

Final Year Project Group Report

Smartphone Accessories Creation Platform

Using Bluetooth Low Energy Devices

Supervisor: Dr. Vincent Lau

Arpit Brij Gupta (UID: 2012525208)

Debopam Sengupta (UID: 2012580002)

Suyash Agarwal (UID: 2012529694)

Yatharth Sharma (UID: 2012515837)

FYP 14017 Page 2

Table of Contents

Section Title
Page
No.

1 Project Objective 5

1.1 Problem Statement 5

1.2 The Current Market Solution 6

1.3 Project Solutions 7

1.3.1 Suggested Solutions 8

1.3.2 Final Solution 8

1.4 Refined Objectives 9

2 Project Background 11

2.1 Bluetooth Smart 12

2.1.1 Introduction to Bluetooth 4.0 12

2.1.2 Development with Bluetooth Smart 12

2.1.3 Technical Aspects of Bluetooth Smart 12

2.2 Texas Instruments SensorTag 14

2.2.1 Sensors 14

2.2.2 Applications of SensorTag 15

2.3 MIDBot iCard 16

2.3.1 Services 17

2.3.2 Applications of iCard 17

2.4 Application Development Platform 17

2.4.1 Catrobat 18

2.4.2 Pocket Code (Catroid) 18

2.5 Event-Driven Programming 21

2.6 Parse Cloud Platform 22

2.7 GitHub 23

3 Project Methodology 25

3.1 The Process 25

3.1.1 Risk-Driven Development 25

3.2 Use Case Model 26

3.2.1 Primary Actor(s) 30

3.2.2 Secondary Actors 30

3.3 Primary Use Case Flowchart 31

3.3.1 Use Case Analysis 32

3.4 Proximity Devices Flowchart 33

3.4.1 Use Case Analysis 34

3.5 Planned Modification of Pocket Code 34

FYP 14017 Page 3

4 Project Schedule and Milestones 36

 5 Mid-Term Progress 37

5.1 Analysis and Research 37

5.1.1 Catroid Source Code 37

5.1.2 Android APIs for Bluetooth 4.0 39

5.2 Initial Prototype 40

5.3 Modified Application 41

5.3.1 Front-end Development 41

5.3.2 Back-end Development 44

5.3.3 Sample/Example Apps 45

5.4 Risks Mitigated Until Mid-Term 48

5.5 Second Phase Plans 49

5.5.1 Road-map to Completion 49

5.5.2 Identified Drawbacks in Pocket Code 51

5.5.3 Risks to be Mitigated 52

5.5.4 Top Priority Tasks 54

6 Final Stage Development 55

6.1 Sharing Projects Using Parse 55

6.2 Multiple BLE Devices 58

6.3 Event-Driven Execution - the "WhenBrick" 61

6.4 Display Console Text 63

6.5 Interactions with MIDBot iCard 65

6.6 Finding BLE Devices in Proximity 67

6.7 Migration from Catroid to BLEnCode 69

7 User Guide 76

7.1 Creating Your First App! 77

7.2 Creating an App with BLE Sensors 82

7.3 Using the In-App Tutorials 85

7.4 Creating Applications which use Proximity Sensor 85

7.5 Sharing and Downloading Projects from Cloud 87

FYP 14017 Page 4

8 Pilot User Reviews 90

8.1 Familiarity with BLE 90

8.2 Usefulness of BLE to Apps 91

8.3 Most Useful Sensor on SensorTag 91

8.4 Least Useful Sensor on SensorTag 92

8.5 More Sensors? 92

8.6 MIDBot iCard Convenience 93

8.7 TI SensorTag Convenience 93

8.8 Ease of Use of Bricks 94

8.9 In-App Tutorials 94

8.10 Overall Lerning Experience 95

9 Potential Applications 96

10 Future Developments 98

10.1 How to Extend Our Project 98

11 BLEnCode - Legal 100

 References 107

FYP 14017 Page 5

1. Project Objective

1.1 Problem Statement

The task at hand is divided in to two broad spectrums which affect two different user groups. In

one instance, we wish to make application development easier and readily available for

younger audience (12-15 years). It is widely accepted that learning how to program a computer

and learning how to break down a problem into smaller components is a highly valued skill in

today’s generation. Many times, we tend to ignore the importance of learning some basic skills

from other domains that are beyond our studies that might help us gain a competitive edge

over our peers. In words of Steve Jobs, “Everybody in this country should learn how to program

a computer… because it teaches you how to think.” And this is true indeed.

In essence, majority of computer programming is problem solving using novel techniques and

tools. An early start in this field is vital for professional and personal growth. Main problem with

such endeavors is that they aim to teach programming in a confined and conventional manner

which includes highly technical software for teaching purposes (elaborate IDEs and high level

languages). This might work for an older age group but for younger kids, this might be

overbearing. We have analyzed this problem and through our final year project we aim to

implement a viable solution.

On the other hand, another aspect of our project is to investigate the role of smartphone

accessories in application development. In conventional use, smartphone accessories are either

used to push data from the smartphone and simply give output (e.g. watch, bracelet etc.) or are

used to input data and use them in a very restricted manner (e.g. pedometer for some

calculations). There is not much flexibility in this area where much can be done by utilizing the

data from smartphone accessories. Also, customizable application development is not

convenient as of now and is not an easy task to undertake. We aim to extend/create such

functionality in an application development platform that will allow for the inclusion of

Bluetooth Sensor data in the development logic.

FYP 14017 Page 6

1.2 The Current Market Solution

The current visual programming tools to help extend application development to

younger/aspiring developers are widely used in the industry today. Some of them are listed

below:

 Scratch – Scratch is a free desktop and online multimedia authoring tool that can be

used by students and teachers to easily create customized programs and provide a

stepping stone to the more advanced world of computer programming. Scratch allows

users to use event driven programming with multiple active objects called "sprites".

Sprites can be drawn – as either vector or bitmap graphics – from scratch in a simple

editor that is part of the Scratch, or can be imported from external sources, including

webcam.

 MIT App Inventor – App Inventor for Android is an application originally provided by

Google and now maintained by the Massachusetts Institute of Technology. It allows

anyone, including people unfamiliar with computer programming, to create software

applications for the Android operating system. It uses a graphical interface, very similar

to Scratch and the StarLogo TNG user interface, that allowes users to drag-and-drop

visual objects to create an application that can run on the Android system, which runs

on many mobile devices.

 Alice – Alice is an innovative 3D programming environment that makes it easy to create

an animation for telling a story, playing an interactive game, or a video to share on the

web. Alice is a teaching tool for introductory computing. It uses 3D graphics and a drag-

and-drop interface to facilitate a more engaging, less frustrating first programming

experience.

 Stencyl – Stencyl is a game creation platform that allows users to create 2D video games

for computers, mobile devices, and the web. Stencyl uses a highly intuitive block-

snapping interface inspired by the popular MIT Scratch project, which has proven to be

an effective teaching model with children as young as 6.

FYP 14017 Page 7

 Pocket Code – A visual programming language and app for Android smartphones and

tablets. It is inspired by Scratch and developed by the Catrobat team as free open

source software.

1.3 Project Solutions

During the Inception phase of the project, we brainstormed about possible

ideas/implementations as solutions for the identified objectives, as well as the problem

statement. We agreed that an optimal solution should include an intuitive user interface that

reduces the difficulty and effort spent on understanding basic operations of the platform. It

should also avoid very complicated syntax so that the development/programming/code is easy

for younger users to grasp and understand – this can be done by using everyday usage terms,

for example “Forever” instead of a “while(true)” for loops.

The toys and action figures of the previous generation have today been replaced by the

smartphones of today – more and more kids are using smartphones to spend their free time.

We want to take this as an opportunity (as have many mobile application developers) to create

a programming platform for mobile devices (smartphones) rather than desktop computers.

Moreover, we needed to solve the second aspect of the problem statement that to increase

flexibility in using data provided by Bluetooth devices as smartphone accessories. The solution

would involve integration of the programming platform with Bluetooth devices to enhance

flexibility in manipulating the data sent to them, and that received from them.

These integrative solutions would also help supplement our initial objective of pitching the

interest for application development among younger users. The younger generation is very

proactive in picking up the nuances of modern technological gadgets, and since they are very

easy to use, that is why the younger generation is very interested in learning more about them.

The modern gadgets allow for a virtually infinite set of possibilities as far as the younger

generation’s creativity is concerned, and this only encourages them to delve deeper into the

concept – like modern-day LEGO, kids are encouraged to experiment and understand practically

the actual working of a product. These gadgets and devices involve a major degree of wireless

FYP 14017 Page 8

communication (mostly using Bluetooth), and if we could incorporate the learning of

programming within the use of these interactive and fun accessories, it could be a

breakthrough in terms of how to generate interest of young learners towards coding. To tap

into the wireless communication aspect of modern gadgets, Bluetooth Low Energy (a.k.a.

Bluetooth Smart) is the optimal choice to begin new development practices because it is the

most power-efficient technology in the market and current as per modern day available

resources.

1.3.1 Suggested Solutions

When it comes down to implementation, we had three main ideas to follow through with.

1. Build our own visual programming language – Create a simplistic visual programming

language which can be utilized with a smartphone to allow simple programming

environments which rely on an intuitive user Interface.

2. Migrate Scratch to mobile – Partner with Scratch team at MIT for us to develop a mobile

version for their web software and then extend its capabilities to include easy

interaction with Bluetooth devices.

3. Enhance Pocket Code – Leverage the existing open-source Pocket Code application

which utilizes Catrobat visual programming language to create our own open-source

project which will allow us to implement our project goals by modifying its source code.

1.3.2 Final Solution

After careful research and consultation with the professor, we decided to go with the third

solution – to enhance Pocket Code.

The first idea of building our own visual programming language was eliminated because it

would not be very productive on our end, since a lot of other visual programming platforms

(such as Scratch) already exist across the industry. Examples of these are listed in Section 1.2

FYP 14017 Page 9

The second idea of migrating Scratch to mobile devices was eliminated primarily because it is

not open-source, and significant effort would be needed to partner with MIT and entirely re-

develop Scratch for mobile devices, whereas Pocket Code – an open source platform that is

inspired from Scratch itself – already exists as a visual programming tool for Android devices.

