
COMP4801 FINAL YEAR PROJECT

Seamless Image Editing
Interim Report

Supervisor: Prof. Yu Yizhou

Group member: Cai Lingfeng

In our project, we will implement (1) The code base for drag and drop pasting method; (2) A new

algorithm to search for the optimal boundary before blending. Our new algorithm searches for the

boundary that has the least difference in original colors between the source image and the target

image. It has better approximation of original image colors, and it provides a better boundary for

blend-in.

 2

Table of Contents

1. Project background ... 3

2. Project objective ... 4

3. Project methodology ... 6

3.1. Process overview .. 6

3.2. Image segmentation .. 7

3.3. Boundary energy function... 7

3.4. A Shortest closed-path problem .. 8

3.5. Image blending – Poisson image composition 9

4. What has been accomplished .. 10

4.1. Image segmentation .. 10

4.2. Cost matrix calculation ... 11

4.3. Graph construction .. 12

4.4. Shortest path search .. 15

4.5. Image blending .. 16

5. What will be done ... 17

6. References ... 18

7. Appendix ... 19

7.1. Algorithm parameter details ... 19

 3

1. Project background

Image composition, which is the process of creating a new image by imposing

an object or a region from a source image to a target image, is a large

component of image editing. Poisson image editing [1] has been proposed in

2003 as an effective approach for seamless image composition. By solving

Poisson equations using the user-specified boundary condition, Poisson image

editing blends the colors from both image without visible discontinuities around

the boundary.

The effectiveness of Poisson image editing, however, largely depends on how

user draws the boundary. Drag and drop pasting [2] in 2006 proposed a method

to optimize the boundary condition based on a shortest closed-path algorithm in

{r,g,b} color space, and it improved the composition quality by searching for

the optimal boundary within the user-specified one.

In our project, we will implement (1) The code base for drag and drop pasting

method; (2) A new algorithm to search for the optimal boundary before

blending.

Our new algorithm searches for the boundary that has the least difference in

original colors between the source image and the target image. It has better

approximation of original image colors, and it provides a better boundary for

blend-in.

 4

2. Project objective

Traditional Poisson image blending process [1] will first set the boundary colors

equal to the target image in the new image created, and blend in the new image

region according to the gradients of the source image. To obtain better seamless

composition, we need to take the target image into consideration on the

boundary conditions. The less original color difference along the region

boundary between the source image and the target image, the better the results

will be.

Our objective of the project is to search for the optimal boundary within the

user-specified one (the region of interest), and outside the real object (the object

of interest) user cares about. The cumulative original color space difference

should achieve the global minimum along the new boundary. We focus on the

difference of the image substance and boundary reflectance, and we want to

remove the lightness and shading effects of the image since these effects will

influence how the original image colors are presented.

In theory, the image composition will have a better result given the boundary

based on our objective. Provided the boundary with less original color

difference between the source image and the target image, the blended result

will be closer to the original effect of the source image. Therefore, the blending

will guide the new images in the right gradient direction of the real object user

 5

cares about, instead of pushing the effects away from the colors the objects were

meant to be originally.

Drag and drop pasting method [2] has done the boundary optimization in 2006.

They focused on the difference in {r,g,b} color space. We implemented the

code base for the drag and drop pasting as our first milestone.

However, the drag and drop pasting method has its limitations. (1) Their energy

function computes the boundary costs based on the L2-norm form and adds in a

scalar factor k. Along the boundary, the color space of the source image has

certain threshold k away from that of the target image, which may result in the

blending results moving k away from the original source image color space; (2)

k is a scalar value, and it appears in the cost function after the L2-norm of the

three channels is computed. Same k differences can represent different

meanings in the color space. For example, two pixels can have more difference

in r channel, and the other two pixels have more difference in g channel, while

these two groups may share the same color difference k because of the L2-norm.

Therefore, we want to improve on the existing approaches and focus more on

the difference of the image substance and boundary reflectance. We represent

the original color in {a,b} channels of {l,a,b} space, and we remove the effect of

the scalar factor k.

 6

3. Project methodology

3.1. Process overview

Figure 1: process overview

 7

3.2. Image segmentation

The user selects the region Ω0 (the region of interest), which contains the object

Ωobj (the object of interest) to be inserted onto the target image, from the source

image. An ordinary user will not carefully trace the object boundary ∂Ωobj

during the selection process, but will draw a rough region Ω0 instead.

Where is the optimal boundary to be found? Obviously it must be within the

user-specified area Ω0, and it should be outside the object Ωobj. Therefore,

before we proceed to the boundary optimization, we ought to find out where the

object lies, and our optimized boundary should not intersect with it. The

iterative segmentation techniques, such as GrabCut [3], can be used to produce

Ωobj when given Ω0. For our project, all Ωobjs are computed by GrabCut.

