REINFORCEMENT LEARNING REPORT

AUTONOMOUS DRIFTING RC CAR
WITH REINFORCEMENT
LEARNING

May 9, 2018

Supervisor: Dr. D. Schnieders

Sourav Bhattacharjee (3035123796)

Kanak Dipak Kabara (3035164221)
Rachit Jain (3035134721)

Written by Sourav Bhattacharjee

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Abstract

The advent of self-driving cars has pushed the boundaries on the safety of auto-
mobiles, but most modern self-driving car systems ignore the possibility of a car
slipping resulting from inclement weather or driver error [1|. Passengers and by-
standers would benefit heavily if self-driving cars could handle slipping by learning
to drift with the turn rather than against it (by applying the brakes, or turning

away, which is the instinctive action), preventing many fatalities [2].

Our project is aimed at studying the drifting of an autonomous remote controlled
(RC) car using reinforcement learning (RL) techniques. Specifically, we experi-
mented with a model-free approach with dueling double Deep Q-networks (DQN)
and a model-based approach with Probabilistic Inference for Learning COntrol
(PILCO) for finding an optimal drift controller. Since robotic systems are prone
to wear with use, a simulator is used to model the car dynamics and train a

preliminary drift controller which is then transferred to the real car.

Using these techniques, we were successful in obtaining an optimal drift con-
troller on the simulator, which was stable and robust to varying physical condi-
tions. Other than the drift controller, this project makes important contributions
in the form of novel approaches like using DQN for obtaining a drift controller and
using the policy learned from DQN for PILCO initialization. Additionally, this
report presents a metric, D,,, to objectively quantify the quality of a sustained

circular drift.

Page 1 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Acknowledgement

We would like to thank our supervisor, Dr. Dirk Schnieders, for guiding us through-
out the project. We are also grateful for the help received from a friend, Mr. David
Ip, who helped us acquire the hardware needed for this project. Finally, we are
thankful for the help we received from Dr. Chris R. Roberts with various hardware

issues encountered.

Page 2 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Contents
[1__Introductionl [7
[I.T Background and Motivation| [@
(1.2 Objectivel O]
.................................. O
(1.4 Deliverablesl 9)
(Lo Contributions 1T
(1.6 Outline of Reports]
2 lLiterature reviewl 13
[2.1 Optimal Control Approach to Autonomous Driftingl 13]
[2.2 Reinforcement Learning Approach|{. 13
[2.3 Model-free Learning with Dueling Double DOQN|
[2.4 Model-based Policy Search Using PILCO[. 106l
[3 Methodology] 18
[3.1 Autonomous Drifting with DQN Model 18]
[3.1.1 Value Function Approximation| 19]
(3.1.2 Reward Definitionl. 19
[3.1.3 Double Dueling DQN Architecture] 200
3.2 PILCO Design|. 21
[3.2.1 Model Learning| 21
[3.2.2 Policy Learning| 22
[3.2.3 Policy Application|
[3.2.4 State Representation|
[4 Results and Experiments| 27
M1 DQN Results
42 PILCO Resultdo
4.3 Improvements to DQN Model 39]
4.4 'Transfer to Physical RC Car| 42
[4.5 Quality Evaluation with Drift metric 3]
[4.6 Testing Robustness and Stability| 44

Page 3 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Page 4 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

List of Tables

(1 Convergence time and initialization method tor PILCO[.
[2 Summarized D, values for various experiments.| 43
[3 Summarized D,, values for various robustness and stability tests| . . HT7]

List of Figures

[T Definition of drifting], [@
[2 successful drift controller executing a dritt on the simulator| [10l
B The final simulated carl 0 L. 10
4 [he final RC car] (11l
(5 The reinforcement learning architecturef. 14
(] Double dueling DQN architecturel 20
[7 Gaussian processes for model learning|. 211
(8 Cost predictions during 1st and 15th episode of training{. 24
[9 Car body velocity components|
(10 Mean loss and reward graphs for the Mountain car problem|. 28]
(11 Mean loss and reward graphs for the Cart Pole Problem| 29
(12 Mean Loss for simulated car using potential based reward|. 301
(13 Mean Reward for simulated car using potential based reward [BQ
(14 Path followed with speed cost|
(15 Path followed with different oy and oy values. B4
(16 Results for successtul PILCO controllerf 30]
[L7 Steering actions (radians from centre) issued by controller| 37
[18 Orientation of car at different steering action values| 37
(19 Mean episodic reward with the improved DQN model 30]
20 Mean episodic loss with the improved DQN modell 400
2T Cost incurred over time steps with improved DQN controller] Al

[22 Cost incurred with converged PILCO controller on physical RC carf
[23 Cost incurred by subjecting PILCO controller to different scenarios] (44

24 Cost incurred by subjecting the DQN controller to different scenarios|

Page 5 of

Autonomous Drifting RC Car using Reinforcement Learning

Final Report

Abbreviations
Abbreviation Meaning
2WD Two-wheel drive
A4WD Four-wheel drive
DQN Deep Q-networks
L-BFGS Limited-memory
Broyden-Fletcher-Goldfarb—Shanno
PILCO Probabilistic Inference for Learning COntrol
RBF Radial basis function
RC Remote Controlled
RL Reinforcement Learning

Page 6 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

1 Introduction

Before discussing the implementation details of the project, it is crucial to un-
derstand the background of the problem we are trying to solve, and the actual
scope. This section addresses that and highlights the need to study and solve the
problem of drifting, and outlines how we plan to do so with an approach based on
simulation aided reinforcement learning. For the purposes of this report, drifting
is defined as the oversteering of a car which results in the loss of traction of the
rear wheels. This results in the front wheels pointing in the opposite direction to

the turn and the car appears to be moving sideways as shown in Figure [1]

@@m%% @D%@@@
& © Qo e

(a) Steering around bend (b) Drifting around bend

Figure 1: Drifting is defined as the oversteering of a car which results in
the loss of traction of the rear wheels. This results in the front wheels
pointing in the opposite direction to the turn and the car appears to be
moving sideways. The diagram illustrates the difference between simply
turning around a bend and drifting around a bend.

1.1 Background and Motivation

Passenger vehicles usually implement stability control in a number of ways like
differential braking [3], active steering [4] [5] or integrated chassis control [6] [7] [§].
Other methods, based on independent wheel torque, have also been developed to
make passenger vehicles more stable. However, these methods function by making
sure that the tires avoid slipping. In doing so, these methods essentially restrict
the operation of the vehicle. Similarly, control algorithms in current self-driving
car systems (Anti-lock brake systems, Electronic stability control etc.) try and
mitigate the chances of slipping due to its unpredictable nature [1]. Sufficiently

lowering the speed of the car and making turns that are not too tight will mostly

Page 7 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

prevent slipping, but this does not consider cases where the system must make
evasive moves to avoid crashes or when a car is already in a slipping state due to
the driver’s fault. For example, hydroplaning, which refers to a situation where a
layer of water builds up between the car tires and the road, is a major reason for
vehicle accidents. According to the United States’ Department of Transportation,
15.97% of all vehicle crash fatalities in the United States [2] are attributed to wet
and icy roads. An autonomous car system should be prepared for the scenarios
outlined above to ensure the safety of the passenger and bystanders, regardless of
the weather conditions or the state of the car. To reduce fatalities and ensure that
these car systems are as robust and safe as possible, it is essential to study drifting,
and eventually deduce how cars can respond quickly to unintentional slipping states
as those encountered due to hydroplaning. Not only can drifting be useful to steer
out of these unintentional slipping states, but can also be useful in taking full

advantage of the capabilities of a vehicle to avoid accidents in emergencies.