1.4 Refined Objectives

The goal of this project is to extend the capabilities of Pocket Code into a customizable, generic,

user-friendly Smartphone application that can interact with BLE devices. The extended version

of Pocket Code will have support for all the sensors in Sensor Tag and will serve as a model for

young and novice app developers (who are new to the concept) as a way of seamlessly

integrating external sensors within their app with the help of Pocket Code. This gives birth to a

new practice in software development where peripherals are used to receive meaningful data

for a mobile application contrary to majority Bluetooth peripherals in the market today which

are used primarily for data output (watches, speakers etc.)

The project will allow users to use drag-and-drop UI widgets and instructions to create their

own custom scripts or programs that will be sent to the System-on-Chip on Sensor Tag as

instruction sets to access and retrieve data from the selected sensors.

We understand that creativity is a major part of application development and younger age

group (12-15 years) is better equipped with this skill. We want to extend ready help and

support to beginners who want to learn how to build their own mobile application and

implement their creativity. The existing Pocket Code application comes with online tutorials

that may help a user understand in-app navigation but they give little explanation about logical

components of the script itself. These tutorials are not available within the application and a

user needs to change entire focus from development to online learning. We aim to incorporate

the concept of “In-app help” for such users whereby they will have access to help materials

which will introduce, explain and give examples about the logical components that are required

to make an application. This convenient option will not require the user to go through the

complex process of leaving the application and changing the focus from development to begin

FYP 14017 Page 10

an entire new learning process. The in-app help will supplement the development and learning

of the user by giving succinct explanations and examples just a tap away, while retaining the

user’s focus on the ongoing development.

Also, users will be able to use the drag-and-drop interface to use the data from Sensor Tag in

various ways to create their own applications. For example, a user might create a game that can

utilize some particular sensors (say Accelerometer) and integrate them in their own UI for

presentation purposes (say a car moves left on the screen when the Sensor Tag is moved left).

Since the UI will be based on Pocket Code, all development-related functionalities of Pocket

Code can be extended to the Smartphone application, integrating the interface from Sensor Tag

within it.

As a further enhancement, since the project is open source and encourages collaborative

creativity, we will offer users the ability to share their projects with others. For this purpose, a

database on our own server will be provided. Users can choose to either share entire projects

with particular users or with the whole Pocket Code BLE community by uploading their projects

to our database.

FYP 14017 Page 11

2. Project Background

The motivation for this project is to allow any user to improve and expand the capability of

their Smartphone using Bluetooth Low Energy (BLE a.k.a. Bluetooth Smart) technology and

involving sensor chips to collect real time data for various intents and purposes. Customizability

is our main vision for developing an easy-to-use platform to write data to and read data from

BLE devices like the Sensor Tag from Texas Instruments.

Software related to our project, which are available in the market, includes the following:-

 Texas Instruments mobile applications on iOS and Android platforms to interact with and

receive data from the BLE Sensor Tag, over Bluetooth.

 Pocket Code, based on Catrobat, is an on-device visual programming system for Android

devices. Catrobat is a visual programming language and set of creativity tools for

Smartphones, tablets, and mobile browsers. Catrobat programs can be written by using

the Pocket Code programming system on Android phones and tablets.

This project will open up a new platform for people to utilize the Texas Instruments Sensor Tag,

and moreover, utilize BLE technology in general. The project will enhance the utility of the TI

Sensor Tag which can be used for personalized applications for dedicated purposes other than

just as a general platform for sensor information.

The Smartphone platform that we will build as part of this project will involve enhancements to

the currently existing Pocket Code and can act as a customizable monitoring device. Users can

define the sensors involved as well as the application logic to read data from them over a

specific, customizable time-period. Such an application would allow BLE devices to act as data

reporting agents to any application made using the enhanced Pocket Code.

FYP 14017 Page 12

2.1 Bluetooth Smart

2.1.1 Introduction to Bluetooth 4.0

Bluetooth Smart (Bluetooth 4.0) is the latest and most power-efficient version of the Bluetooth

wireless technology. While the power-efficiency of Bluetooth Smart is very useful for devices

that do not have a very long lasting battery life, another very important feature is its ability to

work with an application on the smartphone or tablet you already own. Classic Bluetooth

provided effective means of communications between devices and this new version is a much

larger step to ease that communication. Bluetooth technology is widely used in several

industries like consumer electronics, PC peripherals and automotive. Many other industries also

seek to integrate the new technology because of its power efficiency and ability to connect to

smartphone apps — it is the perfect fit for a wide range of devices from heart-rate monitors to

cycling computers, as well as BLE Sensors like the Sensor Tag by Texas Instruments.

2.1.2 Development with Bluetooth Smart

According to the official Bluetooth website, “Bluetooth Smart is an application-friendly

technology supported by every major operating system. The technology costs less and offers

flexible development architecture for creating applications to bring everyday objects like heart-

rate monitors, toothbrushes, and shoes into the connected world and have them communicate

with applications that reside on the Bluetooth Smart compatible smartphones, tablets, or

similar devices those consumers already own. This means Bluetooth Smart developers are

limited only by their imagination.”

2.1.3 Technical Aspects of Bluetooth Smart

Bluetooth Smart extends the use of Bluetooth wireless technology to devices that are powered

by small, coin-cell batteries much like the ones used in the SensorTag. Bluetooth’s official

website claims that in many cases, Bluetooth 4.0 makes it possible to operate these devices for

more than a year without recharging. Key technical features of Bluetooth Smart are:

FYP 14017 Page 13

 Ultra-low peak, average and idle mode power consumption

 Ability to run for years on standard coin-cell batteries

 Lower implementation costs

 Multi-vendor interoperability

 Enhanced range (can be optimized to 200 feet)

Technical details from the official Bluetooth website, relevant to our project include the

following:

 Data Transfers – Bluetooth Smart (low energy) supports very short data packets (8 octet

minimum up to 27 octets maximum) that are transferred at 1 Mbps. All connections use

advanced sniff-sub rating to achieve ultra low duty cycles

 Host Control – Bluetooth Smart (low energy) places a significant amount of intelligence

in the controller, which allows the host to sleep for longer periods of time and be woken

up by the controller only when the host needs to perform some action. This allows for

the greatest current savings since the host is assumed to consume more power than the

controller

 Latency - Bluetooth Smart (low energy) can support connection setup and data transfer

as low as 3ms, allowing an application to form a connection and then transfer

authenticated data in few milliseconds for a short communication burst before quickly

tearing down the connection

 Range – Increased modulation index provides a possible range for Bluetooth Smart (low

energy) of over 100 meters

 Strong Security – Full AES-128 encryption using CCM to provide strong encryption and

authentication of data packets

FYP 14017 Page 14

2.2 Texas Instruments Sensor Tag

The award winning SimpleLink Bluetooth Smart SensorTag is designed to shorten the time and

effort needed by developers to create Bluetooth apps from months to hours. The SensorTag is

armed with six sensors which are controlled by a System-on-Chip, and these sensors provide

several useful data to users and developers for use in their app.

2.2.1 Sensors

The sensors included are:

 IR temperature Sensor – uses Infra-Red radiation to monitor current temperature of the

object it is pointed towards with typical +/- 1C accuracy.

 Humidity Sensor – The humidity sensor reports the relative humidity (%RH) and ambient

temperature. This is an integrated 12-bit relative humidity sensor with a 14-bit

temperature sensor.

 Pressure Sensor – The pressure sensor measures the barometric air pressure. This is a

16-bit pressure sensor with 16-bit temperature reading.

 Accelerometer – The accelerometer measures acceleration in 3 axes (X, Y, Z) with

programmable resolution up to 14 bit. The accelerometer can also measure direction of

gravity.

 Gyroscope – The gyroscope measures the rate of rotation in all 3 axes (X, Y, Z) with up to

16-bit resolution. Readings from the gyroscope can be combined with readings from the

accelerometer to determine the orientation of the SensorTag in 3-D space.

FYP 14017 Page 15

 Magnetometer – The Magnetometer measures the magnetic field in 3 axes (X, Y, Z). The

data from the magnetometer is usually combined with an accelerometer to make a

compass.

2.2.2 Applications of SensorTag

The versatility of the SensorTag means limitless app possibilities including those for health and

fitness, medical, educational tools, toys, remote controls, mobile phone accessories, proximity

and indoor locationing.

According to the Texas Instruments’ website, users can now create “Endless

'appcessories'” with their SensorTag devices. The website also states “With a SensorTag App

and no required hardware or software expertise, the kit removes the barriers to entry for

smartphone app developers who want to take advantage of the growing number of Bluetooth

Smart-enabled smartphones and tablets. The over-the-air download feature provides the ability

to update the SensorTag firmware from a central device like a smartphone, tablet or PC. This

simplifies the upgrade process and enables customers to develop new innovative features to

existing Bluetooth Smart equipment to satisfy consumers' endless needs.”

The SensorTag is the first Bluetooth Smart development kit focusing on wireless sensor

applications and it is the only development kit targeting smartphone app developers.

FYP 14017 Page 16

2.3 MIDBot iCard

MIDbot™ iCard is a wide-range smart card. It can make a class to be more interactive with an

app as there are buttons and LEDs that can feedback or be controlled during voting, selection,

lucky draw or gaming.

FYP 14017 Page 17

2.3.1 Services

The iCard offers some interactive services which can be utilized by young developers and

programmers:

 LED – The iCard has an LED whose color can be customized using RGB values. Also, the

time period and flashing style of the LED can be customized. This is a 8-byte service.

 Buzzer – The iCard has a Buzzer service, which outputs sound at customizable frequency

and loudness. This is a 6-byte service.

2.3.2 Applications of iCard

The MIDBot iCard can be used in various ways to create interactive apps. The Buzzer and LED

can be easily used to create voting, lucky draw or quiz apps. Such interactive services allow for

easy development for young developers.

The iCard can also be used in conjunction with other Bluetooth Smart devices like the

SensorTag to move one step further towards an Internet of Things. In such cases apps can be

built where the change in the value of a particular sensor of the SensorTag can sound the

Buzzer or light up the LED of the iCard.

2.4 Application Development Platform

The Application Development platform for our project needed to satisfy to broad purposes. It

should be easy to use for younger audience who want to understand and learn programming. It

should also be open source and customizable so as to extend the existing capabilities to include

BLE devices like TI SensorTag in the application development logic. After extensive research and

discussions with supervisor, we chose to use Pocket Code for the above purposes. Brief

descriptions of Pocket Code and its background are given in the following sections to introduce

the application development platform.

