Formal Methods

and B eyond | mportant part
of the course
Prof. T.H. Tse
/ Department of Computer Science
Email: thtse@cs.hku.hk
Web: hku.hk/thtse

Formal Methods

o Mathematical techniques that support rigorous
reasoning in software development and quality
assurance

o Examples

= Abstract models such as VDM, Z
Algebraic models such as OBJ3, FOOPS
m Concurrency models such as CSP, CCS, Petri nets

Category theory We will introduce CSP
First order predicate logic such as Prolog

Problems with Industrial Practices

+ Craft and not engineering

= Learn from experience We sell it as “an

= Trial and error iterative approach” ®
= No quality assurance
The profession is now where civil engineering was
in Greek and Roman times before they had calculus
and Newtonian mechanics

Advantages of Formal Methods

+ Consistent and unambiguous

+ Reduces coding time despite slightly longer time
for specification

& Proof of correctness
¢ Eases future enhancements

Motivating Example
Teleconferencing

o To save line charges, only N external lines
o A user picks up the hand set of phone i

1 phone communicates
with 2 lines

Requirements for teleconferencing system
+ System consists of N phones

+ They may use this phone to connect to 2 clients:

s External line i for 1 client
m Then external line i + 1 for 2nd client

¢ In case external line i + 1 is used by a user at

phone i + 1, they must wait

Teleconferencing Example

State Machine for TEL,

1.lifthandset / 1.requestline. 1
l.connectline.1 / 1.requestline.2
1.connectline.2 / 1.ready
1.hangup / 1.requestcut.1

1.disconnectline.1 / 1.requestcut.2

1.disconnectline.2 / 1.out

6 states

Teleconferencing Example
Sequence Diagram | Ling,

TEL, requests

USER | TEL, | LINE, | LINE,

1.lifthandset

1.requestline. 1
1.connectline.1

1.requestline.2

1.connectline.2

1 |
i]
1 f
1 T
1]
1 I
1 1
1]
1 1.hangup I l.requestcut.l
1]
1 f
1]
1 I
1]
1]

Teleconferencing Example

State Machine for LINE,

1
1.ready |
|
I
1.disconnectline.1 !
I 1.requestcut.2

! 1.disconnectline.2
l.out |
|

1.requestline.1 / 1.connectline. 1

1.requestcut.1 / 1.disconnectline. 1

2 states

Teleconferencing Example

Limitations of UML

+ Deadlock Problem in the Example " Eyerybody
= N users picked up the handsets waits forever
+ Starvation Problem in the Example | for second line

= Iftelephone i+1 is used very often, a user cannot
find a line for telephone i

+ Sequence diagram for one telephone is not
useful for solving these problems

+ State machine of one object is not useful either

Source: L. Mariani et al.

Example of Complex State Machine

I mpossible to solve
problemsvisually

Teleconferencing Example
More Limitations

. . Ll
+ State machine for all objects? L i / Lrsqmstine
N N Leomectlime. 1 / 1requedime 2
= 6N x 2Nstates B
m 20 736 states for N =4 I
= 2 985 984 states for N=6 s

Ldiscomnectline.2 / Lot

o 6Nstates for N
telephones
« 2Nstates for N lines

+ Too complex

Teleconferencing Example

Solutions to Limitations of UML

¢ The need for Concise = brief
m Concise but precise languages Precise = accurate

= Validation and verification methods

Validation = checking
with user requirements
Verification = checking
with the specification

Communicating Sequential Processes
(CSP)

Classic Reference

+ C.A.R. Hoare, Communicating Sequential
Processes, Prentice-Hall (1985)

= Also available at
http://www.usingcsp.com/cspbook.pdf.