Many of the systems discussed above try to tackle the issue of stability control
and slipping by approaching it as an optimal control and open looped problem with
explicit dynamics model. Approaches using optimal control are often deterministic
and use closed-form expressible equations of motions. The resulting policies de-
pends entirely on the model used to compute them. Sometimes, these restrictions
on the model neglect parts of the true system either because they are non-linear
or they are just not well-enough understood to be expressed in equations. We thus
propose a method that does not rely on explicit equations of motion, but rather

on an implicit understanding of the world obtained by trial and error.

Another motivation to study drifting is that Paul Frere [9] points out the use-
fulness of drifting to turn fast around sharp bends. Since high-speed stability is of
greater importance to ordinary touring vehicles and competition cars, they tend
to understeer, and for a competition car average circuit time is improved by going
fast through fast bends while slowing down through sharp ones |9]. However, a
car is able to turn sharp bends faster by drifting because the yaw angle formed by
the drift brings the vehicle in line with the straight path following the bend even

before the vehicle completes the turn [9).

Page 8 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

1.2 Objective

The objective of this project is to get a remote controlled car to maintain a sus-
tained circular drift autonomously. This paper proposes a framework for learning
the best way to drift using simulation aided reinforcement learning which is one
approach to solving the problem without having to input the dynamics of the sys-
tem explicitly. Then the project aims to transfer the learned optimal drift policy

or strategy from the simulation to a physical RC car for further learning.

1.3 Scope

The area of drifting falls into two categories — sustained drift and transient drift.
Due to the wide breadth of the two categories and the time and cost constraints,
our project will mainly focus on sustained drift, and more specifically steady state
circular drift on an RC car with constant forward throttle. Additionally, despite
the wide range of reinforcement learning algorithms available, due to reasons elab-
orated in the remaining of the report, we investigate two different algorithms to
obtain the sustained circular drift controller - DQN and PILCO.

1.4 Deliverables

The complete implementation of the project is available on https://github.com/
kanakkabara/Autonomous-Drifting. There are a few major deliverables in this

project, which are outlined below:

1. Reinforcement Learning (RL) algorithms — Implementation of Double duel-
ing Deep Q-networks for finding an optimal drift controller as well as model
based policy search with PILCO.

2. Drift controller - A successful sustained circular drift controller along with

tests to prove its robustness and stability.
3. Drift metric - A drift metric to objectively quantify the quality of a drift.

4. Simulator — We trained the RL algorithms on a simulated car that models

the RC car in an environment with physics that mimic the real world. The

Page 9 of

https://github.com/kanakkabara/Autonomous-Drifting
https://github.com/kanakkabara/Autonomous-Drifting

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Figure 2: Time-lapsed path traced by the car on the simulator using
the successful sustained circular drift controller.

environment was used to test and improve different RL algorithms efficiently

and quickly, without causing any wear or damage to the RC car.

Figure 3: The final simulated car

5. A remote controlled (RC) car — This car is a 1/10th scale model of an actual
car, integrated with sensors (Inertial measurement unit combined with mag-
netometer and optical sensors) for measuring data like the translational and
angular velocities of the car to perform steady state circular drifting. The
project then aims to transfer the optimal policy learned in simulator onto
the RC car for validation.

Page 10 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Figure 4: The final RC car

1.5 Contributions

The project introduces the following novel ideas, as elaborated further later in

the report:

1. Using double dueling Deep Q-networks (DQN) to find an optimal drift con-

troller.
2. Using policy learned from the DQN model to initialize PILCO learning.

3. A drift metric, D,,, to objectively evaluate a sustained circular drift:

1 (15t — Starget|?
Dm —— . t = Starget 0.1
Ttgzoexp(5o) € [0,1]

Page 11 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

1.6 Outline of Reports

The documentation for this project is divided into three reports. Although the
reports share the same background and motivation behind the project, each em-
phasizes on the methodology, experiments, results and difficulties encountered for
different aspects. A reader is thus suggested to refer to all three individual re-
ports to acquire a complete understanding of the project. The three reports are

as follows:

Report outlining the hardware, written by Rachit Jain, highlights the im-
plementation of the RC car and the various challenges faced in indoor localization

and velocity estimation.

Report outlining the simulator and communication, written by Kanak
Kabara, describes the implementation of an RC car in a simulated environment.
It also talks about the communication network connecting the various components

of this project.

This report outlines the Reinforcement Learning Algorithms, and proceeds as
follows. First, I will provide a literature review on the various methods that have
been used to implement steady-state drifting. Next, a detailed description of the
implementation of the DQN and PILCO algorithms will be provided. Then I will
discuss the results obtained from the experiments performed. Finally, a metric
is presented to objectively evaluate a sustained circular drift before concluding

remarks.

Page 12 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

2 Literature review

2.1 Optimal Control Approach to Autonomous Drifting

Sustained drift with various optimal control techniques has been explored through
multiple prior research. For instance, Velenis et al. [10] described a simple single-
track vehicle model using equations of motion to design a ‘sliding’ control policy
to stabilize steady state conditions using basic acceleration/braking applied to the
wheels. Similarly, Hindiyeh and Gerdes [11] developed an open-loop control policy
using nested feedback loops to attempt stable drift equilibrium. They too devel-
oped a complex model of the vehicle, chassis and wheels to form the basis of their
control policy. On the other hand, Wu and Yao [12] created a control algorithm
to stabilize an RC drifting car by balancing the tail sliding with counter-steering
measures to prevent slipping during circular motion. Their system is based on
understanding the dynamics of the car, including the planar force and moment
generated by the car’s wheels during drifting. These modeled approaches work
well in scenarios where the model encapsulates the various dynamics of the real-
world, but do not work well when the dynamics of the world are not understood
completely to be modeled by equations of motion. The open-loop approach of the
optimization cannot be implemented in the presence of uncertainties [13]. Thus,

a better approach, which is independent of the underlying models, is needed.

This is the perfect use case for learning-based methods, specifically Reinforce-
ment Learning (RL). Since RL algorithms learn policies by directly interacting
with the environment, the policies are dependent on the real-world instead of be-

ing reliant on our understanding of the world.

2.2 Reinforcement Learning Approach

Reinforcement learning techniques are employed in this project to learn an
agent that maximizes the sum of expected future rewards [14] by interacting
with their environment repeatedly. As illustrated in Figure [5] the agent inter-
acts with the environment according to a policy by taking actions and evaluates

how good or bad taking a particular action in a particular state (a;) is by ob-

Page 13 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

serving the next state it transitions to (s;y1) and the reward it receives along
the way in the next time step (r;). A state space is all the possible states that
an agent can experience in the environment at any particular time while an ac-
tion space is the set of all possible actions an agent can take [14]. A policy is
a function that maps from the state space to an action [14]. More concretely,
a policy is a function 7 : S — a, where S and a are the state space and an
action in the action space respectively. If an action 7(s) is taken by an agent
in state s, it is said that the agent is acting according to policy . The goal
of any reinforcement learning problem is to find a policy 7 that maximizes the

expected sum of discounted future rewards (reward at state s is given by 7(s)),

E80781,~~- = [Et:Orytr(St”ﬂ-} (1)

> Agent

It
% Environment |e——
St+1

Figure 5: The diagram shows the architecture of the reinforcement
learning framework. The agent interacts with the environment accord-
ing to a policy by taking actions (a;) and evaluates how good or bad
taking a particular action in a particular state (s;) is by observing the
next state it transitions to (s;1;) and the reward it receives along the
way(r,) [14].