FYP 14017 Page 18

2.4.1 Catrobat

Catrobat is a visual programming language and utilizes simple drag-and-drop interface of

Catroid to make short programs. This makes learning application development very intuitive,

easy and interactive for a young user who is new to programming. Catrobat is open source and

is available for developers to contribute and enhance/extend existing application capabilities to

match other competitors including its inspiration project – Scratch. We have utilized the source

code of Catroid available for developers on GitHub to extend the existing capabilities of Pocket

Code to achieve our project objectives.

2.4.2 Pocket Code (Catroid)

The source code of Pocket Code (i.e. its project name) is known as Catroid. It is an on-device

programming system for Android devices. It works as an IDE for Catrobat programming

language. The user interface for Catroid is easy to use and uses intuitive actions to make an

application. Existing features of Pocket Code include:

 Making projects which use images (from Camera or Pocket Paint) as objects.

 Basic motion control for objects.

 Basic programming paradigms like if-else, loops, conditionals etc. can easily be

implemented in the script for any object for the program.

 Uploading a project to the developer community for discussion and sharing.

Pocket Code uses a Brick for forming the sequence of the user’s application. The programming

paradigms are provided to the user in the form of “Bricks”, which the user can then drag-and-

drop (one or more Bricks) to form the application logic. A combination of Bricks is executed

sequentially to maintain the flow of the user’s program. The following figure shows what a Brick

looks like:

FYP 14017 Page 19

Pocket Code classifies the types of Bricks available into five main Brick Categories, and each

category of Bricks has a different color. The categories are:

 Control: These Bricks manage the flow of control of the program, like “if-else” and

loops.

 Motion: These Bricks determine where to place an object during the run-time of the

program, like moving an object to a particular set of coordinates.

 Looks: These Bricks allow changing the look of an object during run-time of the program,

like changing the background or hiding an existing image on the screen.

 Sounds: These Bricks manipulate the sound output from the device while the program is

running, like saying a phrase such as “Hello World!”

 Variables: These Bricks maintain the values stored within program variables and also

allow manipulations on them, like adding one to the value of a counter variable.

FYP 14017 Page 20

We also identified some limitations of Pocket Code which are being worked on in the Catrobat

community:

 One major limitation is the inability to print text on screen. There is little support for

making apps that may need to display some information as text.

 Any app made on Pocket Code does not generate an .apk file that can be universally run

on any Android system. This problem is actively being pursued by the Catroid team and

hopefully there should be a solution to this problem soon.

 The Help feature available for young developers using Pocket Code only redirects to the

Pocket Code website using the mobile browser, making it ineffective if the user does not

have an internet connection.

FYP 14017 Page 21

 Pocket Code is only compatible with Android operating system, which reduces its

market potential. This is primarily because iOS does not support apps to make new

apps.

 There is currently no indentation to the Bricks added to a Script. As of now, all Bricks are

placed one under the other. There is no indentation to highlight similar parts of the

logic. So we will be modifying Pocket Code such that each If-else-if block is indented

properly for easy debugging.

2.5 Event-driven programming

 “Event-driven programming is a programming paradigm in which the flow of the program is

determined by events such as user actions (mouse clicks, key presses), sensor outputs, or

messages from other programs/threads.” – Wikipedia

Currently event-driven programming in Pocket Code is minimal, only supporting a functionality

that registers screen taps and particular message broadcast receivers within the app, as shown

in the screenshots below.

FYP 14017 Page 22

We need to implement and register other events as callbacks to the application in BLEnCode for

particular events coming in from the BLE devices that the app is connected to. Otherwise, to

appropriately receive data from sensor devices as well as proximity data, the application will

have to scan them continuously in a “forever” loop. This method of using callbacks for event-

based execution avoids the need of such loops.

2.6 Parse Cloud Platform

To facilitate easy sharing of applications by Users, it is necessary to have a community where

such creativity can be shared and other users can download and use shared apps. Pocket Code

currently allows users to upload their apps to the Pocket Code community. However, for

BLEnCode, a cloud-based platform was needed to store data about apps and users and make it

available to other users.

Parse is a cloud-computing platform which powers apps across different platforms like iOS,

Android, Windows Phone, etc. Parse provides the following functionalities which will be useful

to create the BLEnCode community to start sharing apps:-

FYP 14017 Page 23

1. Save data in the cloud

Parse handles everything needed to store data securely and efficiently in the cloud.

Users can store basic data types, including locations and photos, and query across them

without spinning up a single server.

2. Local Datastore

Parse Local Datastore will allow BLEnCode to use all the querying and security features

of Parse, even when there is no network connection on Android and iOS.

3. Built for Massive Scale

Every aspect of Parse Core, from Data to Social and Cloud Code to Hosting, is designed

with scalability in mind. Hundreds of thousands of apps access the Parse servers every

minute, so as the BLEnCode community grows larger, storage and retrieval of large

amounts of information will never be a hassle.

2.7 GitHub

“GitHub is a web-based Git repository hosting service, which offers all of the distributed revision

control and source code management (SCM) functionality of Git as well as adding its own

features. Unlike Git, which is strictly a command-line tool, GitHub provides a web-based

graphical interface and desktop as well as mobile integration. It also provides access control and

several collaboration features such as wikis, task management, and bug tracking and feature

requests for every project.

GitHub offers both paid plans for private repositories and free accounts, which are usually used

to host open-source software projects. As of 2015, GitHub reports having over 9 million users

and over 21.1 million repositories, making it the largest code hoster in the world.” – Wikipedia

We plan to use the free services of GitHub for collaborative coding and as a Version Control

System to manage our source code during the development of BLEnCode. GitHub also has

various public repositories of developers using Java code to interact with the System-on-Chip of

http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Distributed_revision_control
http://en.wikipedia.org/wiki/Distributed_revision_control
http://en.wikipedia.org/wiki/Source_code_management
http://en.wikipedia.org/wiki/Command-line
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Task_management
http://en.wikipedia.org/wiki/Bug_tracking_system
http://en.wikipedia.org/wiki/Software_feature
http://en.wikipedia.org/wiki/Software_feature
http://en.wikipedia.org/wiki/Repository_(revision_control)
http://en.wikipedia.org/wiki/Open-source

FYP 14017 Page 24

the Texas Instruments SensorTag, which we can use in our project to integrate with Android

APIs. The repository for Pocket Code (Catroid) is also publicly present on GitHub for developers

to use and modify.

Another purpose for using GitHub is to promote further developments and enhancements to

our own BLEnCode application. Developers can easily extend our project by following the

guidelines and our source code – both of which are going to be available on our GitHub project

repository.

FYP 14017 Page 25

3. Project Methodology

For the purposes of this project, we have made milestones for various parts of the project. In

the given methodology, we have attempted to elaborate upon the following: use-case analysis;

a detailed explanation of the functionalities to be extended in Pocket Code app, and some

insight to the enhancement strategy for the same.

3.1 The Process

The initial guidelines/scope provided to us was very broad, including modification of Pocket

Code to make it friendlier for young users and also modification of the TI SensorTag to

introduce different features in the System-on-Chip like local storage of data.

Hence, the project started out rather cloudy until the scope was refined to focus on the

modification of Pocket Code. After some important tasks and objectives of the project, such as

integrating Pocket Code with TI SensorTag using Bluetooth Smart, were clearly understood, we

did our initial research on the topics to determine the risks involved in the project.

From then on, the Risk-Driven Development process was followed.

3.1.1 Risk-Driven Development

Risk is a major driver in our project and we aim to mitigate the biggest risks earliest in our

development cycle. The steps in this process are shown in this diagram:

FYP 14017 Page 26

The biggest risks identified were:

 Understanding Pocket Code source code (Catroid)

 Modifying Catroid to connect to, send instructions to and read data from SensorTag.

 Creating our own server and database to facilitate sharing of Pocket Code apps between

users.

 Integrating the modified Pocket Code with the local offline storage system on TI

SensorTag System-on-Chip implemented by Globalactive Technologies Ltd.

3.2 Use Case Model

Our use-case analysis conforms to the UML type representation. We have tried to represent the

working of the application using a flowchart that details the various steps involved in the

execution of the application. To incorporate data connections with BLE devices such as the

Sensor Tag, we will modify the existing Pocket Code application to interact with the sensors, as

detailed in this methodology.

We have identified the following Use Cases for our application:

1. Make a new App using visual programming

FYP 14017 Page 27

The first use case is to allow users to use existing Pocket Code functionality along with some of

the enhancements we would introduce to create regular apps, which may not interact with any

Bluetooth devices. One of the risks in this use case was identified to be to perform continuous

regression testing to ensure that none of the new modifications would break existing Pocket

Code features.

2. Make a new app using BLE Sensors to receive live data feeds

Our primary use case is to allow users to connect to Bluetooth devices through our app

BLEnCode, to access live data from BLE devices and use it in their apps. The Bluetooth devices

supported are TI SensorTag and MIDBot iCard. Bluetooth 4.0 APIs for Android are extensively

used to support this use case.

3. Using tutorials to understand functionality

FYP 14017 Page 28

Another use case for our application is to allow young developers (aged 12-15 years) to learn

programming in an easy format. This requires us to provide them with in-app tutorials

throughout so that our audience can understand some of the basics of programming (like loops,

conditionals, etc.) easily. Also, new technologies like Bluetooth and related functionality can be

introduced through such tutorials.

4. Use RSSI to find BLE devices in proximity

An important use case for our project was to make use of Bluetooth 4.0 technology to use the

aforementioned Bluetooth devices as Proximity Sensors through signal strength. This would

accomplish two goals. It would allow users extended freedom to use their BLE devices in a

connectionless state through their application. Also, it would allow young developers to learn

about new concepts like MAC Addresses and RSSI values of such devices.

5. Sharing your own and downloading other users’ projects

FYP 14017 Page 29

The final use case for BLEnCode is to allow users to share their creativity by allowing them to

share the apps that they create on a cloud platform, where all other users will be able to see

and download their apps onto their local devices. The cloud platform is built using Parse cloud

computing service.

The complete, comprehensive use-case model for our entire project is shown in the following

diagram:

FYP 14017 Page 30

3.2.1 Primary Actor(s)

As shown in the UML diagram, the primary actor for our application is the Smartphone app user

– including a wide range of audience, children, adults or developers. The User is our primary

stakeholder, interested in making a customized application using the drag-and-drop interface

on their Smartphones using BLEnCode. The User may also want to use data from BLE devices

like the Sensor Tag and incorporate them in the application logic in their Pocket Code

applications. This can be done seamlessly within the Pocket Code’s original drag-and-drop user

interface – as explained in the use-case descriptions above. The User wants to run their custom-

built application (games, tools, etc.) on their smart device which utilize and/or display

computations and/or animations based on the sensor data and app logic. Finally, the User can

also share their own project/application with other users in the BLEnCode community.