3.3. Boundary energy function

After obtaining the Ωobj, we proceed to the step of boundary optimization. The

optimal boundary ∂Ω should lie in between Ω0 and Ωobj. In order to minimize

the original color difference along the boundary, the following energy function

should be minimized:

 E(∂Ω) = ∑ (ft(p)−fs(p)) 2, s.t. Ωobj⊂Ω⊂Ω0, p∈∂Ω

In our algorithm, ft(p) represents the value of a single pixel of the target image,

and fs(p) represents the corresponding pixel value of the source image. f(p) is

shown as the binary set in {a, b} channels in {l, a, b} color space, and (f(p1) -

 8

f(p2)) is computed as L2-norm form. The energy function shows the total sum of

the original color difference along the boundary.

We eliminate l channel in {l, a, b} color space to remove the lightness effect of

the images. We compute the cost function fully based on color channels {a, b}

to better approximate the true color difference between the source image and the

target image.

3.4. A Shortest closed-path problem

Given the boundary energy representation and the objective to minimize the

function, we transform our boundary optimization problem into a shortest

closed-path problem.

Figure 2: Closed-path problem illustration Figure 3: Pixel-look of the segmented line

As illustrated in the Figure 2, we draw a segmented line S (shown in yellow)

from the object boundary ∂Ωobj to ∂Ωuser, on the right side of the Ω0. To compute

the optimal boundary, we start from one of the pixels p1 right above the S, and

end with the neighboring pixel p2 right below p1. Among all paths starting from

p1 to p2, the optimal path is the one with the least cumulative costs and

 9

therefore the shortest closed-path. In order to find out the optimal boundary, we

iterate through every pixel above S and select the path with the global minimum

cumulative costs among all shortest paths.

Since the graph is a 2D grid, the boundary with minimized cumulative costs can

be computed by 2D dynamic programming. In our project, we used Dijkstra

algorithm to achieve the shortest path computation.

3.5. Image blending – Poisson image composition

Given the boundary, we could use Poisson image composition technique [1] to

easily blend the images. For images with discrete pixels, in the new image, the

composition first sets the boundary pixels (and pixels outside the boundary)

equal to the target image, and subsequently constructs the new region based on

the source image selected-region gradients.

 10

4. What has been accomplished

In the first semester, we mainly implemented the code base for drag and drop

pasting method. The implementation of our algorithm will be accomplished in

the second semester.

4.1. Image segmentation

We used the GUI tool provided by Grab Cut Weebly website [4] implemented

by Itay Blumenthal. GC_GUI is a useful tool to separate the object from the

background image, and it is the preliminary step for us to block out the Ωobj area.

Image segmentation details

Run GC_GUI in matlab, choose the source image (upper left image) and select the area Ω0 (region of

interest, area with red line in the upper right image) to be inserted onto the target. The tool will selects

out the real object Ωobj (object of interest, the boat in this example).

Table 1: Image segmentation details

We modified on top of the tool results. The output is the maskMatrix, which is a

2D matrix with exactly the same size as the source image. It will highlight the

 11

area (Ω0\Ωobj), and block out the remaining area (source image\Ω0 + Ωobj). The

maskMatrix will be further used to calculate the cost matrix in the next step.

Only the highlighted area will be computed.

4.2. Cost matrix calculation

 Drag and drop pasting cost matrix implementation details

In drag and drop pasting method, the whole process is an iterative algorithm

(Details are disclosed in 4.4. Shortest path search). The cost matrix will be

computed for multiple times and it will depend on the renewal of the scalar

factor k.

Drag and drop pasting cost matrix implementation details 1

1: Procedure (maskMatrix(sh*sw), simg, timg, offsetX, offsetY, k) 2

2: Initialize: costMatrix = maskMatrix (sh*sw)

3: decompose simg, timg into {r,g,b} channels.

4: for pixels p within the highlighted area of maskMatrix(i,j) 3

5: compute costs c between simg(i,j) & timg(offsetY+i, offsetX + j), k is involved

6: costMatrix(i,j) = c

7: if c = 0

8: costMatrix(i,j) = 1e-10 4

9: return costMatrix

Table 2: Drag and drop pasting cost matrix implementation details

1. The parameter details are disclosed in Appendix 7.1 Algorithm parameter details.

2. sh*sw is the same size (source height * source width) as the source image (simg); offsetX and offsetY are offset position in

the target image (timg), in X and Y axis respectively; k is a floating number, initially set as the average {r,g,b} L2-norm

costs along the initial boundary, and will be substituted with the new average costs along the new boundary.

