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Important part 
of the course  .
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Problems with Industrial Practices
 Craft and not engineering

 Learn from experience
 Trial and error
 No quality assurance

 The profession is now where civil engineering was 
in Greek and Roman times before they had calculus 
and Newtonian mechanics .

We sell it as “an 
iterative approach”

Formal Methods
 Mathematical techniques that support rigorous 

reasoning in software development and quality 
assurance

 Examples
 Abstract models such as VDM, Z
 Algebraic models such as OBJ3, FOOPS
 Concurrency models such as CSP, CCS, Petri nets
 Category theory
 First order predicate logic such as Prolog .

We will introduce CSP
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Advantages of Formal Methods
 Consistent and unambiguous
 Reduces coding time despite slightly longer time 

for specification
 Proof of correctness
 Eases future enhancements .



Motivating Example
Teleconferencing
Requirements for teleconferencing system
 System consists of N phones
 To save line charges, only N external lines
 A user picks up the hand set of phone i
 They may use this phone to connect to 2 clients:

 External line i for 1 client 
 Then external line i + 1 for 2nd client

 In case external line i + 1 is used by a user at 
phone i + 1, they must wait .

1 phone communicates 
with 2 lines .

1.disconnectline.1
1.requestcut.1

Teleconferencing Example
Sequence Diagram

1.lifthandset

1.connectline.1
1.requestline.1

1.hangup

1.ready

1.out

USER1

1.connectline.2

1.disconnectline.2

1.requestline.2

1.requestcut.2

TEL1 LINE1 LINE2

TEL1 requests 
LINE1
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1.disconnectline.2 / 1.out

1.disconnectline.1 / 1.requestcut.2

1.hangup / 1.requestcut.1

1.connectline.2 / 1.ready

1.connectline.1 / 1.requestline.2

Teleconferencing Example
State Machine for TEL1

1.lifthandset / 1.requestline.1

6 states .
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1.requestcut.1 / 1.disconnectline.1

Teleconferencing Example
State Machine for LINE1

1.requestline.1 / 1.connectline.1 
2 states .
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Teleconferencing Example
Limitations of UML
 Deadlock Problem in the Example

 N users picked up the handsets
Everybody 
waits forever 
for second line

 Starvation Problem in the Example
 If telephone i+1 is used very often, a user cannot 

find a line for telephone i
 Sequence diagram for one telephone is not 

useful for solving these problems
 State machine of one object is not useful either .
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Teleconferencing Example
More Limitations
 State machine for all objects?

 6N x 2N states
 20 736 states for N = 4
 2 985 984 states for N = 6

 Too complex .
 6N states for N

telephones
 2N states for N lines
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Example of Complex State Machine
Source: L. Mariani et al.

Impossible to solve 
problems visually .
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Teleconferencing Example
Solutions to Limitations of UML
 The need for

 Concise but precise languages
 Concise = brief
 Precise = accurate

 Validation = checking 
with user requirements

 Verification = checking 
with the specification .

 Validation and verification methods



Communicating Sequential Processes 
(CSP)

Classic Reference
 C.A.R. Hoare, Communicating Sequential 

Processes, Prentice-Hall (1985)
 Also available at 

http://www.usingcsp.com/cspbook.pdf .

 Do not download unless you are an 
experienced, advanced student

 Ask me questions if you don’t understand .
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Processes
 A process is the behaviour pattern of an object
 Denoted by upper case characters

 Examples: P
TEA_MACHINE   .

Intuitively similar to 
state machine in UML

Events
 Internal events

 Examples: v
maketea

 Communication events     
 Via some interface channel
 Format: channel.v
 Examples: coinslot.$

 Denoted by lower case letters .
hatch.tea

Intuitively similar to 
events in UML
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Alphabet α
 The set of events relevant to a given process

 Example
α TEA_MACHINE
= {maketea, coinslot.$5, hatch.tea} .



Prefix (a → P )
Intuitive Introduction

P
a

a
P

b

 (a → P)

 (a → (b → P))

= a
P

b

=  (a → b → P)
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Intuitively similar to 
change of state (due 
to event) in UML

 (a → b) ??
 (P → Q) ??

 a → P ??