3.2.2 Secondary Actors

The user will have ready access to help materials and tutorials from within the app that will

explain basics like how to use a particular ‘Brick’ or ‘Sensor’. This will be particularly useful

when dealing with sensor bricks as their initialization and logic manipulation might not be very

intuitive for all users. This help material will also be very useful for younger users who are new

to programming and aspire to learn more about application development in their formative

years.

The other secondary actors in our use case are the Pocket Code engine (Catrobat), Bluetooth

4.0 framework, the Texas Instruments Sensor Tag, the MIDBot iCard and the Parse cloud

computing database framework. The Bluetooth 4.0 framework supports applications acting as a

sender or receiver of data while communicating with classic Bluetooth or BLE devices. The

Sensor Tag’s System-on-Chip houses various sensors that can interact with the Smartphone

(and by extension, BLEnCode) through the Bluetooth Smart framework. The interactions with

the MIDBot iCard work similarly using Bluetooth Smart. Parse Cloud storage allows users to

share their projects with the community.

FYP 14017 Page 31

3.3 Primary Use Case Flowchart

FYP 14017 Page 32

3.3.1 Use Case Analysis

Once the user opens BLEnCode, he/she will have the following options:

 Create a new application

 Modify an existing app

 Run a previously created app

 Explore projects by others on the community

 Upload their application to the Pocket Code community

The flowchart above illustrates the primary backend/application process for creating/modifying

an app on BLEnCode. When the user wants to create a new app or modify an existing one, he

sees the drag-and-drop user interface. Here, he can combine widgets called “Bricks” with

different functionalities like flow-of-control, inserting sound effects, controlling motion of

objects, using sensors from SensorTag and/or outputting to MIDBot iCard to create

applications.

If the application does not utilize BLE devices, then the BLEnCode engine will run the program.

However, if the application uses the extended functionality by using BLE devices then the

Smartphone tries to connect to all specified BLE devices, and once all the connections are

successful the application activates the relevant sensors on the devices to get live feed from the

connected SensorTags and/or MIDBot iCards or any other user-defined device if the user can

register the appropriate callbacks within the application source code. During this time, the

application either performs the user-specified actions, or else it stands-by to receive data that is

pushed from the SensorTags in real-time.

FYP 14017 Page 33

3.4 Proximity Devices Flowchart

FYP 14017 Page 34

3.4.1 Use Case Analysis

To locate BLE devices in proximity, the User will need to set a limit for the RSSI value, which will

indicate whether a device is “in range”. A default value will be set for new users who might be

unfamiliar with the concept of RSSI. Either using event-driven programming, or a “forever” loop

to continuously scan for devices, when a specified device is found by the application, it

proceeds to execute the actions specified by the user in the application script.

A foreseen risk in this particular scenario is that RSSI varies logarithmically with distance. Also,

the fact that RSSI values are unstable, often due to the surrounding environment, could prevent

accurate distance calculations and locationing. Also, another major challenge could be to

continuously receive RSSI data from all BLE devices within the specified proximity. Extensive

research into Bluetooth 4.0 APIs for Android would be needed to fulfill this use case.

3.5 Planned modification of Pocket Code

The current Pocket Code version does not support any Bluetooth functionality. Thus the

planned modifications of Pocket Code will include:

 Creating new Catrobat Bricks on Pocket Code to allow connection to SensorTag.

 Allowing users to monitor selected sensors from the SensorTag.

 Parsing raw data from SensorTag to provide easily-understandable data.

 Making sensor values easily available to users for use in their apps in various ways.

 In-app Tutorials to facilitate quick learning for young developers.

 Facilitating easy sharing of Pocket Code apps amongst users.

 Connecting multiple BLE devices to a single Pocket Code app, including a limited

maximum of SensorTags and MIDBot iCards.

FYP 14017 Page 35

 Event-driven program execution style.

 Provision to be able to display console text (similar to “echo”).

 Locating BLE devices in proximity using RSSI.

The modifications on Pocket Code will be performed incrementally, and each modification will

be extensively tested using prototype applications before the next improvements are made.

This will include understanding and then changing the Java source code of Catroid to

incorporate the planned changes.

FYP 14017 Page 36

4. Project Schedule and Milestones

FYP 14017 Page 37

5. Mid-Term Progress

After considerable effort spent on reviewing and refining the scope of the project, the focus

was on tackling the biggest risks identified – thoroughly understanding the source code of

Pocket Code, and then being able to connect a Pocket Code app to the TI SensorTag to read and

write data to and from the BLE device.

5.1 Analysis and Research

We first spent time devising a plan to conduct needs analysis about how we should make the

interface and the Pocket Code “Bricks” as user-friendly as possible. We wanted to make the

usage of all BLE technologies in Pocket Code appear at a high level of abstraction to the

viewers. This was to assist younger programmers understand and utilize these features quickly.

5.1.1 Catroid Source Code

As part of the Risk-Driven Development strategy, we focused on tackling and solving the biggest

risks of the project in the early stages as a reliable resiliency measure. We planned to create an

initial vertical UI prototype to gain some feedback on our approach. Creating this prototype

required us to research the Java source code of Catroid to see how the entire system was

architected. Several modules were scanned to understand the UI of Pocket Code and make

some additions to it.

The architecture of the entire Catroid application is shown in the diagram below. All packages

are squares and the classes are circles. The packages that have been modified are highlighted in

purple, while the classes that have been modified are highlighted in light blue.

FYP 14017 Page 38

FYP 14017 Page 39

5.1.2 Android APIs for Bluetooth 4.0

Also, for the purpose of this prototype, research was done on the Android APIs for Bluetooth

4.0 framework so as to understand how the Android OS works with Bluetooth 4.0 technology.

This was done using informative YouTube channels and official Android documentation.

According to the Android Developers website, “Android 4.3 (API Level 18) introduces built-in

platform support for Bluetooth Low Energy in the central role and provides APIs that apps can

use to discover devices, query for services, and read/write characteristics. In contrast to Classic

Bluetooth, Bluetooth Low Energy (BLE) is designed to provide significantly lower power

consumption. This allows Android apps to communicate with BLE devices that have low power

requirements, such as proximity sensors, heart rate monitors, fitness devices, and so on.”

Key features and concepts involved in modifying Pocket Code are:

 Generic Attribute Profile (GATT) — The GATT profile is a general specification for

sending and receiving short pieces of data known as "attributes" over a BLE link. All

current Low Energy application profiles are based on GATT.

 Characteristic — A characteristic contains a single value and 0-n descriptors that

describe the characteristic's value. A characteristic can be thought of as a type,

analogous to a class.

 Descriptor — Descriptors are defined attributes that describe a characteristic value. For

example, a descriptor might specify a human-readable description, an acceptable range

for a characteristic's value, or a unit of measure that is specific to a characteristic's value.

FYP 14017 Page 40

5.2 Initial Prototype

The UI prototype that we created consisted of a new Brick Category called “BLE Sensors” (as

shown in Figure 6). This category was added onto the existing categories of “Control”,

“Motion”, “Looks”, “Sounds” and “Variables”. In the category of BLE Sensors, a new Brick was

added, which allowed users to choose a sensor from the SensorTag via a drop-down list. The

functionality of this Brick was hard-coded to just turn on Bluetooth, as part of the UI prototype.

We gathered feedback on this prototype through a meeting with our supervisor, where he

guided us as to how we could make the data from a SensorTag available to the user in a

representation with a higher level of abstraction (decimal numbers instead of hexadecimal

numbers) so that young users do not have to concern themselves with the math involved in

handling raw data and understanding 3-dimensional data. After gaining some positive feedback

on this approach, we proceeded onto developing some more functionality by adding features

to new Bricks.

FYP 14017 Page 41

5.3 Modified Application

After the prototype was verified by our supervisor, we made several modifications to the

existing Pocket Code application to reach our current stage. The modifications can be easily

classified into two parts – front-end and back-end development.

5.3.1 Front-end Development

Front-end development mostly involved understanding the UI of Catroid and adding features to

it like new Bricks, new items in ListViews, creating drop-down lists to allow users to choose

values and adding items to the Formula Editor UI. The Formula Editor is the part of Pocket Code

that allows users to use numeric values as well as values from sensors, etc. to perform several

tasks like create Boolean conditions, set value to variables, etc. The front-end development

majorly includes:

 New Brick added to turn on Bluetooth, and then connect to SensorTag

FYP 14017 Page 42

 New Brick to choose which sensor is to be accessed in the current Pocket Code application

 Sensor values accessible by the Pocket Code app through ‘Formula Editor’, parsed to a

certain level of abstraction for easy use by younger users

FYP 14017 Page 43

 Vertical prototype for short tutorial explaining the functioning of a brick that the user may

be initially unfamiliar with.

FYP 14017 Page 44

Since we assume that the user has no prior knowledge of anything required to create apps on

Pocket Code, the front-end needs to be as clean and user-friendly as possible. The heavy

computations with values from TI SensorTag and other external operations like connecting to

Bluetooth devices, registering callbacks, etc. are done in the back-end.

5.3.2 Back-end Development

The back-end of Pocket Code is highly complicated as Catroid actually runs user-made apps as a

sequence of instructions using a customized interpreter. In this project, we added some

functionality to integrate the front-end development with the core logic of the modifications

we have made on Catroid.

 To connect to SensorTag, the app:-

o Asks user permission to turn on Bluetooth

o Scans for Bluetooth devices, and user chooses a SensorTag device from the list

shown

o Connects to the SensorTag using ‘GATT profile’ (a.k.a. GAP)

 To access a particular sensor, the app:-

o Enables the selected sensor on SensorTag by writing a ‘Characteristic’ to it

o Reads data from the selected sensor

o Switches on ‘live updates’ to ensure that SensorTag will ‘push’ live data to the phone

upon a change in the value of the sensor, or every second, by writing a ‘Descriptor’

to it

 Sensor values are accessed by the Pocket Code application using the procedure as follows:-

o Formula Editor displays the various available sensor values, which the user can

select

FYP 14017 Page 45

o The app parses boolean conditions involving the selected sensor values.

o The app parses raw hexadecimal data from the SensorTag into easily understood

decimal values. The mathematical computations involved were achieved using codes

already provided in Texas Instruments applications.

o The parsed values have a high level of abstraction – for example, data from x, y and

z axes and absolute scalar values

 For users that are unfamiliar with the details of a particular brick, the user can press a brick

to access a quick in-app help/tutorial explaining the functionality of the brick. This appears

in a pop-up dialog box.

o This has been implemented in such a way that if a developer ever attempts to

introduce a new brick, they will be forced to override the text field containing a

tutorial for that brick.