3. Highlighted area: Ω0\Ωobj

4. We use a small number (1e-10) instead when the costs are zero. Details are disclosed in 4.3. Graph construction.

The Figure 4 is an example of the returned cost matrix with highlighted area

(Ω0\Ωobj, the dark grey area) set as costs, and non-highlighted area (source

image\Ω0 & Ωobj) set as -1.

 12

Figure 4: Cost matrix (6*8) example

*Highlighted area: dark grey area (Ω0\Ωobj, 4*6 excluding Ωobj)

**Ωobj area: 2*2 in the middle

When the pixel cost is as zero (pixel color space between source image and

target image is the same), we set a small number (1e-10) in the pixel location of

the cost matrix. The reasons are when we later construct the graph based on the

cost matrix for the shortest path problem, we still want to create the graph edge

between zero-cost pixels. Details will be illustrated in 4.3. Graph construction.

4.3. Graph construction

In our theoretical analysis, the optimal boundary can be transformed to a

shortest closed-path search problem in the graph. In this step, we will construct

the graph for the path search, based upon the cost matrix computed.

Graph construction algorithm 1

1: Procedure (costMatrix(sh*sw), segmentedLineRow, segmentedLineCol, segmentedLineEndCol) 2

2: Initialize: totalPts = sw*sh; graphMatrix = sparse (totalPts*totalPts) 3

3: for pixels p within the highlighted area of costMatrix(i,j) 4

4: if p is not right above the segmented line S

 13

5: for all the neighbor pixels (s,t) of p within the highlighted area

6: graphMatrix(sw*(i-1)+j, sw*(s-1)+t) = costMatrix(s,t)

7: else if p is right above S

8: same steps of 5&6 except neighbor pixels right below S

9: return graphMatrix

Table 3: Graph construction algorithm

1. The parameter details are disclosed in Appendix 7.1 Algorithm parameter details.

2. costMatrix is taken from the previous step with sh & sw being the source image height & width respectively. The row and

columns (start column & end column) of the segmentedLine S are also the parameter inputs.

3. graphMatrix is the sparse matrix, with the width and height being the total number of entries of the cost matrix.

4. Highlighted area: Ω0\Ωobj

graphMatrix is a N-by-N sparse matrix representing the graph, with N being the

total number of entries of the cost matrix. The nonzero entries in graphMatrix

represent the weights of the edges, for example, graphMatrix(i, j) is the edge

weight from node i to j in the graph constructed.

Figure 5: Graph construction example of the entry 3 (blue node e)

Substitution of zero cost with 1e-10 in cost matrix: Because graphMatrix is a

sparse matrix, unless we change the graphMatrix(i,j) to a nonzero number, there

will be no edge between node i and j. In the previous cost matrix computation,

we substitute the cost zero with a small number 1e-10 for two reasons: (1) The

shortest path will be in favor of the zero cost entry in the cost matrix, and we

have to create the edge for this cost entry in the graph, but with small weight; (2)

 14

Based on our calculation, 1e-10 is a comparatively small number compared to

those cost matrix entries, therefore, it will not affect the results of the optimal

path search.

Figure 6: Example: substitution of zero to 1e-10

The effects of the segmented line S: The segmented line S is drawn on the

right side of the cost matrix. In order to construct the graph for the paths

surrounding the object Ωobj, the paths can only go up across S, but not go down

across.

Figure 7: Graph representation along segmented line S

 15

4.4. Shortest path search

We implemented the drag and drop pasting shortest path search. This is an

iterative algorithm. We will search for the shortest path in the graph constructed,

starting from nodes n right above S, and end with nodes right below n.

 Drag and drop iterative path search

This is an iterative algorithm which combines cost matrix computation, graph

construction as well as the shortest path search steps. We implemented the

automation script rgbScript.m for the whole process.

Drag and drop iterative path search

1: Procedure (k, maxItr) 1

2: while (maxItr >0)

3: compute costMatrix -> cost matrix calculation based on k

4: compute graphMatrix -> graph construction based on costMatrix

5: compute global minimum path -> search for the shortest path in graphMatrix

6: compute k -> calculate the new k based on the new path

7: Procedure (k, maxItr-1)

8: return path l with global minimum distance; mask of l 2

Table 4: Drag and drop iterative path search

1. k is the floating number used in cost matrix calculation; maxItr represents the maximum iterations users want to impose.

2. mask based on the global shortest path l is used to blend the image in the 4.5. Image blending.

k calculation: The number k is a floating number, initially set as the average

{r,g,b} L2-norm costs along the initial boundary, and will be substituted with

the new average costs along the new boundary.