Page 14 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

2.3 Model-free Learning with Dueling Double DQN

In our project, one of the initial approaches used to find an optimal drift con-
troller is @-learning [14]. The reason @Q-learning is chosen is because it is an
off-policy learning algorithm and is model-free, which means the algorithm learns
by ”looking over someone else’s shoulder” without being explicitly told the dynam-
ics of the system. This allows it to explore the state space by using a stochastic
behaviour policy, 8, while converging to a deterministic optimal policy, w. The
algorithm is represented with a ()-learning neural network. Let’s say at time step
t the state of the car is s, the action chosen according to the current policy is a
and the next state the car ends up in after taking the action a is s;; 1. According

to the online Q-learning algorithm, the target for the (s;, a;) pair is given by

Yy = R(St, Clt) + 7ma$a'eAQ¢(3t+1; at+1), 0<y<l1 (2)

where 0 < v < 1 is the discount factor [14] and ¢ is the parameters of the neural
net. Thus, the weights, ¢, of the neural network are adjusted to account for
the error in the target and current value via optimization methods like gradient

descent. Concretely,

6 0= a2 50,0 Quls) ~ 1) 3

The basic online Q-learning algorithm has no convergence guarantees. is
not strictly a proper gradient descent since the target itself is ever changing and
dependent on the parameters of the network. However, many research attempts
have been made to increase the chance of convergence, the ideas of which have been
incorporated into our implementation. Firstly, in the online Q-learning algorithm,
the state-action pairs are correlated (the next state is highly dependent on the
current state and action taken). To overcome this problem, we use an approach
similar to [15] and draw random batches of experience from an experience buffer,
which holds the agent’s past experiences. Secondly, we use two networks instead
of one - a target network and a primary network, which overcomes the problem of
overestimation of action values as described in [16]. The target network is used to

get an estimate of the target in (2]) while the parameters of the primary network

Page 15 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

are updated using optimization methods. The parameters of the target network

are updated towards that of the primary network at a rate 7 [16].

Finally, inspired by [17], we use a dueling Q network architecture with separate
value streams and advantage streams. The reason behind doing so is to allow the
network to learn the state value functions independently from the advantage of

taking an action and remove the coupling to any specific action.

The most imperative component of the DQN model is defining the rewards. The
reward function is like a semantic that controls the policy learned by an RL agent.
So, it is essential to come up with a proper reward function that encourages our
learning agent to behave in a way we want it to [18]. Andrew describes one of
these approaches to defining this reward through potential based shaping in [18§].
The fundamental idea behind potential based reward shaping is that the learning
agent is rewarded along the path we want it to follow and not just a huge reward
at the end of achieving a goal. Another property of potential-based rewards is
that it avoids the agent from being stuck in a sub-optimal positive reward loop

and does not alter the optimal policy [1§].

2.4 Model-based Policy Search Using PILCO

Another algorithm that we experimented with to get an autonomous drift in our
project is Probabilistic Inference for Learning COntrol (PILCO) [19]. Although
we managed to get some form of circular turn using our double DQN model as
described above, we consistently fell short of getting a sustained circular drift.
This may be partially attributed to the fact that the double DQN model works
with a discrete action space, which greatly constrains the possible range of steering
actions the car can take to execute a proper drift. On the other hand, PILCO
not only deals with continuous action spaces for finer control for our car, but
also requires much less data to find an optimal policy for executing a circular
drift. This is because PILCO is a model-based algorithm. More concretely, it uses
Gaussian processes to model the forward dynamics of the car and does not require

any explicit parameterization of the complicated dynamics of a drift. The added

Page 16 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

advantage of using Gaussian processes for predicting the forward dynamics over
other function approximators like neural nets is that their probabilistic properties

help to reduce the effect of model errors [20].

Page 17 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

3 Methodology

With the relevant decisions made after a comprehensive literature review, we
now talk about the implementations of the RL algorithms. In our project, we
took two separate approaches to obtain an optimal drift controller. We initially
started with a DQN model, and learning from the shortcomings of this approach
as discussed earlier, we implemented a PILCO agent. This section summarizes

both the approaches taken.

3.1 Autonomous Drifting with DQN Model

After discussing the generic RL methodology in the literature review, this section
further elaborates on it in context to the DQN model. More concretely, for the
DQN model in our project, the reward for the agent is computed based on the
position of the car in the two-dimensional x-y space. Position space is restricted
to the 2 dimensions because it will result in less computation done by the agent to
converge to an optimal drift policy. The reward is maximized if the car manages
to maintain a fixed radius, r, from the centre of the circular drift trajectory, and
the further it deviates from this circular track the larger the penalty it receives

(negative reward).

The input to the DQN model is the global Markovian state given by

St = [177%971'73)79] (4)

where s; is the state of the car at time step ¢ while x, y, 0, &, v, 0 are the x-
coordinate, y-coordinate, angular orientation, x-velocity, y-velocity and angular
velocity with respect to the world reference frame respectively. Since the DQN
model works in a discrete action space, the output action a is an integer where
a € A and A = [65,75,85,90,95,105,115], which represents the steering angles
(throttle of the car is kept constant to reduce the action space to optimize over).
The exact values for the set A were obtained based on our physical RC car and

the constraints in its steering angle.

Page 18 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

3.1.1 Value Function Approximation

RL algorithms for small number of discrete states are relatively simple because
the action values (the total expected discounted reward when an agent is at state s
and takes action a [14]) for the individual states can be stored in a simple look-up
table. What makes this approach difficult in our project is the fact that our RC
car has a continuous state space and infinitely many states. For example, the x
and y coordinates of the car’s position and the linear velocities & and y are all real
and continuous, contributing to the infinite state space. Thus, a different approach
is needed to generalize to the state space for our RC car. That is why a function
approximator will be used, a neural network to be precise, to approximate the (-
values and generalize over the entire state space for the RC car. More concretely,
given a state the car is in, s, as the input, our function approximator will output
G(s,a,w), where w are the parameters of the function approximator (weights in
the neural net) for all a € A. §(s,a,w) will give us the approximate ()-value for
the state-action pair and we do not need to store the action values in a table for

each pair.

3.1.2 Reward Definition

For our project, we use potential based reward shaping to make sure the car
follows a circular pattern [18]. In addition, a negative reward is added that pe-
nalizes for deviation of the car’s path from the target trajectory. Since the target
trajectory is circle, an equation for the circle can be obtained and the reward for
the deviation is the negative of the squared error between the car’s actual position
and the target trajectory. Our final reward is a summation of these individual
rewards. More concretely, the final reward, R is related to the potential reward,

R, and the deviation reward, R, as
R = R,(A#) — Ry(d,), where (5)

1,if A6 >0
Ry (AG) = (6)

—1, otherwise

Ry(d,r) = (d —r)* (7)

Page 19 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

3.1.3 Double Dueling DQN Architecture

As previously discussed in the literature review section of this report, we settled
with using double dueling Deep Q-networks for Q-learning of the action values
due to the fact that it is an off policy and model-free algorithm. The dueling
architecture of our network is illustrated in Figure [6, Our network comprises of a
few fully connected layers and dropout layers initially, which then branches into
two separate advantage and state value streams to combine again into a final fully
connected layer to output the final action values. Although we experimented with
the number of the hidden layers and their sizes to get an optimal network, our
current implementation comprises of 3 fully connected layers initially of hidden
size 500 and dropout 0.5. The 3 fully connected layers in the separate streams
have a size of 300 each.