5.3.3 Sample/Example Apps

To demonstrate the functioning of the currently modified Pocket Code, we made three example

applications on Pocket Code that utilize three different sensors in the SensorTag.

 Temperature Alarm: The Pocket Code app connects to the SensorTag and starts monitoring

the temperature sensor continuously. If the temperature read by the sensor goes beyond a

certain threshold (which can be determined by the user depending on the room

temperature and the object whose temperature is to be measured) then the phone will

output a beeping sound and the screen will change the color.

 Treasure Hunt: The Pocket Code app connects to the SensorTag and starts monitoring the

magnetometer sensor continuously. If the magnetic field read by the magnetometer goes

beyond a certain threshold (which can be determined by the user depending on the

strength of the magnet involved) then the phone will output a beeping sound and the

FYP 14017 Page 46

screen will change the color. The thresholds, ranges, screen display upon entering a range

as well as the sound output in a particular range can all be customized by the user while

developing the application.

FYP 14017 Page 47

 Crazy Taxi: This is a short game that utilizes the gyroscope sensor in the SensorTag for the

user to control the movement of a Taxi on the screen, trying to avoid obstacles on the way.

The frequency of generating the obstacles as well as the number of obstacles can be easily

customized by the user. If the player tilts the SensorTag to the left, the taxi goes one lane to

the left and the taxi moves one lane to the right if the SensorTag is tilted to the right. If the

taxi crashes into any obstacle, the game is over and the user’s score is recorded. This score

can be shared with an online community on a “Leader board” in a further enhancement to

this application.

FYP 14017 Page 48

5.4 Risks Mitigated Until Mid-Term

By following the Risk-Driven Development process, we have so far identified and effectively

overcome/mitigated a few of the biggest risks involved in the project, which we had identified

earlier.

 We have created and defined the front end as well as back end logic for additional

bricks in Pocket Code to communicate with SensorTag.

 Successfully connecting the SensorTag with Pocket Code within an application.

 A user-made Pocket Code application can receive and parse sensor data with back end

mathematical calculations already implemented, so specific sensor data (like the degree

of rotation in z-axis, from the gyroscope) is easily available in the ‘Formula Editor’.

FYP 14017 Page 49

 Back end logic for helps and tutorials has been implemented and is easily accessible for

new users that are unfamiliar with the functioning of a particular brick. It has also been

made very easy for a developer who plans to modify Catroid source code at a later stage

to add a quick tutorial when implementing the core logic for any new Brick.

5.5 Second Phase Plans

Having completed the prototype, we have touched the half way point of our project. Following

our risk driven development approach, we have covered some major risks that we identified in

the project plan which have been detailed in previous sections. Here we elaborate about our

plans for the next phase of our project and the vision we have for the final deliverable. This is

made after feedback gained from first phase presentation and further discussions with our

supervisor.

5.5.1 Road-Map to Completion

 As of now, we have implemented the feature of integrating a few sensors of SensorTag with

a restricted number of bricks. These bricks are the bricks that allow the user to connect to a

specific sensor. During the next phase we will extend the implementation to integrate ALL

sensors and bricks in SensorTag and Pocket Code respectively.

 Just the way we will integrate sensors and bricks, we will be providing tutorials for all the

bricks available in Pocket Code. As of now, the tutorials are available for some of the bricks

like "Connect to SensorTag” and for the “Monitor Sensor” brick. The tutorials will be

extended to the bricks originally provided by Pocket Code such as the conditions and loops

as well as for features such as bricks related to sensor accesses and all other enhancements

done by us.

 A major task ahead is to explore the possibility of multiple devices connectivity across

SensorTag and smartphone and vice versa. This task extends to integrating many more

FYP 14017 Page 50

types of BLE devices into one application so that more elaborate applications can be made.

This will also include changing the user interface of the existing application. As of now,

various sensors of the SensorTag are listed as multiple different vectors. For example, the

magnetometer gets listed as four different sensors – one for each axis of movement, and

one absolute value calculated as the scalar magnitude. This is certainly an inconvenience to

navigate as multiple sensors will include many more such sensors and this will result in a

very cumbersome list that is difficult to navigate. We plan to clean the user interface from

such a list and display the sensors for each device separately as another drop-down list in

the application. Moreover, we also plan to implement the integration such that more than

one application developed on Pocket Code could be connected with one or more BLE

devices.

Dependency: Modification of the firmware of System-on-Chip of SensorTag and other BLE

devices.

 We plan to use the RSSI data provided by the sensors such that the user can be notified if

the mobile device is moving away from the BLE device after a certain threshold. We also

plan to provide an option to the user to use this data along with the 6 sensors provided by

SensorTag and others provided by other BLE devices.

 As our modifications to Pocket Code are unique to our development and are not recognized

by the Catrobat community as we include BLE sensor in our Scripts, sharing the apps made

by users using our version of Pocket Code is not available yet. However, it is highly likely

that our users will like to share their creativity with their friends and the larger community.

So, we are looking forward to provide this option to our users to store their application on

the internet or share their apps through the Pocket Code community. After some

brainstorming, we came up with the following possible options:

 Solution 1 – Provide an option to users in Pocket Code which will allow them to

upload their applications to a database on a server owned by us, which will connect

and allow sharing of apps developed on the enhanced Pocket Code provided by us.

FYP 14017 Page 51

Dependency: Availability of an appropriate online database and server.

 Solution 2 – Provide an option to users to email their application to themselves or to

their friends.

 Solution 3 – Provide an option to users to store their application on the SD card of

their phone from where they can share it with their friends.

Dependency: Ability to extract the whole user-made application including all the objects in

the application, as well as their scripts.

 As of now, Pocket Code (as well as our enhancement to it) has the same User Interface for

both mobile phones and Tablets. However, the screen sizes of tablets are considerably

larger than that of mobile phones. Having realized that a lot of space is being wasted on

tablets, Professor Lau gave us an amazing idea of utilizing this space by dividing the screen

into 2 parts. We are planning to implement a feature on tablets such that one part of the

screen shows the Scripts and allows the user to add bricks, while the second part provides

visual changes at real-time to the User Interface so that the user gets an idea of how his or

her changes affect the application developed by him or her. For example, if the user adds a

brick for move object, the visual area can show how the object will move in the application.

 We have developed a few fun games and utility applications using Pocket Code and

SensorTag. In future, we are planning to develop and provide a few more of such

applications to the user with Pocket Code, so that they act as sample programs and

guidance to users on what they can do with Pocket Code as well as how can they affectively

use the bricks.

5.5.2 Identified Drawbacks in Pocket Code

While doing our research on Pocket Code, to understand the usage of Pocket Code and to get

ourselves familiarized with the application we explored the app by writing some scripts and

FYP 14017 Page 52

developing experimental/probing applications. During this time, we noted some basic features

that we think are important when we develop any application and found them missing in

Pocket Code. So, during our next phase, we plan to upgrade Pocket Code further with the

following improvements:

 Provide an option to print out values of the variables on the screen. As of now, the user

can only use images or sound for output. So, we can implement a feature that will

output user-defined text.

 Provide an option to write the script in an event-driven format. As of now, the user can

only repeatedly check for an event to occur. So we will be extending the Catrobat

language to allow certain scripts to be executed immediately when an event occurs,

such as change in the value of a variable.

 Provide an option to break out of loops inside the script on change of conditions, as a

user might want to execute a loop only until a certain condition is met.

5.5.3 Risks to be Mitigated

Following the Risk-Driven Development approach four our project, as mentioned before in

Section 5.4 we have mitigated the major risks associated with the project’s initial phase.

Similarly, before going ahead with the implementation of further features, we have identified

the major risks that still need to be mitigated.

 We have tried to connect many SensorTag devices to one application. However, we have

not achieved much success in this area yet. As of now, our Pocket Code enhancement is not

scalable enough to recognize multiple SensorTags. During the development, we will have to

hardcode the number of SensorTag devices and the associated sensors with them. So, we

need to do more research on this area and our past experiences with the implementation of

this feature has taught us that it is a major risk that we would face during our second phase

of development process. Moreover, we also plan to provide a feature so that the users can

FYP 14017 Page 53

connect to more than one type of BLE device to the same application, such as connect the

application to a SensorTag and a BLE iCard. Integration of both devices to work together has

been identified as a major risk. The option to connect to multiple devices also requires us to

modify the User Interface. This is a challenge too as it will require us to refactor the source

code associated with the UI for BLE enhancement.

 After the enhancements made to Pocket Code by us, the users can no more upload and

share their applications with the Pocket Code community. So, as said earlier, we plan to

provide this feature by either providing a feature to upload their work on a database on a

server hosted by us or allow them to share it through email or store it on the SD card.

However, the implementation of this feature is a challenge as we still need to find an

appropriate online database and a server service, and a way to extract the whole user-made

application including all the objects in the application, as well as their scripts.

 The User Interface of Pocket Code after our first phase of development is same for mobile

devices and tablets. However, after the second phase of development, we plan to provide

additional features on tablets due to availability of a lot more space. The feature of “live

editing”, which means providing a real-time visual representation of changes made by the

user on the script, seems to be a challenging task at hand.

 Before releasing the application to the market we need to assure that it is robust and

suitable for users. So, thorough integration testing will be required for effective quality

assurance. We assume that this will provide us with some insights into the gaps that we

might have left open during our development process. As we do not know the size of these

gaps, we take the worst case scenario and accept this as a reasonable risk.

 Today the app stores are filled with millions of applications. It is surely a challenge to stand

out in the market – we need to come up with an effective marketing plan. Moreover, we

are focusing our market audience to be 12-15 years old kids who are interested in how

mobile applications are developed. This is an age group which is fickle in their loyalty and

FYP 14017 Page 54

likings, and therefore, getting their attraction will be a major challenge that we will be

required to overcome.

5.5.4 Top Priority Tasks

1. Complete and more robust implementation of all sensors in SensorTag. A buggy application

is its own enemy. The more the number of bugs, the less the people will like to use the

application, no matter how great the idea behind it is. So, our top priority right now will be

to complete the implementation of integration of all sensors in SensorTag and to all sensor

bricks in Pocket Code. After completing the implementation, we will be doing thorough

testing of the application. As parts of the project have been developed in groups and

integrated together, thorough integration testing will be required. Along with testing, as the

target users will mostly be beginners to the programming world, we will be extending

effective and interesting tutorials to all the available bricks of Pocket Code.

