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Abstract

Our project is aimed at studying autonomous drifting of an RC car. To

do so, we use Reinforcement Learning (RL), that learns control policies from

trial-and-error, much like how humans learn and solve various problems by

interacting with the environment. However, learning agents that use RL

typically require many interactions with the environment before learning any

useful policy, which is something we cannot afford to do with a physical robot

because it will lead to wear of the robot itself. So, instead we use a framework

that uses policies learned from multiple simulations to initialize the policy in

our RC car and in doing so, we make our RL learning agent as data-efficient

as possible. The field of RL is rapidly evolving, and we try and use some of

the cutting-edge technologies, like PILCO, that are addressed in the paper.

1 Background

Hydroplaning refers to a situation which occurs when a layer of water builds

between car tires and the road. The tires of the car encounter more water than

they can scatter, which results in the loss of traction. This can cause the car to

slip, leading to loss of control and many accidents. According to the United States’

Department of Transportation, wet and icy roads are responsible for 15.97% of all

vehicle crash fatalities in the United States [1]. In this plan, drifting refers to

the intentional oversteering of a vehicle where the rear wheels slide out and the

its combined slide angle and slip angle is greater than the slip angle of the front

wheels.

Passenger vehicles usually implement stability control in a number of ways like

differential braking [2], active steering [3] [4] or integrated chassis control [5] [6] [7].

Other methods, based on independent wheel torque, have also been developed to

make passenger vehicles more stable. However, all of these methods function by

making sure that the tires avoid slipping and in doing so, essentially restricts

the operation of the vehicle. Similarly, control algorithms in current self-driving

car systems (ABS, ESC etc.) try and mitigate the chances of slipping due to

its unpredictable nature [8]. Sufficiently lowering the speed of the car and making
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turns that are not too tight will mostly prevent slipping, but this does not consider

cases where the system must make evasive moves (in which case the speed and turn

angle will most likely be sharp) or when a car is already in a slipping state due

to the driver’s fault. To ensure that these systems are as robust and safe as

possible, it is paramount to study drifting, and eventually deduce how systems

can respond quickly to unintentional slipping states as those encountered due to

hydroplaning. In addition, avoiding accidents in such emergencies might involve

taking full advantage of the capabilities of a vehicle, which is why we think it is

important to study drifting.

Another reason behind our motivation to study drifting is that Paul Frère [9]

pointed out the usefulness of drifting to turn fast around sharp bends. Since

high-speed stability is of greater importance to ordinary touring vehicles and com-

petition cars, they tend to understeer, and for a competition car average circuit

time is improved by going fast through fast bends while slowing down through

sharp ones [9]. However, a car is able to turn sharp bends faster by drifting be-

cause the yaw angle formed by the drift brings the vehicle in line with the straight

path following the bend even before the vehicle completes the turn [9].
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2 Objective and Scope

The objective of this project is to study a real world problem of high speed

cars skidding when trying to turn during rain/wet roads. The area of drifting

falls into two categories – sustained drift and transient drift. Due to the vast

breadth of the two categories, our project will mainly focus on sustained drift,

and more specifically steady state circular drift. We are only looking to handle

the ‘studying’ aspect of drifting through this project - by teaching the car how to

drift autonomously, we ensure that the car is able to understand the concept of

drifting, and hence cope with the unpredictability that is inherent to the drifting

state, as described above. Time permitting, we will also try to get the car to learn

how to safely escape a drift state and return to a safe stop or straight-line motion.

Furthermore, if time allows, we will try to experiment with getting the car to drift

in a particular pattern like the pattern ”8”, for instance, to see how much more

difficult it is compared to having the car in a state of steady circular drift.
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3 Literature Review

3.1 Autonomous Sustained Drifting

Sustained drift has been achieved with various control techniques by researchers

around the world. Velenis et al. [10] described a simple single-track vehicle model

using equations of motion to design a ‘sliding’ control policy to stabilize steady

state conditions using basic acceleration/braking applied to the wheels. Hindiyeh

and Gerdes [11] developed an open-loop control policy using nested feedback loops

to achieve stable drift equilibrium. They too developed a complex model of the ve-

hicle, chassis and wheels to form the basis of their control policy. Wu and Yao [12]

created a control algorithm to stabilize a RC drifting car by balancing the tail

sliding with counter-steering measures to prevent slipping during circular motion.