Fully connected layers

with 500 units each Advantage

stream

— — —

State o o :|\
input — = .
:| Action Values

State value

Dropout layers with stream

dropout probability 0.5
™ Fully connected

B Dropout layer

Figure 6: The diagram shows the double dueling architecture of the
Deep Q-network. The blocks coloured orange represent the fully con-
nected layers while the blue blocks represent dropout layers for regu-
larization. The network then branches into two separate advantage and
state value streams to combine again into a final fully connected layer
to output the final action values.

Page 20 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

3.2 PILCO Design

In addition to our DQN model, we also implemented a PILCO agent in MAT-
LAB to learn the optimal drift controller. On a high level, the algorithm has three
essential steps - model learning, policy learning and policy application, which are

elaborated further in the subsequent paragraphs.

3.2.1 Model Learning

The first step of the algorithm is to build a probabilistic model of the how the
RC car interacts with the world (dynamics of the car), which is achieved using
Gaussian processes [20]. The input to this model is a state-action pair (s, a;)
and the output is the successor state, s;,1, where ¢ denotes the time step. In our
project, a full Gaussian process model is trained by maximum likelihood estimation

on the states encountered (evidence maximization).

\
~ ~ b \ ~
3 3 N L~ 3
ot oA \ = 0
0 , -
X + X W\ \ " £ X
2 2 .\ . g
= + = A\ \ "
+ Vo N FTN
v\ N .
2 I AN W 2
+ N Wk

5432401 23 45 5432401 23 45 5432401 23 45
(x, u) (x, u) (x, u)

Figure 7: In the diagrams, (z;,u;) represents the state-action pair at
ith time step and f(z;,u;) is a function for the forward dynamics that
is to be predicted. The left diagram represents the state-action pairs
encountered, while the middle diagram represents a few functions that
could have satisfied the distribution of the state-action pairs. The right-
most diagram represents how Gaussian processes build a probability
distribution over functions by maximum likelihood estimation on the
state-action pairs encountered [19)].

Page 21 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

To initialize the Gaussian process, various values of (s, a;) and sy were col-
lected by driving the simulated (and real) car. In this project, various methods
were considered for collecting the data needed to initialize the Gaussian process

model:

e Random Actions: The simplest way to collect the required data is to have
the agent take random steering actions on the car, and collect the resultant
state. This is a simple, yet effective approach to initialize the model, but

can extend the length of the learning process.

e DQN Model: Another approach that has never been used before, is to use
the preliminary DQN model. The DQN model is in no way perfect, but can
be used as a good starting point for the PILCO algorithm. The DQN model
is used to control the car as before, but the values of (s;, a;) and s, are also
forwarded to the PILCO controller to initialize the model.

e Demonstration: Finally, another way is to make use of a demonstration,
as used in various inverse reinforcement learning problems [21]. A demon-
stration of driving the car around can be used as an effective alternative to

initialize the Gaussian process model.

Once the values are collected, we use a Radial basis network as a functional
approximator to calculate the parameters needed to initialize the Gaussian process.
The centres for the RBF networks are found using the k-means algorithm [22]
and the length scales are also learned by evidence maximization similar to the
Gaussian processes. The learned parameters from the RBF network are then used

to initialize the policy network instead.

3.2.2 Policy Learning

Using the model of the forward dynamics, the algorithm approximates long term
evolution of the state of the car p(sq|m), p(se|7) ... p(sr|7), given the current policy
7. Using these long term predictions, the algorithm estimates the cost for using

the policy 7 analytically. This constitutes the policy evaluation of policy learning.

Page 22 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

This is followed by policy improvement, with iterative applications of optimization
algorithms such as L-BFGS [19).

Since the PILCO algorithm requires a cost design that can be used to analytically

compute the total cost of an episode [19], our new cost function had the following

T
¢, =1—exp <_ (8¢ — Starget) W (8¢ — Starget)> ®)

202

form

where o (width of the cost function which controls the sensitivity of the cost to
deviation from target) [19] was set to 5. ¢; is the cost incurred, s; is the simplified
state of the car at time step ¢ and W is a matrix that represents the weights
assigned to each component of the state in calculating c;. s;, Siarger € R4 and

W € R¥4 where d is the number of elements in s;.

Starget Was set to a constant reasonable target state for our model, which was
obtained using equations of motion governing an object moving in a circle. Ac-
cording to 23], the centripetal force on the car and frictional force acting on it are

related by the equation

7’)””)2

5 = Hmyg (9)
where m and v are the mass and velocity of the car respectively while R and g
are the radius of the circular path and the gravitational constant respectively. u is
the coefficient of friction between the tire and the ground. Moreover, the angular

velocity, 0, and the speed of the car, v, are related by
v = Rf (10)

3.2.3 Policy Application

Using the policy learned in the previous step, the policy is applied in our simu-
lator of the RC car. The car state that is obtained from the simulator is mapped

through the policy to get an action to execute at every time step.

Page 23 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

0 50 100 150
Time Steps Time Steps

(a) Episode 1 (b) Episode 15

Cost
o
N

Cost

Figure 8: Cost predictions during policy application at different stages
of the training of the PILCO algorithm. The blue vertical lines represent
the uncertainty error bars in the algorithm’s estimate of the cost during
an episode while the blue curve in the middle represents the average
estimate of the cost. The red line represents the actual cost incurred by
the car during the episode. The diagrams illustrate that the algorithm
performs much better at predicting the cost of an episode in only 15
trials.

In addition, Figure [§| shows the cost incurred during policy application in the
first episode and the 15th episode of the PILCO training with the final state
representation on a four-wheel drive car. The blue vertical lines represent the
uncertainty error bars in the algorithm’s estimate of the cost during an episode
while the blue curve in the middle represents the average estimate of the cost. The
red line represents the actual cost incurred by the car during the episode. As can
be seen from the figures, the actual cost incurred by the car closely mirrors the
algorithm’s average estimate by the end of just 15 episodes. Moreover, since the
algorithm has seen more of the dynamics of the car by the 15th episode, the actual

cost incurred also lies more within its estimate uncertainty by the 15th episode.

Page 24 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

3.2.4 State Representation

Although we experimented with different state spaces for the car and various
other aspects of the model in the simulator (these are discussed in the results
section of this report), the final PILCO implementation has a few key differences
to the DQN model. The implementation for PILCO that converged in the best
controller for a sustained circular drift used the state s; = [Zcar, Year 0], where T,
and 7., are the velocity components of the car along the x and y axes from the
car’s reference frame respectively (Figure @) while 6 is the angular velocity, instead

of the global Markovian state as in equation [4]

Figure 9: The diagram shows the velocity components of the car along
the = axis, 7., and along the y axis, 9..., from the car’s reference frame
used in our final state representation. R represents the radius of the
circular drift path.

We arrived at this simplified state representation by iterative improvements
based on the results obtained from experiments discussed later. This was also
greatly motivated by our realization that this representation is sufficiently Marko-
vian for the problem of drifting. This is because based solely on this representation,

it is possible to predict the future evolution of the state of the car. Since the cost

Page 25 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

encoding a circular drift is an explicit definition involving just these components of
the state, it is hence possible to predict the future rewards the RL agent receives for
executing a proper drift entirely from the new state representation, proving that
the state is Markovian. However, doing so comes at the expense of not having a

fixed centre of the circular drift.

