to reinvent the wheel
 Reuse solutions that have worked for them

Let us reuse solutions of
experienced designers .
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Design Patterns
 Target for a general design problem

in a particular context
 Identify common class structures 

for reusable OO designs
 Show participating objects, 

collaborations, and division of 
labour .

Examples
 Sort by subject
 Sort by date

Usefulness of Design Patterns
 Many objects come from the analysis model
 But designs often need classes with no counterparts 

in the real world
 Design patterns help to identify less-obvious 

abstractions and objects  .
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Other Usefulness of Design Patterns
 Relate compile-time and run-time structures
 Enhance delegation
 Enhance reuse

Via encapsulation

Via inheritance .

Other Usefulness of Design Patterns

Classes 
depend on 
one another

Design for change: Avoid unnecessary redesigns
due to
 Specific object representation
 Specific operations, implementation, and algorithms 
 Dependence on hardware and software platforms
 Tight coupling
 Cannot replace classes easily  .

Design Patterns ≠ Frameworks
 Frameworks are another source of reference for 

experienced design
 A framework`k is a partially completed software 

system customized for a specific applicationx
Example
HSBC e-banking system

 Design patterns are more general than frameworks
 A pattern can be used in any kinds of applications  .

Design Patterns ≠ Frameworks
 Design patterns are more fundamental than 

frameworks
 Frameworks are in compilable programming languages
 Design patterns are language independent and have to be 

implemented every time they are used
 Design patterns also explain the intent, trade-offs, and 

consequences of a design
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Learn how 
to learn .
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Note
for those who wish me to write down what I say

 It is fairly difficult to teach design patterns by 
means of lectures

 It involves hands-on experience with real systems
 I can only go through the concepts, philosophy, 

and a few examples  .

Design Patterns
4 Essential Elements
 The Problem

 Describes when to apply the pattern
 Explains the problem and its context
 May include a list of conditions for application 

 Pattern Name
 Allows us to design at a higher level of abstraction
 Free from the details  .
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Design Patterns
4 Essential Elements (Continued)
 Solution

 Describes the elements that make up the design, their 
relationships, responsibilities, and collaborations

 Not a particular concrete design or implementation, 
but a general arrangement of elements

 Consequences
 Results and (space and time) trade-offs, useful for 

evaluating design alternatives  .
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Example
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Example (Continued)
GoF Design Patterns
 Gang-of-Four: Gamma, Helm, Johnson, and 

Vlissides
 Three categories

 Behavioural How to build powerful behaviour
 Creational How to build complex objects
 Structural How to build flexible structures  .
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About the GoF Design Patterns
 Gang-of-Four: Gamma, Helm, Johnson, and 

Vlissides
 Three categories

 Behavioural How to build powerful behaviour
 Creational How to build complex objects
 Structural How to build flexible structures.
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Consider Sorting of Meeting Schedule

Behavioural Pattern Example
Strategy
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Behavioural Pattern Example
Strategy

Traditional Technique
Inbox
sort()

A lot of work when we 
need to change the 
sorting algorithm  .
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Behavioural Pattern Example
Strategy

Object-Oriented Design

Delegate the 
sorting algorithm 
to another object  .

Sorter
sort()

Inbox
sort()
setStrategy()
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Behavioural Pattern Example
Strategy

Problem
 We want an adaptive method with various 

implementations selected at run time
 We need different algorithms to accomplish

the same task in different circumstances  .

Behavioural Pattern Example
Strategy

Use insertion sort 
for date  .

Use quicksort 
for subject
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Behavioural Pattern Example
Strategy

Design Pattern Solution
 Define a family of algorithms,

and encapsulate each one
 The strategy pattern lets the algorithm

vary according to clients  ...
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Behavioural Pattern Example
Strategy

Design Pattern Solution (Continued)

Sorter
sort()

SubjectQuickSort
sort()

DateInsertSort
sort()  .

Inbox
sort()
setStrategy()
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Behavioural Pattern Example: Strategy
Potential Implementation in C#
// Strategy pattern -- Structural example 
using System;
namespace DoFactory.GangOfFour.Strategy.Structural
{
// MainApp test application 
class MainApp
{
static void Main()
{
Context context;
// Three contexts following different strategies 
context = new Context(new ConcreteStrategyA());
context.ContextInterface();
context = new Context(new ConcreteStrategyB());
context.ContextInterface();
context = new Context(new ConcreteStrategyC());
context.ContextInterface();
// Wait for user 
Console.Read();

}
}
// "Strategy" 
abstract class Strategy
{
public abstract void AlgorithmInterface();

}
// "ConcreteStrategyA" 
class ConcreteStrategyA : Strategy
{
public override void AlgorithmInterface()
{
Console.WriteLine(
"Called ConcreteStrategyA.AlgorithmInterface()");

}
}

// "ConcreteStrategyB" 
class ConcreteStrategyB : Strategy
{
public override void AlgorithmInterface()
{
Console.WriteLine(
"Called ConcreteStrategyB.AlgorithmInterface()");