Their system is based on understanding the dynamics of the car, including the

planar force and moment generated by the car’s wheels during drifting. These

modeled approaches work well in cases where the model encapsulates the various

dynamics of the real-world, but do not work when the dynamics of the world are

not understood completely to be modelled by equations of motion. The open-loop

approach of the optimization is not implementable in the presence of uncertain-

ties [13], and hence a better approach, one that is independent of the underlying

models, is needed.

This is the perfect use case for learning-based methods, specifically Reinforce-

ment Learning. Since RL learns policies by directly interacting with the environ-

ment, the policies are dependent on the real-world instead of a model.

3.2 Using Probabilistic Interference for Learning COntrol

(PILCO)

Since we are using model based reinforcement learning, one of the biggest chal-

lenge is that it suffers from model biased. They assume that the learned dynamics

models resembles the real environment [14]. One of the most common techniques

while designing adaptive controllers is to add an extra term in the cost function

of a minimum-variance controller, when accounting for uncertainty of the model
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parameters. The model parameter estimation was improved by penalizing the

uncertainty of the model parameters. The model bias was solved by explicitly

modeling and averaging over model uncertainty [14]. In contrast, PILCO’s ap-

proach is to treat the model uncertainty as temporally uncorrelated noise and it

doesn’t require sampling methods for planning.

There are multiple algorithms that use Gaussian Process models with Reinforce-

ment Learning but as Deisenroth and Rasmussen pointed out, the shortcomings

of these algorithms were that the dynamics models were learned by motor bab-

bling [14]. But this approach was data inefficient and value function models had

to be maintained which didn’t scale well to high dimensions [14]. We use PILCO

as it does not require an explicit value function model [14].
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4 Methodology

Our project involves learning the optimal policy to drift a car autonomously

using reinforcement learning (RL) methods. Traditional RL methods can be used

to obtain the optimal policy by interacting with the environment and trying to

maximize a reward function, but this process involves obtaining many samples

from the physical robot before learning anything useful [4]. These samples are easy

to obtain in some scenarios, like finding an optimal policy to play Atari games,

but this is not preferred for robotic systems as it would lead to physical wear

of the system. To overcome this problem, we use simulation-aided reinforcement

learning [15] which minimizes the number of samples needed from the physical car.

Our method works by first using simple models to obtain an optimal policy

using optimal control software like GPOPS. The simple models are deterministic

and use closed-form, expressible equations of motion [15]. But, as pointed out by

Cutler and How [15], these simple models often fail to model the true system, and

the resultant policies are too tightly coupled with the underlying model. Thus,

more complex simulations are needed.

To build on the policy learned from the simple models, the complex simulation

is initialized with the simple policy. The simulator will be sufficiently stochastic

to model the physical world, and hence, will help eliminate some of the problems

from the simple model. The simulator will be created on Gazebo, an open-source

simulation engine. Probabilistic Inference for Learning COntrol (PILCO), a re-

cently developed model-based policy search RL algorithm that carefully handles

the uncertainty of the learned model dynamics [16], is then used to obtain a better

policy in the complex simulation. The reason we will be using PILCO is that it

handles the uncertainity in the model and the model-based learning algorithm will

not suffer from model bias [9].We will use Gaussian processes [17] as the regres-

sion tool to model the observed data and build a probabilistic model of transition

dynamics. This model will be optimized over a long term to update the policy

parameters and obtain a better policy. Once we have a policy learned in the com-

plex simulation, it will be tested on the physical car. We will run PILCO in the
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real physical system. The information gathered from the physical car will be fed

back into the complex simulation. With real data from the physical world, we

will reevaluate the previously learned policy in the simulation to move towards

the optimal policy. This cycle of simulation and real world will be run until the

learned policy is optimal in the simulation and the real world. Algorithm 1 below

summarizes the methodology of our project.

Algorithm 1 Continuous State-Action Reinforcement Learning using Multi-
Direction Information Transfer [15]

1: Input: Simple, deterministic simulation Σs, more complex, stochastic simu-
lator Σc, and real world Σrw

2: Use optimal control methods to find policy π
∗

s
in Σs

3: Use k-means to approximate π
∗

s
from π

init

c
as initial policy

4: while 1 do
5: Run PILCO in Σrw

6: RUN PILCO in Σc to get πinit

c
, combining GP predictions from Σrw

7: if ‖πnew

c
− πc‖ then

8: break
9: else

10: πc = π
new

c

11: end if
12: end while
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5 Project schedule and milestones

5.1 Schedule

• Week 1 - 4 (September 1 - 30, 2017)

– Research on project: Gaussian processes, PILCO, reinforcement learn-

ing, simulation-aided reinforcement learning, inverse reinforcement learn-

ing, RBF networks.