+ Do not download unlessyou are an
experienced, advanced student
+ Ask me questionsif you don’t understand

Intuitively similar to

Events events in UML

¢ Internal events

—
s Examples: v f’
maketea 4

¢ Communication events
m Via some interface channel
s Format: channel.v

= Examples: coindot.$
hatch.tea

+ Denoted by lower case letters

Intuitively similar to

Processes state machine in UML

o A process is the behaviour pattern of an object
+ Denoted by upper case characters
= Examples. P
TEA MACHINE

Alphabet o

+ The set of events relevant to a given process
= Example

o TEA_MACHINE
= {maketea, coindot.$5, hatch.tea}

Prefix (a — P)

I ntuitive I ntroduction

¢+ (@a->P) Intuitively similar to
change of state (due

to event) in UML

(P}

e(@a->bO-oP)=@—>b—=P)

a .g[E =[an@]

Prefix Examples

+ TEA MACHINE + BAD_TEA MACHINE

= (coindot.$5 = (coindot.$5
— maketea — STUCK)
— hatch.tea

> END_OF SALES)

Prefix
@a—>P)

The brackets are
part of the syntax

+ Given a process P and an event a,
@—>P)
is a process, read as “athen P”

+ For conceptual simplicity, extend o.P to include “a”
+ Note the syntax:

s aoP?”? ® —

= (@a>b)?? ® + Yes, thisis correct
+ |t means

s Po5Q?? X (8 (b PY)

= (@>b->P)

Successful Termination
SKIP

¢ Previous Examplee END_OF_SALES
+ In general, simply write SKIP

Hint
¢ “1” in SK1P for success

Failure

STOP Termination Examples
+ Previous Example: STUCK + TEA MACHINE + BAD_TEA MACHINE
+ In general, simply write STOP = (coindot.$5 = (coindot.$5
— maketea — STOP)
Hint — hatch.tea
— SKIP)

¢ “0” in STOP for failure

Recursion Recursion Example 1
+ To model the behaviour o TEA_MACHINE
CLOCK = (tick > tick > tick > ...) = (coindot.$5
we write — maketea
CLOCK = (tick— CLOCK) — hatch.tea

— TEA_MACHINE)

Exercise
¢ Use recursion to model
CLOCK = (tick — tock — tick > tock — ...)

Recursion Example 2

o BAD TEA MACHINE
= (coindot.$5
— BAD_TEA_MACHINE)

ChOlce by Channel The two brackets are
(X.a — P yb — Q) part of the syntax

o The process behaves like P or Q, depending on
whether the communication channel is X or y

o “0” is read as “fetbar” The story goes
+ Example that this was a
t for “fatbar”
MACHINE Ypo tor 1atbar
= (coindot.$5

— (tea_button.press — hatch.tea— MACHINE
[icetea_button.press — hatch.icetea — MACHINE))

Ch01ce by Illpllt Value The two brackets are
(a - P | b— Q) part of the syntax

o The process behaves like P or Q, depending on
whether the event value isaor b

‘CI”

. 1s read as “choice”

+ Example
MACHINE
= (coindot.$5 — hatch.tea — MACHINE

| coindot.$10 — hatch.cappucino — MACHINE)

More Choice Example

NEW_MACHINE
= (coindot.$5 —
(coinglot.$5 — hatch.cappucino — NEW_MACHINE
[drink_button.press — hatch.tea — NEW_MACHINE)
| coindot.$10 —

(change button.press — change.$5 — hatch.tea
— NEW_MACHINE
[drink_button.press — hatch.cappucino
— NEW_MACHINE))

Interaction
No brackets added

X | | Y before or after X and Y

o Processes X and Y can start or finish at any time

+ Any potentially common event a (relevant to
both X and Y) must be synchronized

+ Intuitively similar to state machine interaction

{(GZED) MEEeEe)

+ But CSP does not distinguish between incoming or
outgoing event

Interaction Example 1

P—a—->P) |l (@=»a—->Q
+ Need to specify the characteristic of every event, e.g.,
= ais a potentially common event relevant to both P and Q

» and hence in both oP and o.Q

= pisaninternal event relevant only to P but not Q
= and hence in o.P but not 0.Q

m (is an internal event relevant only to Q but not P

= and hence in aQ but not oP

+ Only the common event a is synchronized

Interaction Example 1

¢ Processes (p — a — P) and (0 — a — Q) interact

o Intuitively [.M@] [.ﬂ,@i@] interact

¢ We write
(p>a—->P) || (g>a—>Q)