 Given a process P and an event a,
(a → P )

is a process, read as “a then P”
 For conceptual simplicity, extend αP to include “a”
 Note the syntax:

Prefix
(a → P )

 (a → b → P)

 Yes, this is correct
 It means

(a → (b → P )) .

The brackets are 
part of the syntax

⊗
⊗
⊗
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Prefix Examples 
 TEA_MACHINE

= ( coinslot.$5
→ maketea
→ hatch.tea
→ END_OF_SALES )

 BAD_TEA_MACHINE
= ( coinslot.$5

→ STUCK )
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Successful Termination
SKIP
 Previous Example: END_OF_SALES
 In general, simply write SKIP .

Hint
 “1” in SK1P for success .
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Failure
STOP
 Previous Example: STUCK
 In general, simply write STOP .

Hint
 “1” in SK1P for success
 “0” in ST0P for failure .
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Termination Examples
 TEA_MACHINE

= ( coinslot.$5
→ maketea
→ hatch.tea
→ SKIP )

 BAD_TEA_MACHINE
= ( coinslot.$5

→ STOP )

Recursion
 To model the behaviour

CLOCK = ( tick → tick → tick → … )
we write

CLOCK = ( tick → CLOCK )

Exercise
 Use recursion to model

CLOCK = ( tick → tock → tick → tock → … ) .
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Recursion Example 1
 TEA_MACHINE

= ( coinslot.$5
→ maketea
→ hatch.tea
→ TEA_MACHINE )
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Recursion Example 2
 BAD_TEA_MACHINE

= ( coinslot.$5
→ BAD_TEA_MACHINE )
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Choice by Input Value
(a → P | b → Q)
 The process behaves like P or Q, depending on 

whether the event value is a or b
 “|” is read as “choice”
 Example

MACHINE                                                                            
= ( coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE )

The two brackets are 
part of the syntax

Choice by Channel
(x.a → P y.b → Q)
 The process behaves like P or Q, depending on 

whether the communication channel is x or y
 “ ” is read as “fetbar”

icetea_button.press → hatch.icetea → MACHINE ) )

The two brackets are 
part of the syntax

The story goes 
that this was a 
typo for “fatbar”

 Example
MACHINE
= ( coinslot.$5

→ (tea_button.press → hatch.tea → MACHINE

More Choice Example
NEW_MACHINE
= ( coinslot.$5 →

( coinslot.$5 → hatch.cappucino → NEW_MACHINE
drink_button.press → hatch.tea → NEW_MACHINE )

| coinslot.$10 →
( change_button.press → change.$5 → hatch.tea
→ NEW_MACHINE

drink_button.press → hatch.cappucino
→ NEW_MACHINE ) )



Interaction
X || Y
 Processes X and Y can start or finish at any time
 Any potentially common event a (relevant to 

both X and Y) must be synchronized
 Intuitively similar to state machine interaction

X: Pp / a

No brackets added 
before or after X and Y

 But CSP does not distinguish between incoming or 
outgoing event ...

Y: q Qa
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Interaction Example 1 

 We write 
( p → a → P)  || (q → a → Q)

The 4 brackets are due to the original 
processes, not added by interaction .

Pp / a q Qa

 Processes (p → a → P) and (q → a → Q) interact

 Intuitively                                                          interact    
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Interaction Example 1 
(p → a → P)  || (q → a → Q)

 Need to specify the characteristic of every event, e.g.,
 a is a potentially common event relevant to both P and Q

 and hence in both αP and αQ
 p is an internal event relevant only to P but not Q

 and hence in αP but not αQ
 q is an internal event relevant only to Q but not P

 and hence in αQ but not αP

 Only the common event a is synchronized .

Interaction Example 1
Real Life Application 

(p → a → P)

(q → a → Q)

turn off 
airplane mode

search 
phone no.

connect 
phone

connect 
phone

Only “connect phone” 
is synchronized .
Only “connect phone” 
is synchronized .
Only “connect phone” 
is synchronized .



Interaction Example 2
Consider two processes
 GREEDY_CUST
 MACHINE
with 4 potentially common events
 coinslot.$5
 coinslot.$10
 hatch.tea
 hatch.cappucino
relevant to both processes .