Following the discussion of the PILCO design in the project, the next section
presents the results of experiments performed with the DQN model and progressive
iterations of the PILCO algorithm.

Page 26 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

4 Results and Experiments

4.1 DQN Results

To ensure that the implementation of the algorithm was correct, it was used to
solve two baseline problems in the RL realm - Mountain Car and Cart Pole. To
quantify the performance of the algorithm, we use two metrics - the mean loss and
mean reward of the agent over the number of steps of the algorithm. The loss is
formulated as the squared difference between the expected action value and the
target action value. As the agent learns the expected action values over number of
steps, the value converges with the target action value, and hence the loss should
decrease over number of steps. The reward is simply the total reward the agent
earns over an episode of the algorithm, which should be increasing over the number

of steps as the agent learns the appropriate behavior.

Page 27 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Both these trends can be observed for the Mountain Car problem in Figure

120 A

100 o

Loss

60 -

40 A

20 A

. | 1| -

T T

0 100000 200000 300000 400000 500000 600000 700000 800000
Time steps

(a) Mean loss

-100 A

-120 A

-180 A

-200

0 100000 200000 300000 400000 500000 600000 700000 800000
Time steps

(b) Mean reward

Figure 10: As can be observed on the diagrams the mean loss reduces
and the mean reward increases with the number of training iterations,
which is as expected on the Mountain Car problem.

Page 28 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Similarly, we can observe these trends for the Cart Pole problem in Figure

2.5E+16

2E+16 A ﬂ

1.5E+16 o

Loss

1E+16

5E+15 o

0 5000 10000 15000 20000
Time steps

(a) Mean loss
250

200 A

150 A

Reward

100 A

50 A

O T T T T
0 5000 10000 15000 20000
Time Steps

(b) Mean reward

Figure 11: The loss and reward trends for the DQN model on the Cart
Pole RL problem follows a similar eventual downward and upward trend
respectively as expected.

Page 29 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Finally, once the required behavior was observed in the baseline problems and
we were confident our implementation is correct, the first iteration of the double
dueling DQN algorithm was executed on the simulated car. Figures [12] and
illustrates the mean loss and mean reward of the agent after 17 hours of training

respectively. Once again, the results are congruent with what we had expected.

250

200 -

150 A

Loss

100

50 4

0 100000 200000 300000 400000 500000 600000 700000 800000
Time steps

Figure 12: The mean loss over the number of training steps during the
training of the DQN model on the simulated car (trend as expected).

200

Reward

0 100000 200000 300000 400000 500000 600000 700000 800000
Time steps

Figure 13: The mean reward over the number of training steps during
the training of DQN model on simulated car. The reward increases

over time, which proves the algorithm implementation optimized for
the reward defined.

Page 30 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Although the DQN algorithm performed particularly well on baseline reinforce-
ment learning problems, the algorithm didn’t succeed in finding an optimal drift
controller. As mentioned previously this could partially be attributed to the fact
that the DQN algorithm works on a discrete action space, which greatly constrains
the possible steering actions the car can execute. This could have also resulted
from the use of potential based rewards; potential based reward shaping likely
was not enough to differentiate a car from moving in a circular motion to that
drifting in a circle. This led us to explore PILCO as discussed previously and the
subsequent paragraphs summarize some of the experiments performed and results
obtained by progressively iterating on the PILCO algorithm, culminating in our

final successful implementation.

Page 31 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

4.2 PILCO Results

We started exploring PILCO using a the same global Markovian state as we
had used for the DQN model (equation . We used a different objective function
as defined by equation [§] earlier with W being an identity matrix. Both the s,
and Syqrger contained all components of the global Markovian state ([z, v, 0, %,
v, (9]) We noticed significant improvements in doing so. In particular, using the
controller learned from the PILCO algorithm, the car in simulator managed to slip

and turn. However, it did not manage a sustained circular drift.

Although we started with a full Markovian state including the z and y coor-
dinates for the position of the car, owing to difficulties encountered with indoor
localization of the RC car as discussed in Section 3.2.1 of Hardware Report, we
experimented with removing the position coordinates from the state. As already
mentioned, this was greatly motivated by our realization that the state of the car
excluding the x and y coordinates is sufficiently Markovian for the problem of
drifting. In addition, we added a speed component to the total state (making use
of the separate velocity components), which played a role in calculating the cost.
It was used to penalize non-uniform circular motion since an object moving in a
uniform circular motion maintains a constant speed although it is accelerating by
virtue of changing direction of its velocity [23]. This resulted in the new state
representation

St = [eaxayaeas] (11)

where S is added to represent the speed of the car. We used the same definition

of ¢; as given by equation [§] The diagonal matrix W then had the form

[0 0 0 0]
00 0 0
W=100 0 0
000 a O
000 0 oy

a1 and ag were integer weights for the 6 and S components of the state respec-

Page 32 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

tively accounted into the cost ¢;. The other diagonal entries were set to 0 since
the corresponding state components were not taken into account in calculating
¢;. However, 6, and y were still left in the state because they were used by
the Gaussian process model to predict the forward dynamics of the car. Initially,
both a; and as were set to unity. The results we obtained by taking these steps
were slightly better than the ones with a full Markovian state, which supports the
argument that the coordinates are not necessary for finding an optimal drift con-
troller. By a similar reasoning, we additionally experimented with removing the
angular orientation of the car from the complete state and once again, the results
were convincing to strengthen the argument. By adding a speed component to the
state, our car in simulator was also trying to turn more often, as seen in Figure [14]

which proved it played a crucial role in trying to obtain a circular drift controller.

Figure 14: The time-lapsed path followed by the car with a speed com-
ponent in the cost definition. As can be observed, the car turns and
drifts but fails to sustain a circular drift and lacks stability.

Despite some improvements over the previous full Markovian state, we observed
that the algorithm sometimes converged to a suboptimal controller where the car
only followed a straight path. We realized that this could have resulted from the
specific values assigned to a; and as in W. Since the two components of the cost
had equal weights, the controller initially tries to optimize for both them. However,

after a few episodes, the controller is unable to optimize for both components of the

Page 33 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

cost simultaneously and hence chooses to prioritize the speed component, which
is easier to achieve, leading to a suboptimal controller. Furthermore, it was also
evident that the controller PILCO converged to was also influenced by the values
set for a; and ay. To validate our reasoning, we experimented with different

weights for the components of the cost, and the results are illustrated in the path

diagrams below.

() oy =0and ay =1 (b)) oy =1and s = 0

Figure 15: Path followed with different o; and o, values in the W
matrix. Different values for a; and «s caused the algorithm to converge
to suboptimal controllers where the car either followed a straight path
or spun in place instead of drifting.

Figure [15] illustrates the time-lapsed path of the car with various value settings
of a; and ay. The arrows in the diagrams represent the direction in which the
car was facing. As shown by the arrows in Figure [I5a, with a value setting of
a; = 0 and ay = 1 (Experiment 1), the policy converged to a controller where
the car always followed a somewhat straight path. If the car went completely
straight, it would surpass the target speed of 4m/s in $y4,4et, based on equations |§|
and [I0] Thus, the car turns slightly in order to reduce speed and achieve the
target. On the other hand, with a setting of oy = 1 and a = 0 (Experiment 2),
the algorithm found a controller where the car just spun on the spot to minimize
cost, as illustrated by the arrows in Figure [T5D]

Page 34 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Following our experiments as illustrated, it was evident that settings for the
values of oy and ay played a role in deciding the type of controller the algorithm
converged to. After several attempts at manually tweaking the values for the
weights (Experiments 3 and 4), we managed at best to obtain a controller where

the car would drift but would appear to lose momentum and fail to maintain the

drift.