– Phase 1 deliverable on October 1, 2017: Project plan.

• Week 5 - 6 (October 1 - 15, 2017)

– 1st to 7th: Figure out how to work with an Arduino.

– 8th to 15th: Add accelerometer and gyroscope to the car and learn

to use them.

• Week 7 - 9 (October 16 - 29, 2017)

– 16th to 22nd: Get familiar with ROS and OpenAI Gym.

– 23rd to 29th: Integrate with Gazebo and learn to define robots and

worlds.

• Week 10 (October 30 - November 5, 2017)

– Create the simulator.

– Get more familiar with PILCO.

• Week 11 - 12 (November 6 - 19, 2017)

– Implement the RL algorithm.

• Week 13 (November 20 - 26)

– Buffer for overruns in plan.

– Start first iteration on the simulator by end of week to obtain initial

simulated optimal policy.
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• Week 14 - 17 (November 27 - December 24, 2017)

– Preparation for exams

– Transfer optimal policy learnt from simulator to physical car.

• Week 18 - 19 (December 25, 2017 - January 7, 2018)

– Obtain data from the physical car and start another iteration on the

simulator.

– Buffer for overruns in plan.

– Complete interim report.

• Week 20 - 22 (January 8 - 21, 2018)

– Iterate on implementation of the RL algorithm.

– Presentation on January 12th, 2018.

– Phase 2 deliverable on January 21st, 2018.

• Week 23 (January 22 - 28, 2018)

– Buffer for additional reading, if required.

• Week 24 - 28 (January 29 - February 25, 2018)

– Further iterations of the learning process.

– Try out the results on the physical RC car.

• Week 29 - 31 (February 26 - March 11, 2018)

– Tests and finalize implementation.

– Record finalized demo at the end of week 31.
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• Week 32 - 36 (March 12 - April 15, 2018)

– Work on final report.

– Keep testing on RC car.

– Phase 3 deliverable on April 15th, 2018.

– Buffer for overruns in plan.

• End of Week 37: Presentation on April 20th, 2018.

5.2 List of deliverables

Deliverable Due

Phase 1 deliverable: Project plan October 1, 2017

RC car fitted with sensors October 20, 2017

Simulator set up November 5, 2017

RL algorithm preliminary implementation November 30, 2017

Phase 2 deliverable: Interim report January 21, 2018

Implementation on the RC car (preliminary demo) February 15, 2018

Final demo of drifting RC car March 11, 2018

Phase 3 deliverable: Implementation and final report April 15, 2018
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6 Materials required

Material Description Cost (HK$)

RC Car A 4 wheel drive RC car with rear

plastic wheels and front wheels with

rubber tires. The rear plastic wheels

are the main cause of drifting.

1000 - 2000

IMU MPU 6050 sensor which contains an

accelerometer and a gyroscope which

will be used to maintain a reference

direction of the car.

50 - 60

On Board Sensors Sensors used to calculate the turn

rate and wheel speed.

100 - 200

Motion Capture System External sensors to capture the body

frame velocities, and relative posi-

tion of the car.

100 - 200

Voltage Regulator The car uses a high current switching

voltage regulator to keep the battery

voltage from affecting the car’s learn-

ing algorithm [15]

100 - 200

Arduino kit The ’brain’ of the RC car. Steering

commands will be send to the Ar-

duino from a PC, and the Arduino

will then send control signals to the

car.

800 - 850

Zigbee A Zigbee module will be used for the

communication between the Arduino

and the program on our PC. The

car’s sensor data will be sent to the

PC using the Zigbee module.

300 - 350

GPOPS Optimal control software to learn the

optimal control policy and initialize

the policy in our simulator.

940

GPU To train our model faster. -
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7 Separation of Responsibilities

We are three members in the group. After considering for a while, we have come

to a consensus that each member will be equally responsible for each and every

aspect of the project. Our motivation for doing so rather than setting out exclusive

responsibilities is that this project is fairly complex and there are quite a few

components to it, which are interrelated. It is thus imperative that each of us is

equally involved with the different parts rather than making somebody entirely

responsible for something. We feel we can work on the project more efficiently if

each of us has an idea of the different parts. The exact parts of the code that each

of us will implement will be figured out as the project progresses.
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