Interaction Example 2
 GREEDY_CUST

=  ( coinslot.$5 →
( hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST ) )
interacts with:

MACHINE
= ( coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE )
 We need only write MACHINE || GREEDY_CUST
 What is the effect?

→ hatch.tea
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Interaction Example 2
The Effect

 MACHINE || GREEDY_CUST
=  ( coinslot.$5

→ MACHINE || GREEDY_CUST )

Interaction Example 2
 GREEDY_CUST

=  ( coinslot.$5 →
( hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST ) )
may interact with:

MACHINE
= ( coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE )

Interaction Example 2
 GREEDY_CUST

=  ( coinslot.$5 →
( hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST ) )
may interact with:

MACHINE
= ( coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE )

Interaction Example 2
 GREEDY_CUST

=  ( coinslot.$5 →
( hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST ) )
may interact with:

MACHINE
= ( coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE )

Interaction Example 2
 GREEDY_CUST

=  ( coinslot.$5 →
( hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST ) )
may interact with:

MACHINE
= ( coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE )

Laws
 Minimum set of axioms that are taken to be true, 

to serve as starting points for formal reasoning
 All other system behaviour can then be proved
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More reliable than 
human intuition .



Laws
Examples
 P || Q = Q || P
 P || (Q || R) = (P || Q) || R
 P || STOP = STOP
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Interactive processes may 
be presented in any order

Interactive processes may 
be grouped in any way

Interacting with a failing 
process will fail .

Laws
Examples (Continued)
 Given potentially common alphabets a and b relevant to 

both P and Q,
 (a → P) || (a → Q) = (a → (P || Q))

= STOP if  a ≠ b (a → P) || (b → Q)

If both immediate common events agree, 
successfully synchronized and fired

If immediate common events do not agree, interaction fails .

= ( p → (P || (a → Q)) )
 ( p → P) || (a → Q)

 Given potentially common event a relevant to both P and Q,
internal event p relevant to P but not Q, and
internal event q relevant to Q but not P,

= ( p → (P || (q → Q))

Laws
Examples (Continued)

 (p → P) || (q → Q)
| q → ((p → P) || Q) )

Given one immediate internal 
event, it will be fired

Given two immediate internal 
events, either one may be fired .

 For instance, we can then prove that

Formal Reasoning Based on the Laws

= ( p → q → a → (P || Q)  | q → p → a → (P || Q) )
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( p → a → P) || (q → a → Q)

More reliable than 
human intuition .
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Proof

( p → a → P) || (q → a → Q)

Based on the law ( p → ) || (q → )
= ( p → ( || (q → )) | q → (( p → ) || ) ) ...

=  ( p → ((a → P) || (q → a → Q))
| q → (( p → a → P) || (a → Q)) )

Proof

Based on the law ( p →  ) || (a → )
= ( p → ( || (a → )) ) ...

=  ( p → q → ((a → P) || (a → Q))
| q → p → ((a → P) || (a → Q)) )

( p → a → P) || (q → a → Q)

=  ( p → ((a → P) || (q → a → Q))
| q → (( p → a → P) || (a → Q)) )

Proof

=  ( p → q → a → (P || Q)
| q → p → a → (P || Q) )

=  ( p → q → ((a → P) || (a → Q))
| q → p → ((a → P) || (a → Q)) )

( p → a → P) || (q → a → Q)

=  ( p → ((a → P) || (q → a → Q))
| q → (( p → a → P) || (a → Q))

Based on the law
(a → ) || (a → )
= (a → ( || ) ) .
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→ i.connectline.i= ( i.lifthandset

Teleconferencing Example
Telephones

 TELi
→ i.connectline.i⊕1

 TELS = TEL1 || TEL2 || … || TELN

→ i.hangup → i.disconnectline.i ⊕1→ i.disconnectline.i
→ TELi )

 Let i⊕ 1 = i +1 if i < N, and let i⊕ 1 = 1 if i = N

For conciseness, 
not part of CSP



 LINEi

i1.connectline.i → i1.disconnectline.i

 LINES = LINE1 || LINE2 || … || LINEN

 NETWORK = TELS || LINES

= ( i.connectline.i → i.disconnectline.i → LINEi
→ LINEi )

 Let i1 = i− 1 if i > 1, and let i1 = N if i = 1

Teleconferencing Example:
Lines

But have we 
solved the 
deadlock 
problem?  .

