
Formal Methods
and Beyond

Prof. T.H. Tse
Department of Computer Science
Email: thtse@cs.hku.hk
Web: hku.hk/thtse .

Important part
of the course .

2

Problems with Industrial Practices
 Craft and not engineering

 Learn from experience
 Trial and error
 No quality assurance

 The profession is now where civil engineering was
in Greek and Roman times before they had calculus
and Newtonian mechanics .

We sell it as “an
iterative approach”

Formal Methods
 Mathematical techniques that support rigorous

reasoning in software development and quality
assurance

 Examples
 Abstract models such as VDM, Z
 Algebraic models such as OBJ3, FOOPS
 Concurrency models such as CSP, CCS, Petri nets
 Category theory
 First order predicate logic such as Prolog .

We will introduce CSP

4

Advantages of Formal Methods
 Consistent and unambiguous
 Reduces coding time despite slightly longer time

for specification
 Proof of correctness
 Eases future enhancements .

Motivating Example
Teleconferencing
Requirements for teleconferencing system
 System consists of N phones
 To save line charges, only N external lines
 A user picks up the hand set of phone i
 They may use this phone to connect to 2 clients:

 External line i for 1 client
 Then external line i + 1 for 2nd client

 In case external line i + 1 is used by a user at
phone i + 1, they must wait .

1 phone communicates
with 2 lines .

1.disconnectline.1
1.requestcut.1

Teleconferencing Example
Sequence Diagram

1.lifthandset

1.connectline.1
1.requestline.1

1.hangup

1.ready

1.out

USER1

1.connectline.2

1.disconnectline.2

1.requestline.2

1.requestcut.2

TEL1 LINE1 LINE2

TEL1 requests
LINE1

7

1.disconnectline.2 / 1.out

1.disconnectline.1 / 1.requestcut.2

1.hangup / 1.requestcut.1

1.connectline.2 / 1.ready

1.connectline.1 / 1.requestline.2

Teleconferencing Example
State Machine for TEL1

1.lifthandset / 1.requestline.1

6 states .

8

1.requestcut.1 / 1.disconnectline.1

Teleconferencing Example
State Machine for LINE1

1.requestline.1 / 1.connectline.1
2 states .

9

Teleconferencing Example
Limitations of UML
 Deadlock Problem in the Example

 N users picked up the handsets
Everybody
waits forever
for second line

 Starvation Problem in the Example
 If telephone i+1 is used very often, a user cannot

find a line for telephone i
 Sequence diagram for one telephone is not

useful for solving these problems
 State machine of one object is not useful either .

10

Teleconferencing Example
More Limitations
 State machine for all objects?

 6N x 2N states
 20 736 states for N = 4
 2 985 984 states for N = 6

 Too complex .
 6N states for N

telephones
 2N states for N lines

11

Example of Complex State Machine
Source: L. Mariani et al.

Impossible to solve
problems visually .

12

Teleconferencing Example
Solutions to Limitations of UML
 The need for

 Concise but precise languages
 Concise = brief
 Precise = accurate

 Validation = checking
with user requirements

 Verification = checking
with the specification .

 Validation and verification methods

Communicating Sequential Processes
(CSP)

Classic Reference
 C.A.R. Hoare, Communicating Sequential

Processes, Prentice-Hall (1985)
 Also available at

http://www.usingcsp.com/cspbook.pdf .

 Do not download unless you are an
experienced, advanced student

 Ask me questions if you don’t understand .
14

Processes
 A process is the behaviour pattern of an object
 Denoted by upper case characters

 Examples: P
TEA_MACHINE .

Intuitively similar to
state machine in UML

Events
 Internal events

 Examples: v
maketea

 Communication events
 Via some interface channel
 Format: channel.v
 Examples: coinslot.$

 Denoted by lower case letters .
hatch.tea

Intuitively similar to
events in UML

16

Alphabet α
 The set of events relevant to a given process

 Example
α TEA_MACHINE
= {maketea, coinslot.$5, hatch.tea} .

Prefix (a → P)
Intuitive Introduction

P
a

a
P

b

 (a → P)

 (a → (b → P))

= a
P

b

= (a → b → P)

17

Intuitively similar to
change of state (due
to event) in UML

 (a → b) ??
 (P → Q) ??

 a → P ??