2. Complete the implementation of connecting multiple sensors and modify the User Interface

of Pocket Code accordingly. Such implementation has been one of our initial deliverables

and a branch of our ongoing research focuses on this. It is of utmost importance to our

project as integration of multiple sensors can increase the possibilities of the applications

developed on Pocket Code manifold. We hope to achieve this and create more applications

with such a feature.

3. Provide the feature to share and upload applications developed on enhanced Pocket Code.

This is crucial for collaborative development and resource sharing between various

developers who will use our enhanced Pocket Code to build their own apps and bring their

ideas to live. We have reduced it down to 3 possible solutions as of now and in the coming

few weeks we would start implementing our final solution after completing our research on

this field.

FYP 14017 Page 55

6. Final Stage Development

After the Mid-Term milestone of Elaboration phase, we presented our progress to Dr. Vincent

Lau (Project Supervisor), Dr. T. W. Chim and Mr. George Mitcheson. After taking their feedback,

we set out to develop on BLEnCode further with well-refined goals and plans. The following

sub-sections describe our progress throughout the second semester – The Construction phase.

The Construction phase is where the majority of the system is built on the foundation that was

laid during the Elaboration phase of the first semester. We implemented different features

within different time-boxed iterations of roughly 10 days each. Detailed descriptions of the

features of the final app are as follows:-

6.1 Sharing Projects Using Parse

Since BLEnCode projects/applications cannot be shared over Pocket Code servers, we needed a

way to allow users to share their BLEnCode apps. As discussed before in Section 5.5.1, we had

three possible solutions and the best one was having our own server on which users of the

BLEnCode community could register, upload and download projects seamlessly without having

to switch to emails or having to save on an external memory device. To achieve this we used

the services of Parse cloud computing platform, which allows Android (among other

Smartphone platforms) applications to interact with the cloud database for various CRUD

(Create, Retrieve, Update, Delete) purposes.

The ‘Parse Core’ back-end allows us to create an online database of BLEnCode projects and

users’ accounts. It contains information about the projects including the scripts within the

project, a short description, the username of the uploader as well as a timestamp of the first

and latest updates to the application. Following is a screenshot of the projects database table in

the back-end:-

FYP 14017 Page 56

In the front end, there is an option for the user to share their project. The details of the

application are consolidated into a .zip file and uploaded to the Parse server in the background

if the user chooses to share the project.

FYP 14017 Page 57

To view other users’ BLEnCode projects, the user can tap on “Explore” in the launch screen of

the app. This opens a list view of all shared projects, with details such as project name as well

as the username of the uploader.

FYP 14017 Page 58

6.2 Multiple BLE Devices

Up until the Mid-Term evaluation, the application that we had built was only functional with 1

SensorTag device. For the next phase, we set out to explore and push the boundaries of

Bluetooth Low Energy by trying to simultaneously connect multiple SensorTag and MIDBot

iCard devices to one BLEnCode application.

At first, we met with limited success when we tried to connect to multiple BLE devices all at

once. We made the breakthrough when we had the user connect to the devices one-by-one.

This allowed us to actively pursue the goal of allowing users to access different sensors of

different SensorTag devices along with using different services of different iCards at the same

time.

This was one of the most high-risk development tasks since most applications on Google Play

currently just connect to at most 1 BLE device to act as a peripheral and even though it is

theoretically possible to connect as many as 10 Bluetooth Low Energy devices at once, there

are no commercially available apps which offer this functionality.

Now the user can choose to connect up to 10 SensorTag devices and 10 MIDBot iCard devices

using a list view to choose which one to connect to. Also, the index/position of the device

allows users to access data from and interact with the particular sensor of a particular device.

FYP 14017 Page 59

FYP 14017 Page 60

FYP 14017 Page 61

6.3 Event-Driven Execution – the “WhenBrick”

To avoid always having to continuously scan-and-wait for certain events, we implemented our

own callbacks to trigger when an event happens. The “When” brick was modified to achieve

this. The user can decide from a list of possible events that can occur during the runtime of the

application, and then customize the appropriate action to take place ‘when’ it happens.

FYP 14017 Page 62

FYP 14017 Page 63

6.4 Display Console Text

As programmers, we know that one of the most used function is to print text to the console to

see output quickly. Pocket Code does not support such functionality, so we decided to add a

“Brick” that can display text to the console during the execution of a BLEnCode app. This

functionality would immensely help young developers who would like to see quick output on

their screens to help them head in the right direction. These outputs would also enable easy

debugging if needed so that users can follow the application logic.

In the application script, the following screenshot shows how to add the console print:-

FYP 14017 Page 64

And this is the console display at runtime:-

FYP 14017 Page 65

6.5 Interactions with MIDBot iCard

The MIDBot iCard is a Bluetooth Smart device that interacts with BLEnCode, and the user can

send instructions to multiple connected iCards, mainly to turn on the LED or sound the buzzer

in the iCard. The user can easily customize the values for the color that the LED should display

using specific Red/Green/Blue color values. The buzzer’s sound output can also be manipulated

to specify for how long the buzzer should sound.

FYP 14017 Page 66

FYP 14017 Page 67

6.6 Finding BLE Devices in Proximity

After our Mid-Term presentation, there emerged a new idea to use the RSSI signal advertised

by Bluetooth Low Energy devices to approximate their proximity and use these devices as

Proximity Sensors. The initial approach was to try to determine distance of the BLE device using

the RSSI value, but due to the unstable nature of RSSI value, this was deemed infeasible.

Hence, users were given the ability to set the RSSI value such that devices with signal strength

stronger than the specified value would be considered “in proximity”. Also, the users would get

to perform specified actions when a particular device (identified by its MAC Address) came into

“proximity”.

FYP 14017 Page 68

FYP 14017 Page 69

6.7 Migration from Catroid to BLEnCode

The original Pocket Code application’s source code is called Catroid, and everything including

the package names and even the finer details like strings are reflective of that. All our

developments and enhancements were made on the Catroid source that we extracted from

their public GitHub repository. Towards the completion of the project, we focused our efforts

on making BLEnCode a totally different app on the Google Play Store, and this meant migrating

all source code from the original “org.catrobat.catroid” to a different package name – we chose

“hku.fyp14017.blencode”. We also designed our own logo for the application, which is currently

watermarked at the header in all pages of this report and serves as our default Android app

icon.

This involved thorough legal inspection of the licenses used by Catrobat for their development

of Pocket Code, and we have generated our own license based on theirs, and ensured that all

our developments and enhancements comply with the terms and conditions laid down by the

aforementioned licenses. These legal aspects are further explained in section 11.

The development process spread around various modules present in the Catrobat system. Such

modularity in the program structure led to very efficient development and helped in making an

error-free application as various functionalities were restricted to their respective modules.

Here, we elaborate on the said structure using a visual representation. The packages in purple

are packages that have been modified or added, and the ones in blue are those left un-edited.

FYP 14017 Page 70

In further detail, the following are the package structures of the purple colored packages that we have modified/added:-

FYP 14017 Page 71

FYP 14017 Page 72

FYP 14017 Page 73

FYP 14017 Page 74

FYP 14017 Page 75

FYP 14017 Page 76

7. User Guide

BLEnCode is a visual programming platform which heavily utilizes the Catrobat visual

programming system (Catrobat is developed by the Catrobat

project http://developer.catrobat.org/). You can now utilize BLE (Bluetooth Low Energy) sensors

to create many more apps that utilize real-time data.

This short user guide will help you to get started and start making wonderful apps. This guide

explains various new features of BLEnCode like using TI Sensor Tag, sharing your new apps in

our community, utilizing tutorials to learn more about various functions supported by

BLEnCode etc.

http://developer.catrobat.org/

FYP 14017 Page 77

7.1 Creating Your First app!

In this section we detail all the steps required to make your very first app on BLEnCode. This is a

very simple app that changes the background of the screen when tapped on the screen.

1) Open BLEnCode. You will see various fields like “Continue”, “New”, etc. on the main

menu screen. Click on “New” to make a new project. You will be asked to give your new

program a name. Please input a name of your choice. PLEASE DO NOT FORGET to check

the “Create empty program” option before clicking OK. Else, you will need to create

another program.

FYP 14017 Page 78

2) You have now entered your own new project! You can add backgrounds and objects to

you application here. You can manipulate these later by writing scripts (explained later).

For example, if your application needs a black background, please add one in

Background.

FYP 14017 Page 79

3) Let’s say for this application, you need a black background. Please click on Backgrounds -

> Backgrounds -> “+” -> Draw image to choose your background color. Once you fill the

background color, please return back to BLEnCode to resume the application. The black

background will be named as “look” in the application screen.

FYP 14017 Page 80

4) Return back to the project menu to add another Background as has been shown in the

steps above. We will go ahead and add a simple script to the background which will

make this background switch when the screen is tapped.

a. Please navigate back to the project page and choose the background and choose

“Scripts”.

b. Please press + to start adding a script. You need to add a “Control” brick. These

bricks are how we will introduce various conditions into our programs. For

example, Motion bricks add movement functionalities to our objects. Looks and

Sound bricks help us manipulate visual and audio functions in our app. Here we

need a condition that recognizes a screen tap. Hence, we go to Control section

and choose the “When” brick. Whenever you are unsure about what a brick

does, please click on the brick and choose the “Tutorial” option to learn more

about it. As of now, we have a “When Tapped” brick (Tapped is the default

option for this brick. We will learn more about other options in later examples).

c. Now we want to add some action (being change in background) when the

current black background is tapped. Hence, we add another brick in the same

script to logically continue our implementation. Choose “Set background” in the

“Looks” menu to change the background to another object. Hover this brick

directly below the When brick to make logical sense. Choose the object from the

dropdown in the “Set background” brick. Choose the background image which

you want to switch to.

d. And that’s it! We have made our very first simple program. Click the play button

to run the program, tap the screen and watch your background switch!

FYP 14017 Page 81

FYP 14017 Page 82

7.2 Creating an App with BLE Sensors

Now that we have seen how to make a small working application, let us venture into the realms

of BLE Sensors and try to use some data from a TI SensorTag device in our application.

1) Go to the simple app created in the previous section. It can be accessed from the main

menu screen through the “Continue” option to continue with the current application.

Else, any project on the local storage can be accessed through the “Programs” option on

the menu.