}
}
// "ConcreteStrategyC" 
class ConcreteStrategyC : Strategy
{
public override void AlgorithmInterface()
{
Console.WriteLine(
"Called ConcreteStrategyC.AlgorithmInterface()");

}
}
// "Context" 
class Context
{
Strategy strategy;
// Constructor 
public Context(Strategy strategy)
{
this.strategy = strategy;

}
public void ContextInterface()
{
strategy.AlgorithmInterface();

}
}

}
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About the GoF Design Patterns
 Gang-of-Four: Gamma, Helm, Johnson, and 

Vlissides
 Three categories

 Behavioural How to build powerful behavior
 Creational How to build complex objects
 Structural How to build flexible structures  .
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Creational Pattern Example
Abstract Factory

Problem
 Sometimes constructing an object is very 

complicated
 The object is made of many different kinds of 

complexly interconnected parts
 The object is made from two or more sets of compatible 

parts, but the sets are incompatible to each other  .
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Creational Pattern Example
Abstract Factory

Application: Graphical User Interface
 Constructing user interface widgets

 Windows, scrollbars, radio buttons, menus, … 
 Various platforms to support 

 Microsoft Windows, Apple macOS, Apple iOS, 
Unix-like X Window system  .
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Creational Pattern Example
Abstract Factory

General Recommendation
 Use an abstract class (called pure fabrication) 

to do the construction

Client AbstractProduct

ConcreteProduct  .

AbstractCreator

ConcreteCreator

Creational Pattern Example
Abstract Factory
Solution in GUI App

Client

ScrollBar

WinScrollBar MacScrollBar.

Window

WinWindow MacWindow

Widget Factory
newWindow()
newScrollBar()

WinWidgetFactory
newWindow()
newScrollBar()

MacWidgetFactory
newWindow()
newScrollBar()
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Creational Pattern Example: Abstract Factory
Potential Implementation in C++
#include <memory>
using std::auto_ptr;
class Control { };
class PushControl : public Control { };
class Factory {
public:
// Returns Factory subclass based on classKey.
// Each subclass has its own getControl() implementation.
// This will be implemented after the subclasses have been declared.
static auto_ptr<Factory> getFactory(int classKey);
virtual auto_ptr<Control> getControl() const = 0;

};
class ControlFactory : public Factory {
public:

virtual auto_ptr<Control> getControl() const {
return auto_ptr<Control>(new PushControl());

}
};
auto_ptr<Factory> Factory::getFactory(int classKey) {
// Insert conditional logic here.  Sample:
switch(classKey) {
default:
return auto_ptr<Factory>(new ControlFactory());

}
}
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About the GoF Design Patterns
 Gang-of-Four: Gamma, Helm, Johnson, and 

Vlissides
 Three categories

 Behavioural How to build powerful behaviour
 Creational How to build problematic objects
 Structural How to build flexible structures  .

Structural Pattern Example
Proxy
Common Types of Proxies
 Virtual Proxy

 Lightweight object that creates heavyweight object 
on demand

 Device Proxy
 Logical device that manages physical device

 Remote Proxy
 Local representation of remote object

 Protection Proxy
 Sentry (soldier) that guards secure object

Printer

Printer

Search engine

Search engine  .
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Structural Pattern Example
Proxy

General Recommendation
 Create an abstract class to specify the logical 

interface to the object
 Create two subclasses

 The proxy and the actual object class
 The proxy forwards messages to actual object
 Actual object returns messages through the proxy 

after actual operation  .
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Structural Pattern Example
Proxy

Problem
 We do not want to directly access an object, but 

through an intermediary or agent
 This may arise from reliability or complexity concerns  .
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Structural Pattern Example
Proxy

General Recommendation

Client RealClass  .

AbstractClass

ProxyClass
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Structural Pattern Example
Proxy

Printer Application
Printer
status
print(pdf)

PrinterProxy
status
print(pdf)

RealPrinter
status
print(pdf)  .

PdfDocument

print()
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Structural Pattern Example: Proxy
Potential Implementation in Java
import java.util.*;
interface Image {

public void displayImage( );
}
class RealImage implements Image {

private String filename;
public RealImage(String filename) { 

this.filename = filename;        
System.out.println("Loading   "+filename);

}
public void displayImage( ) { System.out.println("Displaying "+filename); }

}
class ProxyImage implements Image {

private String filename;
private RealImage image;
public ProxyImage(String filename) { this.filename = filename; }
public void displayImage( ) {

if (image == null) image = new RealImage(filename);
// load only on demand
image.displayImage( );

}
}

class ProxyExample {
public static void main(String[ ] args) {

ArrayList<Image> images = new ArrayList<Image>( );
images.add( new ProxyImage("HiRes_10MB_Photo1") );
images.add( new ProxyImage("HiRes_10MB_Photo2") );
images.add( new ProxyImage("HiRes_10MB_Photo3") );
images.get(0).displayImage(); // loading necessary
images.get(1).displayImage(); // loading necessary
images.get(0).displayImage(); 
// no loading necessary; already done 
// the third image will never be loaded - time saved!

}