Considering the difficulties associated with finding the optimal values for ay
and s, we decided to shift to an objective cost that was not only much easier
to deal with, but also encoded the problem of drifting much more precisely. To
do so, the state of the car was modified further to have two different components,
which were used in the objective function as in equation Unlike the velocity
components with respect to the world reference which are constantly changing
during a circular motion, both x and y components of the body frame velocities will
remain constant during a perfect circular drift. We arrived at the final simplified

state representation given by

St = [x‘cam ycara ‘9] (12)

where x.,, and y.q are the velocity components of the car along the two perpen-
dicular axes from the car’s reference frame as in figure @ while 0 is the angular
velocity. With this representation, W was again set to a 3x3 identity matrix so
that the algorithm weighed each component of the new state into the cost function
in equation |8 equally. We experimented with this final state and cost representa-
tion with a two-wheel drive car (Experiment 5), and got some success in getting
a circular drift due to the fact that the car was now actively trying to counter steer
in order to achieve and maintain the body frame velocities. However, we noticed
that even though the rear wheels of the car slipped out to initiate a sustained cir-
cular drift, the front wheels did not have enough torque on them to drive the car
sideways (using the steering angle) and maintain sideways momentum. In order
to alleviate this problem, we experimented with a four-wheel drive car (Exper-
iment 6). This allowed the front wheels to independently add to the sideways

velocity component, allowing the car to optimize for both velocity components and

Page 35 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

maintain the sideways velocity without losing momentum. Doing so achieved the

successful sustained circular drift we have been aiming for.

J /\ |

| /
N - s N /\\ P J
Y\ W\‘/\“ 4%V) v /\\,/\ //\,~/\/’ ,
0 50 100 150
Time Steps

(a) Cost incurred (b) Path followed by car

Figure 16: Cost incurred by the converged controller and the path
followed by the car. In (a), the cost incurred during the first few time
steps is slightly higher due the fact that the car initiates a circular
drift from a standstill, after which, the average cost stays fairly low and
constant. In (b), the time-lapsed diagram shows the car drifting in a
circular path.

Figure represents the cost incurred at every time step for the converged
successful sustained circular drift controller on the four-wheel drive car. As illus-
trated, the cost incurred during the first few steps is slightly higher due the fact
that the car initiates a circular drift from a standstill, after which, the average

cost stays fairly low and constant.

Figure illustrates the time-lapsed circular path followed by the car with our
successful drift controller as it drifts sideways. In contrast to Figure [I5D] the circle
outlined in Figure has a larger radius, which also indicates that the car was

not simply spinning in place.

Page 36 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Ay

0.8

o
)

©
>

o©
[N

Action (radians)
o

0.2
-0.4
-0.6
-0.8
0 20 40 60 80 100 120 140 160
Time steps

Figure 17: Steering actions (radians from centre) issued by controller
at each time step. The diagram helps to appreciate the complexity of
the problem of sustaining a circular drift.

Figure[17|illustrates the steering action (radians from the centre) issued over the
same 150 time steps by the successful controller to maintain the sustained circular
drift in Figure . This figure helps to appreciate the complexity of the problem

of sustaining a circular drift, which is difficult for a human to recreate.

(a) -0.8 (b) O (c) 0.8

Figure 18: Steering of the simulated car at different values of the steer-
ing action in radians from centre; -0.8 (steer left completely), 0 (steer
centre) and 0.8 (steer right completely).

Page 37 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Upon obtaining a successful drift controller, we further experimented with the
effects of initialization methods on the PILCO algorithm. As discussed previously
in the methodology, we investigated with random initialization, initialization with
the DQN model and initialization from a demonstration. Table [l summarizes the
number of episodes taken by the algorithm to converge to a controller that receives
an average cost of 0.1 over the length of the episode (150 time steps). As can be
observed, the algorithm converges quicker with both a DQN model initialization
and initialization from demonstration than a random initialization. However, there
is not much difference between a DQN model initialization and initialization from
demonstration since the demonstration was done by one of us and not experts at
drifting RC cars.

Initialization method ‘ Episodes taken
Random initialization 12
DQN initialization 7
Demonstration initialization 8

Table 1: Number of episodes taken by the PILCO algorithm to converge
to a controller that receives an average cost of 0.1 over the length of the
episode (150 time steps). As can be observed, the algorithm converges
quicker with both a DQN model initialization and initialization from
demonstration than a random initialization. However, there is not much
difference between a DQN model initialization and initialization from
demonstration since the demonstration was done by one of us and not
experts at drifting RC cars.

Page 38 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

4.3 Improvements to DQN Model

Following our success in obtaining a sustained circular drift controller with PILCO,
we performed a few experiments to compare the effectiveness of the two algorithmic
approaches used during the course of the project. We were interested in comparing
the results obtained from PILCO with those from the same double dueling Deep
Q-network we previously discussed. However, for a fairer comparison, the state
input into the DQN model was altered from a equation [to[12] Moreover, instead
of using potential based rewards like we had previously, the reward, r;, was altered
to be inverse of the cost([3)),

Ty = —¢ (13)

Figure |19 shows the mean reward of an episode of the DQN model at regular
intervals during the training with the changes discussed. Similarly, Figure

illustrates the mean loss incurred over time steps during the training.

0 T T T T T T
-10 A

0]

-30

Reward

40 4

-50 -

-60 -

-70

0 500000 1000000 1500000 2000000 2500000 3000000 3500000
Time steps

Figure 19: Mean episodic reward during the training of improved DQN
model with the final state representation (equation and the new re-
ward function. The mean reward increases over time which is expected.

Page 39 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

70

50 +

40 -

Loss

30

20 o

10 +

o "

0 T T L T T T T

0 500000 1000000 1500000 2000000 2500000 3000000 3500000
Time steps

Figure 20: Mean loss during the training of the improved DQN model
with the final state representation (equation and the new reward
function. The mean loss increases over time as expected.

The controller learned from the DQN model after the changes described was
applied to the car in the simulator. The results were remarkably better than what
we had previously obtained from the DQN model. Although the DQN controller
incurs a slightly higher average cost over an episode than with the PILCO controller
(due to the model’s restricted steering action space), the car was trying to maintain

a circular drift as closely as possible.

Page 40 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

DQN Cost

0.20 A1

Cost

0.05 1

(o] 20 40 60 80 100 120 140
Number of steps

Figure 21: The cost incurred during an episode with the improved DQN
controller. Although the average cost is slightly higher than that with
the PILCO controller, the cost is consistently low, which proves it is
reasonably good despite the constrained action space.

The effectiveness of the controller learned from the DQN model in maintaining
a sustained circular drift with the changes discussed can be observed in Figure
(Experiment 7). Although the average cost is slightly higher than that with the
PILCO controller, it is consistently low, which proves it is reasonably good despite

the constrained action space.

Page 41 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

4.4 Transfer to Physical RC Car

Using the final controller obtained from the PILCO algorithm as discussed previ-
ously, we transferred it the physical RC car to initialize PILCO learning. Figure
illustrates the cost incurred over an episode of 150 time steps by the physical RC
car with the converged controller after 15 episodes of training (Experiment 8).
As can be observed, the cost incurred is higher on the physical RC car than it was
on the simulator. This can be attributed to the noisy state data obtained from
the car and the inaccurate state information. Due to this, the physical RC car did
not manage to obtain a substantial sustained circular drift. Issues encountered
with obtaining accurate state information and our attempts at resolving them are

discussed further in the Hardware and Software reports.