 Given a process P and an event a,
(a → P)

is a process, read as “a then P”
 For conceptual simplicity, extend αP to include “a”
 Note the syntax:

Prefix
(a → P)

 (a → b → P)

 Yes, this is correct
 It means

(a → (b → P)) .

The brackets are
part of the syntax

⊗
⊗
⊗

19

Prefix Examples
 TEA_MACHINE

= (coinslot.$5
→ maketea
→ hatch.tea
→ END_OF_SALES)

 BAD_TEA_MACHINE
= (coinslot.$5

→ STUCK)

20

Successful Termination
SKIP
 Previous Example: END_OF_SALES
 In general, simply write SKIP .

Hint
 “1” in SK1P for success .

21

Failure
STOP
 Previous Example: STUCK
 In general, simply write STOP .

Hint
 “1” in SK1P for success
 “0” in ST0P for failure .

22

Termination Examples
 TEA_MACHINE

= (coinslot.$5
→ maketea
→ hatch.tea
→ SKIP)

 BAD_TEA_MACHINE
= (coinslot.$5

→ STOP)

Recursion
 To model the behaviour

CLOCK = (tick → tick → tick → …)
we write

CLOCK = (tick → CLOCK)

Exercise
 Use recursion to model

CLOCK = (tick → tock → tick → tock → …) .
24

Recursion Example 1
 TEA_MACHINE

= (coinslot.$5
→ maketea
→ hatch.tea
→ TEA_MACHINE)

25

Recursion Example 2
 BAD_TEA_MACHINE

= (coinslot.$5
→ BAD_TEA_MACHINE)

26

Choice by Input Value
(a → P | b → Q)
 The process behaves like P or Q, depending on

whether the event value is a or b
 “|” is read as “choice”
 Example

MACHINE
= (coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE)

The two brackets are
part of the syntax

Choice by Channel
(x.a → P y.b → Q)
 The process behaves like P or Q, depending on

whether the communication channel is x or y
 “ ” is read as “fetbar”

icetea_button.press → hatch.icetea → MACHINE))

The two brackets are
part of the syntax

The story goes
that this was a
typo for “fatbar”

 Example
MACHINE
= (coinslot.$5

→ (tea_button.press → hatch.tea → MACHINE

More Choice Example
NEW_MACHINE
= (coinslot.$5 →

(coinslot.$5 → hatch.cappucino → NEW_MACHINE
drink_button.press → hatch.tea → NEW_MACHINE)

| coinslot.$10 →
(change_button.press → change.$5 → hatch.tea
→ NEW_MACHINE

drink_button.press → hatch.cappucino
→ NEW_MACHINE))

Interaction
X || Y
 Processes X and Y can start or finish at any time
 Any potentially common event a (relevant to

both X and Y) must be synchronized
 Intuitively similar to state machine interaction

X: Pp / a

No brackets added
before or after X and Y

 But CSP does not distinguish between incoming or
outgoing event ...

Y: q Qa

29

Interaction Example 1

 We write
(p → a → P) || (q → a → Q)

The 4 brackets are due to the original
processes, not added by interaction .

Pp / a q Qa

 Processes (p → a → P) and (q → a → Q) interact

 Intuitively interact

30

Interaction Example 1
(p → a → P) || (q → a → Q)

 Need to specify the characteristic of every event, e.g.,
 a is a potentially common event relevant to both P and Q

 and hence in both αP and αQ
 p is an internal event relevant only to P but not Q

 and hence in αP but not αQ
 q is an internal event relevant only to Q but not P

 and hence in αQ but not αP

 Only the common event a is synchronized .

Interaction Example 1
Real Life Application

(p → a → P)

(q → a → Q)

turn off
airplane mode

search
phone no.

connect
phone

connect
phone

Only “connect phone”
is synchronized .
Only “connect phone”
is synchronized .
Only “connect phone”
is synchronized .

Interaction Example 2
Consider two processes
 GREEDY_CUST
 MACHINE
with 4 potentially common events
 coinslot.$5
 coinslot.$10
 hatch.tea
 hatch.cappucino
relevant to both processes .