The 4 brackets are due to the original
processes, not added by interaction

I nteraction Example 1

Real Life Application

(p—a—>P)
::Q. : search connect
P phone no. phone
Only “connect phone”
(Ka — Q) is synchronized

. turn off connect
»>
airplane mode phone

Interaction Example 2

Consider two processes

¢ GREEDY_CUST

+ MACHINE

with 4 potentially common events
+ coindot.$5

+ coingot.$10

+ hatch.tea

+ hatch.cappucino

relevant to both processes

I nteraction Example 2

The Effect

Interaction Example 2

e GREEDY_CUST
= (coindot.$5 —
(hatch.tea — GREEDY_CUST
| hatch.cappucino - GREEDY_CUST))
interacts with:
MACHINE
= (coindot.$5 — hatch.tea— MACHINE
| coindot.$10 — hatch.cappucino - MACHINE)
o We need only write MACHINE || GREEDY_CUST
¢ What is the effect?

Laws

Interaction Example 2

i _Kmple 2
cov_cust

Interaction Ex:¢ 2

o MACHINE || GREEDY_CUST

= (coindot.$5 — hatch.tea
— MACHINE || GREEDY_CUST)

¢ Minimum set of axioms that are taken to be true,
to serve as starting points for formal reasoning

+ All other system behaviour can then be proved

Morereliablethan
human intuition

Laws
Examples
¢ P|Q=Q]|P Interactive processes may

¢ P|Q|IIR=P|QI|R be presented in any order
o P || STOP = STOP

Interactive processes may
be grouped in any way

Interacting with a failing
process will fail

Laws

Examples (Continued)

+ Given potentially common event a relevant to both P and Q,
internal event p relevant to P but not Q, and
internal event (] relevant to Q but not P,

s (poP)[(@a—>Q) Given one immediate internal
= (p— (P|(@a— Q))) |even, it will be fired

Given two immediate internal
p events, either one may be fired
»(P—=>P)[(@=0Q)

=(p=>PlE@->Q|a->((P->P Q)

Laws

Examples (Continued)

+ Given potentially common alphabets a and b relevant to
both P and Q,

= @->P)[@->Q =(a—>(PQ)

If both immediate common events agree,
successfully synchronized and fired

= (@ P)|[(b— Q) = STOP if azb

If immediate common events do not agree, interaction fails

Formal Reasoning Based on the Laws

+ For instance, we can then prove that

(p—a-P) || @—a-Q)
=(p~a—=a=>PIQ | g=p—a—=(PlQ))

Morereliablethan
human intuition

Proof

(p~>a—-P)|[(a»a—>Q)
= (p>(@>P)(@>a—>Q))
la>((p—>a—>P)|(@a>Q)))

Based on the law (p— W) || (0 — @)
=(p—>®@|(q—®)[g—>(p—>m|e))

Proof

@-P@-=Q)

@-P)l@-=Q) Based on the law
a—>(P||Q) (@a->mja—e)
a—(P||Q) o @ie)

Proof

(@a-P)l(g—-a-Q)
(p—a-=P)(@=Q)
= q—=(@->P)[(@a—>Q)
p—(@—->P)[(@a—>Q)

Basedonthelaw (p— M) || (a— ®)
=(p—>(W[(a—>9))

Teleconferencing Example :
For conciseness,
Telephones not part of CSP

o Lleti®@l=i+1ifi<N,andleti®l=1ifi=N

o TEL,
= (i.lifthandset — i.connectline.i — i.connectline.i ®1

— i.hangup — i.disconnectline.i — i.disconnectline.i @1
— TEL,;)

o TELS= TEL, || TEL, || ... || TELy

Teleconferencing Example: ;
For conciseness,

Lines not part of CSP

e letiol=i-1lifi>1,andletiel =Nifi=1

+ LINE
= (ii.connectline.i — i.disconnectline.i — LINE;

0iel.connectlinei — iel.disconnectline.i — LINE;)

¢ LINES= LINE, || LINE, || ...[ILINEN [Bt have we

solved the
+ NETWORK = TELS]|| LINES deadlock

problem?