0.6

0.5

‘
04t ‘
0.3 ‘
02 [\ ‘ | |||
i R '

01f i

ol
-0.1

-0.2

Cost
Cost

Time Steps Time Steps

(a) 2WD car in simulation (b) Physical RC car

Figure 22: Cost incurred with the converged PILCO controller on the
physical RC car (2WD) after initializing the learning for 15 episodes
compared to the cost incurred in the simulator with a 2WD car. As
can be observed, the cost incurred is higher on the physical RC car
than it was on the simulator. This can be attributed to the noisy state
data obtained from the car. Additionally, the physical RC car did not
manage to obtain a substantial sustained circular drift due to this noise
in state and also because it is a 2WD car and not a 4WD car. As
discussed earlier, the spikes in the diagram is due to the loss in
sideways momentum during the drift in a 2WD.

Page 42 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

4.5 Quality Evaluation with Drift metric

Since we conducted various experiments with state spaces, action spaces and
even the algorithm itself, it was important to be able to objectively evaluate the
quality of the drift resulting from the converged controller. So a metric was de-
signed, with some resemblance to the cost definition in (, which encodes the
parameters relevant to a sustained circular drift. D,, scores the quality of a drift
in the range [0, 1], with 1 being a perfect circular drift. This metric, D,, is defined

as

T

1 arge 2
D, Zexp(o sl o,y (14)

t=

where s; is the state of the car at time step t given by equation and Sgrger 1S
a reasonable constant vector chosen as [3.5, 0.5, 2] (by reasoning with equations @]
and and o set to 5 [19]. T is the episode length. Table |2 summarizes the
drift metric, D,,, which was evaluated for some of the experiments highlighted

and numbered in the previous sections.

Number Experiment parameters D,,
1 s = [&, 9,0, S] with ¢y =1 and ag =0 0.402
2 s = [&, 9,0, 8] with a; =0 and ay = 1 0.273
3 = [, 9, 0, S] with oy =1 and ap = 1 0.582
4 = [x', 3, 0, S] with a; = 3 and o = 1 0.615
5 = [dears Year, 0] with 2WD 0.763
6 = [dears Year, 0] with 4WD 0.948
7 S¢ = [xcam Years f] with 4WD (DQN) 0.918
8 St = [Tears Year, 0] with 2WD (physical RC) 0.633

Table 2: Summarized values for D,, for various experiments. The num-
bers are referenced in the previous sections. As observed, the highest
D,,, values were achieved with final state representation (with both
a two-wheel and four-wheel drive on the simulator. The D,, obtained on
the physical RC car is lower due to the noisy state information received
from the car and also because it is a 2WD and not a 4WD RC car.

Page 43 of

Autonomous Drifting RC Car using Reinforcement Learning

Final Report

4.6 Testing Robustness and Stability

We tested the robustness of our converged sustained drift controller by exposing

the car to physical conditions that were different to which the algorithm was

trained on. More concretely, the controller was tested with different surface friction

and with a lower car mass. Our successful drift controller was obtained by running

the algorithm on a surface that had 0.5 as the coefficient of friction (u) with each

episode spanning 150 time steps.

0.45

o4l |

0.3

0.25 -

Cost

0.2+

0.15

0.1r

0.05 -

‘
|\,) -
\\// ~N pa N Y \‘
0 50 100 150
Time Steps

(a) Lower friction

04
035}
‘
03H |
025} |

A
0.2 |\
V'

Cost

0.15 -

A
I N |
[l

I\
o [[

\ A\ | \ N[|

v J‘ % | //\‘ “‘v“\/ \ /-A\VJ J A

100 150
Time Steps

(c) Lighter car

0.45

0.4

0.35

0.3 H

Cost

0.2 1

0.15

0.1

0.05

0.25 1

100 150
Time Steps

(b) Higher friction

T
|l H“‘w |

| M,Mw')

Y | ”f\'\ wmm‘h

I ﬁ
| \ 1M
'l W ALY vmww “‘W‘MW‘

100 200 300

Time Steps

400 500 600

(d) Longer time horizon

Figure 23: The car was independently subjected to lower friction (a),
higher friction (b), lower chassis mass (c) and longer time horizon (d).
The consistently low cost incurred during the episode in all conditions
prove the stability and robustness of the converged PILCO controller.

Page 44 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Figure [23a] illustrates the cost incurred when the learned controller was applied

on the car with a lower tire surface friction coefficient (u = 0.4).

On the other hand, Figure is the cost incurred when the car was exposed
to higher surface friction (1 = 0.6) . In both case, the results obtained show a
consistently low cost, which is very promising and prove that our controller is

robust to varying surface friction.

In one of our experiments, the mass of the car was reduced by a quarter and
Figure [23¢| illustrates the cost incurred. In addition, we also applied the controller
for longer time horizon (600 steps) for each episode and Figure illustrates the

cost incurred.

The results presented prove that our controller obtained from PILCO is not only

robust but is also stable and can adapt to longer time horizons.

Page 45 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

0.7
0.25
0.6
0.20 05
o 0.4
3 3
00.15 ©
0.3
0.10 0.2
0.1
0.05 0.0
0 25 50 75 100 125 150 0 25 50 75 100 125 150
Time steps Time steps
(a) Lower friction (b) Higher friction
0.30 0.4
0.25
0.3
0.20
% @
(o] (e}
©0.15 So.2
0.10
0.1
0.05
0.00 0.0
“Y0 25 50 75 100 125 150 0 100 200 300 400 500 600
Time steps Time steps
(c) Lighter car (d) Longer time horizon

Figure 24: Cost incurred by subjecting the learned DQN controller to
different scenarios. As can be observed, the cost incurred during the
episode with lower friction (a), higher friction (b) and lower mass (c) is
higher and more sporadic. This proves that the controller is not robust.
However, the cost incurred over a longer time horizon (d) is consistently
low, which shows the controller is stable.

Following our tests with the PILCO controller, we tested the robustness and

stability of the controller obtained from the DQN model with the new state repre-
sentation and reward definition (equation . Although the general trend in the

Page 46 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

different physical conditions appear to be the same as those with the PILCO con-
troller, the magnitude of the cost incurred during the episode with lower friction
(a), higher friction (b) and lower mass (c) is higher and more sporadic. However,
the controller appears to be stable since it incurs a consistent low cost with higher

time horizons for each episode.

Compared to the DQN model, PILCO was much more data efficient in converg-
ing to a controller. Successful results for the PILCO controller discussed previously
were obtained only after 30 episodes of training, each lasting 150 time steps, for
a total of under 5000 time steps. On the other hand, Figures [19| and [20| show the
DQN model converging to a controller after 1.5 million time steps. Such dramatic
differences in convergence times is due to the fact that PILCO is a model-based
learning algorithm, which uses probabilistic properties of the Gaussian processes

to take actions while accounting for uncertainties in dynamics model.

Table|3|summarizes the D,, values observed for the robustness and stability tests
performed as described. As mentioned previously, the PILCO controller is both
robust to changes in physical conditions of the environment and stable to longer
time horizons of episodes. However, the DQN model is not robust to changing

physical conditions but stable to longer episode length.