2) Go to the project menu to add an object. Click on + at the bottom of the screen to add

an object. Let’s say you choose an image from your own gallery here, please choose the

appropriate option when prompted to go to your gallery to choose an image. Once you

choose an image, you will be automatically taken to add a script to this object. Adding a

script to any object/background helps you control its behavior. Script is where he

programming g is involved and it is very easy to program in BLEnCode thanks to the

Catrobat System. We will go ahead and add a simple script to the object.

a. Please navigate back to the project page and choose the background and choose

“Scripts”.

b. Please press + to start adding a script. You need to add a “Control” brick so we

go to Control section and choose the “When Program Started” brick.

c. Also, add a “Hide” brick from the Looks category under the “When Program

Started” brick.

d. Now, we can further add some actions to be performed when the program has

started. Let us try to connect to a TI SensorTag. To do that, we will add a brick to

the Script from the “BLE Sensors” category. Choose the “Connect to Sensor Tag”

brick and add it to the script under the “When Program Started” brick.

PLEASE ENSURE that whenever you connect BLE devices, please connect them in

FYP 14017 Page 83

numerical order. Choose “Sensor Tag 1” from the drop-down list to set this

SensorTag to be the first one.

e. Now, let us change the “When” condition on the previous “When Tapped” brick.

You can use the drop-down list of options to set the condition to “Sensor Tag

Button Pressed”. Further options will allow you to choose which SensorTag

(choose “Sensor Tag 1”) and which button (choose any of the two buttons).

f. Under the “When Sensor Tag Button Pressed” brick, add a brick “Show” from the

Looks category to ensure the object appears on the screen when the SensorTag

buttons are pressed.

g. Now we are done adding scripts to the app.

FYP 14017 Page 84

3) Click on the play button to run the app. Since, we have used a BLE Sensor brick, the app

will prompt you to turn on Bluetooth. Enable Bluetooth, “Search for devices” to find the

desired SensorTag and click to connect to it. The app will start once it has successfully

connected to the device.

4) That’s it! Now try clicking the buttons on the SensorTag to see your image appear on the

screen.

FYP 14017 Page 85

7.3 Using the in-app Tutorials

Whenever you feel unsure about how any of the bricks behave, click on it to see the relevant

options associated with it. Choose “Tutorials” to know more about the usage of the brick.

7.4 Creating Applications which use Proximity sensor

Once we have become a little more familiar with BLE bricks and functionality, let us try to

create an app which uses the Proximity sensor.

1) To do this, you will need to go the Settings Menu and choose “Set RSSI value for

Proximity” from the settings. Here, you can pick the RSSI value for which the Bluetooth

device will be considered “in proximity”. The RSSI value is the signal strength of the

Bluetooth device. Larger values indicate a larger search radius to find devices.

FYP 14017 Page 86

2) Next, go to the app that we had previously created to add new functionality to it. Go to

the “Background” and then to its “Scripts”. Here, add a “Scan for devices in proximity”

brick from the BLE Sensors category, under “When Program Started” section. This will

allow the program to run Bluetooth scans in the background to search for devices.

Remove the previous “Connect to Sensor Tag” brick for this app.

3) Let us again change the “When” condition on the previous “When Sensor Tag Button

Pressed” brick. You can use the drop-down list of options to set the condition to “BLE

device in Proximity”. A further option will allow you to enter the MAC Address of the

desired BLE device which you want to have in your proximity. Keep the rest of the script

same.

FYP 14017 Page 87

4) Again, click play to run the app. The app will prompt you to enable Bluetooth and will

start as soon as Bluetooth is enabled. Now, bring your desired device into proximity of

your smartphone and see your background switch!

7.5 Sharing and downloading projects from the cloud

Now that we have learnt how to make various kinds of apps through BLEnCode, let us now see

how to share our apps.

1) From the main menu screen, click the “Upload” option to share the current project. The

first time, the app will prompt you to log into the cloud server. Enter your credentials if

you already have an account with BLEnCode, otherwise click “Sign Up” to create a new

account.

FYP 14017 Page 88

2) Once you have signed up to BLEnCode servers, click “Upload” again to enter the name

and description for your current project. Once you have entered these details, click

“Upload” and wait a few seconds while the necessary data is uploaded to our servers.

FYP 14017 Page 89

3) If you would like to explore projects created by other users n BLEnCode, click the

“Explore” option on the main menu to view all the projects currently on our servers.

Clicking on any interesting project will allow you to download it locally onto your device.

Once you have downloaded new projects, you can check them out through the

“Programs” option on the main menu.

There it is. That’s all we can teach you. Now, armed with this knowledge and your limitless

creativity, the sky is the limit for creative innovative and interactive apps through BLEnCode.

Happy BLEnCoding!

FYP 14017 Page 90

8. Pilot Users Reviews

To test the user-friendliness and potential of our app with prospective users, we invited some

of our batch-mates and friends who are familiar with programming and some who are also

novices in programming. We asked them to use our application and provide answers to some

feedback questions compiled in a Google Form. The questions varied from general awareness

of BLE and sensors to general application development and some questions were related to

application development using visual programming. The answers we received have been

compiled here for analysis and subsequent understanding of the benefits and deficiencies of

this approach to extend programming and data utilization from BLE sensors.

8.1 Familiarity with BLE

Not familiar
21% Minimal

knowledge
10%

Reasonably
familiar

31%

Regular user
17%

Developer
21%

How familiar are you with Bluetooth
Low Energy (BLE)

FYP 14017 Page 91

8.2 Usefulness of BLE to apps

8.3 Most useful sensor on TI SensorTag

Not useful at all
17%

Little use in my
applciations

28% Average data
utilization

21%

Strong data
utilization

17%

Critical for
application

17%

Do you find the BLE data useful for your
app ideas?

Gyroscope
18% Humidity Sensor

7%

IR Temperature
Sensor

46%

Magnetometer
4%

Accelerometer
25%

Which sensor in TI Sensor Tag is most
useful for your app ideas?

FYP 14017 Page 92

8.4 Least useful sensor on TI SensorTag

8.5 More Sensors?

Gyroscope
11%

Humidity Sensor
52%

IR Temperature
Sensor

4%

Magnetometer
22%

Accelerometer
11%

Which sensor in TI Sensor Tag is least
useful for your app ideas?

Motion Sensor
4%

Light Sensor
50% Pollution

detector
14%

Speedometer
5%

Geo-location
service

18%

Rain Gauge
9%

Which other sensor would you want to
be supported?

FYP 14017 Page 93

8.6 MIDBot iCard Convenience

8.7 TI SensorTag Convenience

Very convenient
69%

Indifferent
24%

Not
convenient at

all
7%

Is the MIDBot iCard a convenient
accessory?

Very convenient
21%

Indifferent
41%

Not convenient at
all

38%

Is the TI SensorTag a convenient accessory?

FYP 14017 Page 94

8.8 Ease-of-Use of Bricks

8.9 In-app Tutorials

Very Intuitive to
use
24%

Neutral
31%

Easy to
understand

31%

Difficult to
understand

7%

Not intuitive at all
7%

Do you find the bricks like the "When" brick
intuitive to use?

Neutral
30%

Very helpful
55%

Sometimes helpful
15%

Not useful at all
0%

Little use in
the learning
experience

0%

Are tutorials provided in the application
helpful in the programming experience?

FYP 14017 Page 95

8.10 Overall Learning Experience

Helps learning
27%

Best way to learn
programming

21%

Neutral
28%

Increases some
hassles in learning

10%

It makes learning
very difficult

14%

Is your learning experience aided by visual
programming?

FYP 14017 Page 96

9. Potential Applications

Presently Pocket Code alone can be used to develop utility tools and games with hardware

functionalities limited to the phones’ capabilities. Similarly, SensorTag also has its limitations as

it can only send data to the Texas Instruments BLE applications that can only display a live feed

from the sensor. Our enhanced version of Pocket Code, BLEnCode, is aimed at utilizing the

capabilities of the two platforms into one that is more powerful, customizable and intuitive for

users to develop applications according to their imagination. Some potential areas of focus and

further implementation could be as follows:

 Personalized Monitoring System that can monitor and keep track of ambient room

temperature, proximate air pressure, humidity for research and analysis in places like

households, greenhouses, laboratories.

 Security Systems – gyroscope and accelerometer can be used for theft protection systems.

Fire detection can be aided through an application, which sets off an alarm and/or a mass

SOS if it detects temperature over a certain value.

 Lost and Found System – the RSSI data from the BLE sensor can be used to notify the user

through a warning sound or LED blinking if his or her smartphone moves away from the

BLE device by a certain threshold.

 Single player and Multiplayer games can be developed where the users chose their own

rules to interact and compete. For example, a quiz game can be developed. Multiple

SensorTag devices can be used as a buzzer and the Quiz Master can be notified through an

LED blink on the BLE iCard when a team presses a button on the SensorTag as the buzzer.

 Medical Application – we can utilize sensor data like from the accelerometer and

gyroscope to make applications that can aid monitoring of elderly persons and alert the

relevant caretakers via a warning system defined by the user.

FYP 14017 Page 97

 Robot Control – The project deliverables can also be integrated with a mechatronic robot

(for instance MIDBot iDroid) using the same smartphone application to control the robot

as well as monitor the information from the BLE sensor.

 … and many more!

FYP 14017 Page 98

10. Future Developments

The application can also be rolled out to other mobile/tablet platforms such as iOS and

Windows Phone. This will help us to cater to a much wider user group by removing OS-based

restrictions. Moreover, this expansion of market can be further boosted by modifying the

application to recognize and interact with more such BLE sensors. We have agreed that the said

enhancements are out of scope as of now due to time and resource constraints.

10.1 How to extend our project

Since we have created an open-source project based on the existing Pocket Code project

available to the market, we would like other developers to contribute to our project and

leverage it to add further enhancements to it. We would like other developers to add more BLE

Sensors into the Pocket Code framework to make it more universally accessible to a wide

variety of Bluetooth Smart devices.

Our source code will be regularly published on GitHub (https://github.com/fyp14017/Pocket-Code-

BLE). This will allow for the code to be accessed by developers worldwide. As developers maybe

new to development on Pocket Code or using BLE devices, here is a list of general instructions

to follow while making modifications to the current project:

1. Make a new Brick for the BLE device

a. Add a new Brick to the category of “BLE Sensors” in the file

CategoryBricksFactory.java

b. Create the file containing UI logic for Brick in the Bricks package of Catroid.