Teleconferencing Example

Solution of Deadlock Problem

o Let L = {1 .lifthandset, 2.lifthandset, ..., N.lifthandset }
+ X: L means that one of the telephones is picked up

“X:L” means “xe L”

+ Let H = {1.hangup, 2.hangup, ..., N.hangup}
+ X: H means that one of the telephones is hung up

“X:H” means “xe H”

Teleconferencing Example

Solution of Deadlock Problem

Main | dea

+ Install a guard that disallows all telephones to be
used at any one time

o In other words, install a guard that allows no more
than N-1 telephones to be used at any one time

Teleconferencing Example

Solution of Deadlock Problem

¢ Let GUARD; be a process that keeps a count i of the
number of phones currently used

Teleconferencing Example

Solution of Deadlock Problem

+ Suppose no phone is currently
used

= [f we pick up one phone, then total
no. being used = 1

¢ We write
GUARDO =(x:L—> GUARD,)

Teleconferencing Example
Solution of Deadlock Problem

« Suppose | phones are currently
used (where i = 1, ... N-2)

= [f we pick up one more phone,
then total no. being used =i + 1

0 phone

1 phone

| phones

|+1 phones

» If hang up one phone, then total no. being used =1 - 1

¢ We write

GUARD, = (x: L - GUARD;,

| x: H— GUARD,_,)
fori=1,... N-2

1—1 phones

3 i i

Teleconferencing Example

Solution of Deadlock Problem

+ Suppose 1 phone is currently
used

» If we pick up one more phone, then
total no. being used = 2

= [f we hang up one phone, then total
no. being used =0

¢ We write

GUARD, = (x: L - GUARD,
| x: H— GUARD,)

Teleconferencing Example
Solution of Deadlock Problem

+ Suppose N-1 telephones are
currently used

m The guard will not allow any further
telephone to be picked up

= [f we hang up one telephone, then
total no. of telephones used =N - 2

¢ We write

1 phone

2 phones

0 phone

i

— 1 phones

N-2 phones

GUARD,_, = (x: H— GUARD,_,)

Teleconferencing Example

Solution of Deadlock Problem

o NEW_NETWORK = TELS|| LINES|| GUARD,

Teleconferencing Example
Proof of Correctness

+ Suppose N lines are being connected

m Since no more than N-1 telephones have been picked
up, some of them must be working with
teleconferencing

+ Suppose less than N lines are being connected
s Some telephone can be connected to the spare line

o In cither case, there is no deadlock

Teleconferencing Example
Verification

+ Conventionally:
m Verify the implementation using test data, or
m Verify the specification using simulation

+ But with 6N x 2Nstates
m The process is too complex
m The chance of revealing a failure is small

Teleconferencing Example
Solution of Starvation Problem?

+ Starvation problem is beyond the scope of this course

Disadvantages of Formal Methods

+ Formal methods may not be accepted by software
engineers
= Not intuitive, full of jargon
= Bottom up
= Lack of training
= Lack of track record
= Not supported by CASE tools
= Disregard of current practices
¢ The method may be very difficult for complex
systems

We are at the Crossroads

User friendly

&

Disadvantages of Formal Methods

From: username@cs.hku.hk
To: thtse@cs.hku.hk

The CSP assignment is really so difficult. I can tell
you that CSP is the most difficult language in the
world. I really feel depressed and helpless in the
past two weeks when dealing with the assignment.
... I really don’t know what to do instead of just
ignoring the assignment

What about Other Engineering Disciplines?
Electrical Engineering

Precise User friendly

0947‘2}* &c}& S
(z@/ . N

Do they treat the
two approaches
asadilemma?
No!

What about Other Engineering Disciplines?
Electrical Engineering

Precise User friendly
1 S

e, Q o)
Qééjlpc)/ Q&‘b"&b

All circuit diagrams

are supported by
Integrated Method | Maxwell’s equations

Future of Software Engineering

+ Integrated method is beyond the scope of this course

®

Future of Software Engineering

User friendly

&

| ntegrated Method