Robustness and stability tests DQN PILCO
Lower friction (p = 0.4) 0.827 0.921
Higher friction (1 = 0.6) 0.832 0.903

Reduced chassis mass 0.873 0.892
Longer time horizon 0.893 0.938

Table 3: Summary of the D,, values, comparing the robustness and sta-
bility of controllers learned from the improved DQN model and PILCO.
The PILCO controller is both stable and robust while the DQN con-
troller is stable to longer time horizon but not robust to changes in
environment.

Page 47 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

5 Conclusion

To summarize, we justified why autonomous drifting cars are important and
how drifting can be useful in emergencies to avoid accidents. As we have already
discussed, current self driving cars and stability control techniques try to avoid
slipping tires and in doing so, restrict the capability of the car. However, we
need to exploit the full capability of a car during emergencies. So clearly, having
an autonomous drifting car that learns an optimal drift control policy using our
methods can help reduce the number of accidents caused by hydroplaning and

make roads safer.

Motivated with this intention, we first proposed a framework that uses state
of the art model-free reinforcement learning algorithms like double dueling Deep
Q-networks to learn an optimal controller for drifting an RC car to maintain a
state of steady circular drift. Following the results obtained from our DQN model,
we investigated the reason behind not being able to find a sustained circular drift
controller and explored PILCO as a model-based approach to alleviate some of the
shortcomings of the DQN model - it uses a continuous action space and Gaussian
processes for modeling the forward dynamics. Discussion of the methodology was
followed by the results obtained from experiments conducted during the course
of the project with the DQN model and PILCO. Additionally, results from our
successful drift PILCO controller were also presented, and tests were conducted to
prove that it is more stable and robust to different physical conditions than DQN
controller. Furthermore, one of the important contributions of the project is the
drift metric,D,,, which objectively quantifies the quality of a sustained circular
drift.

There are a few extensions that can be made to the current state of the project.
Firstly, the robust and stable PILCO drift controller that was obtained on the
simulator can be extended to be as effective on a physical RC car. Secondly,
possible methods of exiting a drift rather than sustaining one can be explored as
well. This can then be transferred to an autonomous car that needs to exit a

slipping state to avoid accidents.

Page 48 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Although the initial aim of the project was to implement autonomous sustained
circular drift in a physical RC car, we did not manage to achieve it completely, ow-
ing mostly to hardware challenges associated with indoor localization as discussed
in Section 3.2.1 of Hardware Report report and cost constraints in acquiring a
4WD RC car. Nevertheless, much effort was put into closely modelling the phys-
ical properties of an RC car in the simulator as discussed further in Section 2.3.1
of the Software Report. Thus, given our success in finding a robust and stable
sustained circular drift controller with the simulator, we firmly believe the results

can be easily replicated on a physical RC car once the hardware is acquired.

Page 49 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

References

1]

F. Zhang, J. Gonzales, K. Li, and F. Borrelli, “Autonomous drift cornering
with mixed open-loop and closed-loop control,” in Proceedings IFAC World
Congress, 2017.

S. Saha, P. Schramm, A. Nolan, and J. Hess, “Adverse weather conditions
and fatal motor vehicle crashes in the united states, 1994-2012," Enwviron-
mental Health, vol. 15, 2016.

A. T. van Zanten, R. Erhardt, G. Landesfeind, and K. Pfaff, “Vehicle sta-
bilization by the vehicle dynamics control system ESP,” IFAC Mechatronic
Systems, Darmstadt, Germany, pp. 95-102, 2000.

J. Ackermann, “Robust control prevents car skidding,” IEEE Control Sys-
tems Magazine, vol. 17, pp. 23-31, 1997.

K. Yoshimoto, H. Tanaka, and S. Kawakami, “Proposal of driver assistance
system for recovering vehicle stability from unstable states by automatic
steering,” in Proceedings of the IEEE International Vehicle Electronics Con-
ference, 1999.

A. Hac and M. Bodie, “Improvements in vehicle handling through integrated
control of chassis systems,” International Journal of Vehicle Design, vol. 29,
no. 1, 2002.

J. Wei, Y. Zhuoping, and Z. Lijun, “Integrated chassis control system for
improving vehicle stability,” in Proceedings of the IEEE International Con-
ference on Vehicular Electronics and Safety, 2006.

A. Trachtler, “Integrated vehicle dynamics control using active brake steering
and suspension systems,” International Journal of Vehicle Design, vol. 36,
no. 1, pp. 1-12, 2004.

P. Frere, Sports Car and Competition Driving. Bentley, 1969.

E. Velenis, D. Katzourakis, E.Frazzoli, P.Tsiotras, and R.Happee, “Steady-
state drifting stabilization of RWD vehicles,” Control Engineering Practice,
vol. 19, 2011.

Page 50 of

Autonomous Drifting RC Car using Reinforcement Learning Final Report

[11]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Hindiyeh and J. Gerdes, “A controller framework for autonomous drifting:
Design, stability, and experimental validation,” Journal of Dynamic Systems,
Measurement, and Control, vol. 136, 2014.

S.-T. Wu and W.-S. Yao, “Design of a drift assist control system applied to
remote control car,” International Journal of Mechanical, Aerospace, Indus-

trial, Mechatronic and Manufacturing Engineering, vol. 10(8), 2016.

E. Velenis, E. Frazzoli, and P. Tsiotras, “On steady-state cornering equilib-
ria for wheeled vehicles with drift,” Institute of Electrical and Electronics
Engineers, 2009.

R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing Atari with Deep Reinforcement Learn-
ing,” CoRR, vol. abs/1312.5602, 2013. arXiv: 1312.5602. [Online]. Available:
http://arxiv.org/abs/1312.5602.

H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double Q-learning,” CoRR, vol. abs/1509.06461, 2015. arXiv: 1509 .06461.
[Online]. Available: http://arxiv.org/abs/1509.06461.

7. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures
for deep reinforcement learning,” CoRR, vol. abs/1511.06581, 2015. arXiv:
1511.06581. [Online]. Available: http://arxiv.org/abs/1511.06581.

A.Y. Ng, “Shaping and policy search in reinforcement learning.,” PhD thesis,
EECS, University of California, Berkeley, 2003.

M.Deisenroth, D.Fox, and C. Rasmussen, “Gaussian processes for data-efficient
learning in robotics and control,” Pattern Analysis and Machine Intelligence,
IEEE Transactions, vol. 99, 2014.

C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning.
MIT Press, Cambridge, MA, 2006.

Page 51 of

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

Autonomous Drifting RC Car using Reinforcement Learning Final Report

[21] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of rein-
forcement learning to aerobatic helicopter flight,” Sammut C., Webb G.I.
(eds) Encyclopedia of Machine Learning and Data Mining,

[22] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering
algorithm,” Applied statistics, pp. 100108, 1979.

(23] J. W. David Halliday Robert Resnick, Fundamentals of Physics. Wiley, 1960.

Page 52 of

	Introduction
	Background and Motivation
	Objective
	Scope
	Deliverables
	Contributions
	Outline of Reports

	Literature review
	Optimal Control Approach to Autonomous Drifting
	Reinforcement Learning Approach
	Model-free Learning with Dueling Double DQN
	Model-based Policy Search Using PILCO

	Methodology
	Autonomous Drifting with DQN Model
	Value Function Approximation
	Reward Definition
	Double Dueling DQN Architecture

	PILCO Design
	Model Learning
	Policy Learning
	Policy Application
	State Representation

	Results and Experiments
	DQN Results
	PILCO Results
	Improvements to DQN Model
	Transfer to Physical RC Car
	Quality Evaluation with Drift metric
	Testing Robustness and Stability

	Conclusion
	References