2. Add actions to new Brick

a. In the Actions package, create the file holding back-end logic of the new Brick.

b. Add the action in the class ExtendedActions.java in the Actions package and link

the Action file to the file of the Brick.

3. Register callbacks

https://github.com/fyp14017/Pocket-Code-BLE
https://github.com/fyp14017/Pocket-Code-BLE

FYP 14017 Page 99

a. The callbacks of the BLE devices are managed through the class

PreStageActivity.java in the Stage package. The callbacks allow us to create a

global reference for the connected BLE devices.

4. Parse data from BLE devices

a. The parsing and manipulation of data received from the BLE Sensors is done in

the SensorInfo.java class in the BLE package.

b. The values from the sensors are held in static variables accessible through the

“Formulas” if necessary.

5. Make the sensor data available to users in Scripts

a. This can be done in various ways, for example using the Formula Editor.

b. Add a new Sensor in the Sensors.java in the FormulaEditor package.

c. Create the instance of the sensor through the

InternFormulaKeyboardAdapter.java file.

d. Retrieve the value of the sensor through SensorHandler.java, which links to the

SensorInfo.java class in the BLE package.

e. Add an entry into a HashMap in the InternToExternGenerator.java file to map

the Sensor to the string displayed in the Formula Editor UI.

f. The values of the Sensors can also be made available to the users through other

ways like creating another new Brick.

FYP 14017 Page 100

11. BLEnCode – Legal

Licenses of the BLEnCode system

The outline and language of this license has been taken from the following site:

http://developer.catrobat.org/licenses to conform to the original license requirements of the

Catrobat System.

All source code of the software constituting the BLEnCode system, including but not limited to,

our own code that incorporates Bluetooth Low Energy peripherals in the program and the other

enhancements, interpreters and compilers made by the Catrobat team, are free software and

you are free to modify/redistribute them under the terms of the GNU Affero General Public

License as published by the Free Software Foundation (version 3 or above).

The names and logos of the BLEnCode project and subprojects are copyrighted by the

BLEnCode project and cannot be used in derivative work. You are however allowed to use the

names and logos created by the FYP14017 team in non-derivative work such as, e.g., books,

brochures, or descriptive web pages. Please include a note that says “BLEnCode is developed by

FYP Group 14017. Please visit http://i.cs.hku.hk/fyp/2014/fyp14017/ for more information on

the relevant licenses and project information. ”.

In addition to conforming to the above conditions, you must also conform to all conditions

mentioned by the Catrobat System team (more information below) and conform to all the

license conditions mentioned at their licenses page (http://developer.catrobat.org/licenses).

Disclaimers:

We hereby acknowledge that BLEnCode is an independent derivative work originating from the

Catrobat project and utilizes their source code for the enhancement made in the direction of

inclusion of Bluetooth Low Energy devices. We give full credit to the development team of the

Catrobat System and following is our conformance to their license condition.

http://developer.catrobat.org/licenses
http://i.cs.hku.hk/fyp/2014/fyp14017/
http://developer.catrobat.org/licenses

FYP 14017 Page 101

“Catrobat makes it easy to program your own interactive stories, games, and animations --- and

share your creations on the web. As you create and share Catrobat programs, you learn to think

creatively, reason systematically, and work collaboratively. All parts of the Catrobat system are

developed by the Catrobat project. They are available as free open source software from

http://developer.catrobat.org/"

 "This work was created using programs developed by the Catrobat project. Catrobat makes it

easy to program your own interactive stories, games, and animations --- and share your

creations on the web. As you create and share programs with Catrobat, you learn to think

creatively, reason systematically, and work collaboratively. Catrobat is available as free open

source software from http://developer.catrobat.org/ and is distributed by the Catrobat project

under the GNU Affero General Public License as published by the Free Software Foundation,

either version 3 of the License, or (at your option) any later version when it becomes available.

For the parts of the Catrobat system necessary for running a Catrobat program, e.g., the

Catrobat Interpreter, the GNU Affero General Public License is supplemented by an additional

permission under section 7 of version 3 of the License. This exception allows to convey a

runtime version of a Catrobat program, for which you otherwise legally hold the necessary

rights, in combination with the parts of the Catrobat system necessary for running that

Catrobat program, under terms of your choice, consistent with the licensing of the independent

parts of the corresponding Catrobat program."

By means of inheritance for the parent project being Catrobat, our source code also includes

third party code and resources as follows:

libGDX: <http://libgdx.badlogicgames.com>

License information: Apache 2

License <https://raw.github.com/libgdx/libgdx/master/gdx/LICENSE>

Copyright © 2011-2012 See <https://github.com/libgdx/libgdx/tree/master/gdx>

XStream: <http://xstream.codehaus.org>

License information: <http://xstream.codehaus.org/license.html>

http://developer.catrobat.org/
http://developer.catrobat.org/
http://www.fsf.org/
http://developer.catrobat.org/agpl_v3
http://www.gnu.org/licenses/agpl.html
http://developer.catrobat.org/agpl_v3
http://libgdx.badlogicgames.com/
https://raw.github.com/libgdx/libgdx/master/gdx/LICENSE
https://github.com/libgdx/libgdx/tree/master/gdx
http://xstream.codehaus.org/
http://xstream.codehaus.org/license.html

FYP 14017 Page 102

Copyright © 2003-2006, Joe Walnes

Copyright © 2006-2009, 2011 XStream Committers

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer. Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

Neither the name of XStream nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Toolbar custom icons 1.0 facilities from Gentleface custom icon design:

<http://gentleface.com/free_icon_set.html>

http://gentleface.com/free_icon_set.html

FYP 14017 Page 103

License information: Creative Commons Attribution-NonCommercial

3.0: <https://creativecommons.org/licenses/by-nc-nd/3.0/>

Copyright © 2006-2011 Gentleface.

MINDdroid: <https://github.com/NXT/LEGO-MINDSTORMS-MINDdroid>

Copyright © 2010/11 Guenther Hoelzl, Shawn Brown

Copyright © 2010/11 LEGO System A/S, Aastvej 1, DK-7190 Billund, Denmark

MINDdroid is free software: you can redistribute it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation, either version 3 of

the License, or (at your option) any later version.

MINDdroid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE.

See the GNU General Public License for more details <http://www.gnu.org/licenses/>

Sparrow: <https://github.com/Gamua/Sparrow-Framework>

Simplified BSD License

Copyright 2013 Gamua. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions

and the following disclaimer in the documentation and/or other materials provided with the

distribution.

THIS SOFTWARE IS PROVIDED BY GAMUA "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GAMUA OR

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/NXT/LEGO-MINDSTORMS-MINDdroid
http://www.gnu.org/licenses/
https://github.com/Gamua/Sparrow-Framework

FYP 14017 Page 104

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

The views and conclusions contained in the software and documentation are those of the

authors and should not be interpreted as representing official policies, either expressed or

implied, of Gamua.

Java HTTP Request Library:

<http://kevinsawicki.github.io/http-request/>

Copyright (c) 2011 Kevin Sawicki.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

http://kevinsawicki.github.io/http-request/

FYP 14017 Page 105

FlowLayout (part 1):

<https://code.google.com/p/devoxx-schedule/source/.../FlowLayout.java>

Copyright 2010 Romain Guy

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the

License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

FlowLayout (part 2):

<https://github.com/ApmeM/android-flowlayout>

Copyright (c) 2011, Artem Votincev (apmem.org)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of the apmem.org nor the names of its contributors may be used to

endorse or promote products derived from this software without specific prior written

permission.

https://code.google.com/p/devoxx-schedule/source/browse/devoxx-android-client/src/net/peterkuterna/android/apps/devoxxsched/ui/widget/FlowLayout.java?name=422c381967&r=422c38196733ba3c54eb44418160e248ee1aea86
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/ApmeM/android-flowlayout#copyrights

FYP 14017 Page 106

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL ARTEM VOTINCEV BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Parrot AR.Drone Open API: <https://projects.ardrone.org/>

Copyright (C) 2007-2011, PARROT SA, all rights reserved.

Licensed under Parrot AR.Drone Development License v2.1

DISCLAIMER

The APIs is provided by PARROT and contributors "AS IS" and any express or implied warranties,

including, but not limited to, the implied warranties of merchantability and fitness for a

particular purpose are disclaimed. In no event shall PARROT and contributors be liable for any

direct, indirect, incidental, special, exemplary, or consequential damages (including, but not

limited to, procurement of substitute goods or services; loss of use, data, or profits; or business

interruption) however caused and on any theory of liability, whether in contract, strict liability,

or tort (including negligence or otherwise) arising in any way out of the use of this software,

even if advised of the possibility of such damage.

https://projects.ardrone.org/
https://projects.ardrone.org/attachments/download/376/PARROT_License_JUNE_2011_v2_1.txt

FYP 14017 Page 107

References

 Catrobat: http://developer.catrobat.org/

 Pocket Code: https://pocketcode.org/

 Pocket Code Source Code on GitHub: https://github.com/Catrobat/Catroid

 Texas Instruments Sensor Tag:

http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?INTC=SensorTag

&HQS=sensortag-bt

 Bluetooth Smart: http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx

 Technology behind Bluetooth Smart: http://www.bluetooth.com/Pages/low-energy-tech-

info.aspx

 TI CC2541: http://www.ti.com/tool/cc2541dk-sensor

 SensorTag User Guide: http://processors.wiki.ti.com/index.php/SensorTag_User_Guide

 Android API for Bluetooth Low Energy:

https://developer.android.com/guide/topics/connectivity/bluetooth-le.html

 Event-Driven Programming: http://en.wikipedia.org/wiki/Event-driven_programming

 Parse: https://www.parse.com/products/core

 GitHub: http://en.wikipedia.org/wiki/GitHub

We would like to take this opportunity to thank Dr. Vincent Lau for his continuous guidance.

http://developer.catrobat.org/
https://pocketcode.org/
https://github.com/Catrobat/Catroid
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?INTC=SensorTag&HQS=sensortag-bt
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?INTC=SensorTag&HQS=sensortag-bt
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
http://www.bluetooth.com/Pages/low-energy-tech-info.aspx
http://www.bluetooth.com/Pages/low-energy-tech-info.aspx
http://www.ti.com/tool/cc2541dk-sensor
http://processors.wiki.ti.com/index.php/SensorTag_User_Guide
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
http://en.wikipedia.org/wiki/Event-driven_programming
https://www.parse.com/products/core
http://en.wikipedia.org/wiki/GitHub