Interaction Example 2
 GREEDY_CUST

= (coinslot.$5 →
(hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST))
interacts with:

MACHINE
= (coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE)
 We need only write MACHINE || GREEDY_CUST
 What is the effect?

→ hatch.tea

35

Interaction Example 2
The Effect

 MACHINE || GREEDY_CUST
= (coinslot.$5

→ MACHINE || GREEDY_CUST)

Interaction Example 2
 GREEDY_CUST

= (coinslot.$5 →
(hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST))
may interact with:

MACHINE
= (coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE)

Interaction Example 2
 GREEDY_CUST

= (coinslot.$5 →
(hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST))
may interact with:

MACHINE
= (coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE)

Interaction Example 2
 GREEDY_CUST

= (coinslot.$5 →
(hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST))
may interact with:

MACHINE
= (coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE)

Interaction Example 2
 GREEDY_CUST

= (coinslot.$5 →
(hatch.tea → GREEDY_CUST

| hatch.cappucino → GREEDY_CUST))
may interact with:

MACHINE
= (coinslot.$5 → hatch.tea → MACHINE

| coinslot.$10 → hatch.cappucino → MACHINE)

Laws
 Minimum set of axioms that are taken to be true,

to serve as starting points for formal reasoning
 All other system behaviour can then be proved

36

More reliable than
human intuition .

Laws
Examples
 P || Q = Q || P
 P || (Q || R) = (P || Q) || R
 P || STOP = STOP

37

Interactive processes may
be presented in any order

Interactive processes may
be grouped in any way

Interacting with a failing
process will fail .

Laws
Examples (Continued)
 Given potentially common alphabets a and b relevant to

both P and Q,
 (a → P) || (a → Q) = (a → (P || Q))

= STOP if a ≠ b (a → P) || (b → Q)

If both immediate common events agree,
successfully synchronized and fired

If immediate common events do not agree, interaction fails .

= (p → (P || (a → Q)))
 (p → P) || (a → Q)

 Given potentially common event a relevant to both P and Q,
internal event p relevant to P but not Q, and
internal event q relevant to Q but not P,

= (p → (P || (q → Q))

Laws
Examples (Continued)

 (p → P) || (q → Q)
| q → ((p → P) || Q))

Given one immediate internal
event, it will be fired

Given two immediate internal
events, either one may be fired .

 For instance, we can then prove that

Formal Reasoning Based on the Laws

= (p → q → a → (P || Q) | q → p → a → (P || Q))

40

(p → a → P) || (q → a → Q)

More reliable than
human intuition .

41

Proof

(p → a → P) || (q → a → Q)

Based on the law (p → ) || (q → )
= (p → ( || (q → )) | q → ((p → ) || )) ...

= (p → ((a → P) || (q → a → Q))
| q → ((p → a → P) || (a → Q)))

Proof

Based on the law (p → ) || (a → )
= (p → ( || (a → ))) ...

= (p → q → ((a → P) || (a → Q))
| q → p → ((a → P) || (a → Q)))

(p → a → P) || (q → a → Q)

= (p → ((a → P) || (q → a → Q))
| q → ((p → a → P) || (a → Q)))

Proof

= (p → q → a → (P || Q)
| q → p → a → (P || Q))

= (p → q → ((a → P) || (a → Q))
| q → p → ((a → P) || (a → Q)))

(p → a → P) || (q → a → Q)

= (p → ((a → P) || (q → a → Q))
| q → ((p → a → P) || (a → Q))

Based on the law
(a → ) || (a → )
= (a → ( || )) .

44

→ i.connectline.i= (i.lifthandset

Teleconferencing Example
Telephones

 TELi
→ i.connectline.i⊕1

 TELS = TEL1 || TEL2 || … || TELN

→ i.hangup → i.disconnectline.i ⊕1→ i.disconnectline.i
→ TELi)

 Let i⊕ 1 = i +1 if i < N, and let i⊕ 1 = 1 if i = N

For conciseness,
not part of CSP

 LINEi

i1.connectline.i → i1.disconnectline.i

 LINES = LINE1 || LINE2 || … || LINEN

 NETWORK = TELS || LINES

= (i.connectline.i → i.disconnectline.i → LINEi
→ LINEi)

 Let i1 = i− 1 if i > 1, and let i1 = N if i = 1

Teleconferencing Example:
Lines

But have we
solved the
deadlock
problem? .