For conciseness, 
not part of CSP
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Teleconferencing Example
Solution of Deadlock Problem

Main Idea
 Install a guard that disallows all telephones to be 

used at any one time
 In other words, install a guard that allows no more 

than N−1 telephones to be used at any one time .

Teleconferencing Example
Solution of Deadlock Problem

 x : L means that one of the telephones is picked up

 x : H means that one of the telephones is hung up .

 Let L = {1.lifthandset, 2.lifthandset, ..., N.lifthandset}

“x : L” means “x ∈ L”

 Let H = {1.hangup, 2.hangup, ..., N.hangup}
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“x : H” means “x ∈ H”.
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Teleconferencing Example
Solution of Deadlock Problem
 Let GUARDi be a process that keeps a count i of the 

number of phones currently used

i phones

.
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Teleconferencing Example
Solution of Deadlock Problem
 Suppose no phone is currently 

used
 If we pick up one phone, then total 

no. being used = 1 
 We write

GUARD0 = ( x : L → GUARD1 ) .

0 phone

1 phone

Teleconferencing Example
Solution of Deadlock Problem
 Suppose 1 phone is currently 

used
 If we pick up one more phone, then 

total no. being used = 2  
 If we hang up one phone, then total 

no. being used = 0
 We write

GUARD1 = ( x : L → GUARD2
| x : H → GUARD0 ) .

1 phone

2 phones

0 phone
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Teleconferencing Example
Solution of Deadlock Problem

 Suppose i phones are currently 
used (where i = 1, … N−2)
 If we pick up one more phone,

then total no. being used = i + 1  
 If hang up one phone, then total no. being used = i - 1  

 We write
GUARDi = ( x : L → GUARDi+1

| x : H → GUARDi−1 )
for i = 1, … N−2  .

i phones

i+1 phones

i−1 phones

Teleconferencing Example
Solution of Deadlock Problem

 Suppose N–1 telephones are 
currently used
 The guard will not allow any further 

telephone to be picked up
 If we hang up one telephone, then

total no. of telephones used = N - 2  
 We write

GUARDN−1 = ( x : H → GUARDN−2 ) .

N−1 phones

N−2 phones



Teleconferencing Example
Solution of Deadlock Problem

 NEW_NETWORK = TELS || LINES || GUARD0

0 phone

.
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Teleconferencing Example
Verification
 Conventionally:

n Verify the implementation using test data, or
n Verify the specification using simulation

 But with 6N x 2N states
n The process is too complex
n The chance of revealing a failure is small .
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Teleconferencing Example
Proof of Correctness
 Suppose N lines are being connected

n Since no more than N−1 telephones have been picked 
up, some of them must be working with 
teleconferencing

 Suppose less than N lines are being connected
n Some telephone can be connected to the spare line

 In either case, there is no deadlock .

Teleconferencing Example
Solution of Starvation Problem?
 Starvation problem is beyond the scope of this course 

 .
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Disadvantages of Formal Methods
 Formal methods may not be accepted by software 

engineers
 Not intuitive, full of jargon
 Bottom up
 Lack of training
 Lack of track record
 Not supported by CASE tools
 Disregard of current practices

 The method may be very difficult for complex 
systems .

From: username@cs.hku.hk
To: thtse@cs.hku.hk
The CSP assignment is really so difficult. I can tell 
you that CSP is the most difficult language in the 
world. I really feel depressed and helpless in the 
past two weeks when dealing with the assignment. 
... I really don’t know what to do instead of just 
ignoring the assignment .

Disadvantages of Formal Methods
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We are at the Crossroads

Precise User friendly

What about Other Engineering Disciplines?
Electrical Engineering

Precise User friendly

Do they treat the 
two approaches 
as a dilemma?
No ! .



Precise User friendly

Integrated Method

What about Other Engineering Disciplines?
Electrical Engineering

All circuit diagrams 
are supported by 
Maxwell’s equations .

Future of Software Engineering

Precise User friendly

Integrated Method
62
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Future of Software Engineering
 Integrated method is beyond the scope of this course 

 .