 16

4.5. Image blending

We modified the image blending implementation details on top of the Yijia’s

code on Google archive. [5]

Image blending implementation 1

1: Procedure (simg, timg, mask, offsetX, offsetY)

2: decompose simg and timg into {r,g,b} channels

3: for each channel

4: solve for Poisson equation based on the offset location (in the target image) and the

mask

5: compose the new image nimg on new computed {r,g,b} values

6: return nimg

Table 5: Drag and drop iterative path search

1. The parameter details are disclosed in Appendix 7.1 Algorithm parameter details.

The blending process will depend on the mask and the offset location in the

target image. Mask is the black-and-white image with the same size as the

source image, with the white area showing the region to blend in. The boundary

of the white area is the blend-in boundary. Offset location is the position to

insert relative to the upper left pixel (1.1) of the target image. It is the same

offset location when we compute the cost matrix in 4.2. Cost matrix calculation.

 17

5. What will be done

In the second semester, we will better implement our boundary optimization

algorithm, and we will finish massive testing to perfect our approach.

 Deadline Milestone Description

1. February 29,

2016

Implement the new

boundary optimization

algorithm.

Boundary optimization related code

implementation. There will be some

overlapping steps between the existing

implementations and our new one.

2. March 31,

2016

Finish experiments

and testing.

Massive trials & tests on our implementation

at this stage.

Comparisons should be done between

1. Our results vs. user-specified boundary

2. Our results vs. drag and drop pasting

Also, we should include failed trials to discuss

about the future works.

3. Mid-April,

2016

Wrap up the project

and finish the reports

and related course

materials.

Related materials include reports, website,

presentation, posters, etc.

Table 6: Project schedule and milestones

 18

6. References

[1] P. Perez, M. Gangnet and A. Blake, "Poisson Image Editing," 2003.

[2] J. Jia, J. Sun, C.-K. Tang and H.-Y. Shum, "Drag and Drop Pasting," 2006.

[3] C. Rother, V. Kolmogorov and A. Blake, "“GrabCut” - Interactive

Foreground Extraction using Iterated Graph Cuts," 2004.

[4] I. Blumenthal, "CODE," [Online]. Available:

http://grabcut.weebly.com/index.html.

[5] Y. Xu, H. Zhou and T. Leyvand, "Image Blending," [Online]. Available:

https://code.google.com/archive/p/imageblending/.

 19

7. Appendix

7.1. Algorithm parameter details

Cost matrix implementation parameters

Para. name Explanation Type

maskMatrix The matrix with the non-highlighted area (source

image\Ω0 & Ωobj) set as -1.

source image height * width

simg Source image image height * width * 3

timg Target image image height * width * 3

offsetX X-axis distance in target image between insert pixel

and upper left pixel (timg(1,1)).

integer number

offsetY Y-axis distance in target image between insert pixel

and upper left pixel (timg(1,1)).

integer number

costMatrix Returned cost matrix with highlighted area

(Ω0\Ωobj) set as costs, and non-highlighted area

(source image\Ω0 & Ωobj) set as -1.

source image height * width

k Initially set as the average {r,g,b} L2-norm costs

along the initial boundary, and will be updated with

the new average costs along the new boundary.

floating number

Table 7: Cost matrix implementation parameters

Graph construction algorithm parameters

Para. name Explanation Type

costMatrix Cost matrix from the cost matrix calculation

step.

source image height *

width

segmentedLineRow The row number of the segmented line S.

Starting from 1.

integer number

segmentedLineCol The starting column number of the segmented

line S. Starting from 1.

integer number

segmentedLineEndCol The ending column number of the segmented

line S.

integer number

totalPts The total number of entries of the cost matrix.

Computed as source image height * width.

integer number

graphMatrix An N-by-N sparse matrix representing the

graph. Nonzero entries in graphMatrix

represent the weights of the edges. For

example, graphMatrix(i,j) represents edge

weight from pixel(i) to pixel(j).

sparse matrix, with N

being the total number of

entries of the cost matrix.

Table 8: Graph construction algorithm parameters

 20

Image blending implementation parameters

Para. name Explanation Type

simg Source image source image height *

width * 3

timg Target image target image height *

width * 3

mask The black-and-white mask, with the white area

showing the region to blend in.

source image height *

width

offsetX X-axis distance in target image between insert

pixel and upper left pixel (timg(1,1)).

integer number

offsetY Y-axis distance in target image between insert

pixel and upper left pixel (timg(1,1)).

integer number

Table 9: Image blending implementation parameters