For conciseness,
not part of CSP

46

Teleconferencing Example
Solution of Deadlock Problem

Main Idea
 Install a guard that disallows all telephones to be

used at any one time
 In other words, install a guard that allows no more

than N−1 telephones to be used at any one time .

Teleconferencing Example
Solution of Deadlock Problem

 x : L means that one of the telephones is picked up

 x : H means that one of the telephones is hung up .

 Let L = {1.lifthandset, 2.lifthandset, ..., N.lifthandset}

“x : L” means “x ∈ L”

 Let H = {1.hangup, 2.hangup, ..., N.hangup}

47

“x : H” means “x ∈ H”.
48

Teleconferencing Example
Solution of Deadlock Problem
 Let GUARDi be a process that keeps a count i of the

number of phones currently used

i phones

.

49

Teleconferencing Example
Solution of Deadlock Problem
 Suppose no phone is currently

used
 If we pick up one phone, then total

no. being used = 1
 We write

GUARD0 = (x : L → GUARD1) .

0 phone

1 phone

Teleconferencing Example
Solution of Deadlock Problem
 Suppose 1 phone is currently

used
 If we pick up one more phone, then

total no. being used = 2
 If we hang up one phone, then total

no. being used = 0
 We write

GUARD1 = (x : L → GUARD2
| x : H → GUARD0) .

1 phone

2 phones

0 phone

51

Teleconferencing Example
Solution of Deadlock Problem

 Suppose i phones are currently
used (where i = 1, … N−2)
 If we pick up one more phone,

then total no. being used = i + 1
 If hang up one phone, then total no. being used = i - 1

 We write
GUARDi = (x : L → GUARDi+1

| x : H → GUARDi−1)
for i = 1, … N−2 .

i phones

i+1 phones

i−1 phones

Teleconferencing Example
Solution of Deadlock Problem

 Suppose N–1 telephones are
currently used
 The guard will not allow any further

telephone to be picked up
 If we hang up one telephone, then

total no. of telephones used = N - 2
 We write

GUARDN−1 = (x : H → GUARDN−2) .

N−1 phones

N−2 phones

Teleconferencing Example
Solution of Deadlock Problem

 NEW_NETWORK = TELS || LINES || GUARD0

0 phone

.

54

Teleconferencing Example
Verification
 Conventionally:

n Verify the implementation using test data, or
n Verify the specification using simulation

 But with 6N x 2N states
n The process is too complex
n The chance of revealing a failure is small .

55

Teleconferencing Example
Proof of Correctness
 Suppose N lines are being connected

n Since no more than N−1 telephones have been picked
up, some of them must be working with
teleconferencing

 Suppose less than N lines are being connected
n Some telephone can be connected to the spare line

 In either case, there is no deadlock .

Teleconferencing Example
Solution of Starvation Problem?
 Starvation problem is beyond the scope of this course

 .

56

57

Disadvantages of Formal Methods
 Formal methods may not be accepted by software

engineers
 Not intuitive, full of jargon
 Bottom up
 Lack of training
 Lack of track record
 Not supported by CASE tools
 Disregard of current practices

 The method may be very difficult for complex
systems .

From: username@cs.hku.hk
To: thtse@cs.hku.hk
The CSP assignment is really so difficult. I can tell
you that CSP is the most difficult language in the
world. I really feel depressed and helpless in the
past two weeks when dealing with the assignment.
... I really don’t know what to do instead of just
ignoring the assignment .

Disadvantages of Formal Methods

58

59

We are at the Crossroads

Precise User friendly

What about Other Engineering Disciplines?
Electrical Engineering

Precise User friendly

Do they treat the
two approaches
as a dilemma?
No ! .

Precise User friendly

Integrated Method

What about Other Engineering Disciplines?
Electrical Engineering

All circuit diagrams
are supported by
Maxwell’s equations .

Future of Software Engineering

Precise User friendly

Integrated Method
62

63

Future of Software Engineering
 Integrated method is beyond the scope of this course

 .

