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Abstract

The advent of self-driving cars has pushed the boundaries on the safety of auto-
mobiles, but most modern self-driving car systems ignore the possibility of a car
slipping resulting from inclement weather or driver error [1]. Passengers and by-
standers would benefit heavily if self-driving cars could handle slipping by learning
to drift with the turn rather than against it (by applying the brakes, or turning
away, which is the instinctive action), preventing many fatalities [2].

Our project is aimed at studying the drifting of an autonomous remote controlled
(RC) car using reinforcement learning (RL) techniques. Specifically, we experi-
mented with a model-free approach with dueling double Deep Q-networks (DQN)
and a model-based approach with Probabilistic Inference for Learning COntrol
(PILCO) for finding an optimal drift controller. Since robotic systems are prone
to wear with use, a simulator is used to model the car dynamics and train a
preliminary drift controller which is then transferred to the real car.

Using these techniques, we were successful in obtaining an optimal drift con-
troller on the simulator, which was stable and robust to varying physical condi-
tions. Other than the drift controller, this project makes important contributions
in the form of novel approaches like using DQN for obtaining a drift controller and
using the policy learned from DQN for PILCO initialization. Additionally, this
report presents a metric, Dm, to objectively quantify the quality of a sustained
circular drift.
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1 Introduction

Before discussing the implementation details of the project, it is crucial to un-
derstand the background of the problem we are trying to solve, and the actual
scope. This section addresses that and highlights the need to study and solve the
problem of drifting, and outlines how we plan to do so with an approach based on
simulation aided reinforcement learning. For the purposes of this report, drifting
is defined as the oversteering of a car which results in the loss of traction of the
rear wheels. This results in the front wheels pointing in the opposite direction to
the turn and the car appears to be moving sideways as shown in Figure 1.

(a) Steering around bend (b) Drifting around bend

Figure 1: Drifting is defined as the oversteering of a car which results in
the loss of traction of the rear wheels. This results in the front wheels
pointing in the opposite direction to the turn and the car appears to be
moving sideways. The diagram illustrates the difference between simply
turning around a bend and drifting around a bend.

1.1 Background and Motivation

Passenger vehicles usually implement stability control in a number of ways like
differential braking [3], active steering [4] [5] or integrated chassis control [6] [7] [8].
Other methods, based on independent wheel torque, have also been developed to
make passenger vehicles more stable. However, these methods function by making
sure that the tires avoid slipping. In doing so, these methods essentially restrict
the operation of the vehicle. Similarly, control algorithms in current self-driving
car systems (Anti-lock brake systems, Electronic stability control etc.) try and
mitigate the chances of slipping due to its unpredictable nature [1]. Sufficiently
lowering the speed of the car and making turns that are not too tight will mostly
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prevent slipping, but this does not consider cases where the system must make
evasive moves to avoid crashes or when a car is already in a slipping state due to
the driver’s fault. For example, hydroplaning, which refers to a situation where a
layer of water builds up between the car tires and the road, is a major reason for
vehicle accidents. According to the United States’ Department of Transportation,
15.97% of all vehicle crash fatalities in the United States [2] are attributed to wet
and icy roads. An autonomous car system should be prepared for the scenarios
outlined above to ensure the safety of the passenger and bystanders, regardless of
the weather conditions or the state of the car. To reduce fatalities and ensure that
these car systems are as robust and safe as possible, it is essential to study drifting,
and eventually deduce how cars can respond quickly to unintentional slipping states
as those encountered due to hydroplaning. Not only can drifting be useful to steer
out of these unintentional slipping states, but can also be useful in taking full
advantage of the capabilities of a vehicle to avoid accidents in emergencies.

Many of the systems discussed above try to tackle the issue of stability control
and slipping by approaching it as an optimal control and open looped problem with
explicit dynamics model. Approaches using optimal control are often deterministic
and use closed-form expressible equations of motions. The resulting policies de-
pends entirely on the model used to compute them. Sometimes, these restrictions
on the model neglect parts of the true system either because they are non-linear
or they are just not well-enough understood to be expressed in equations. We thus
propose a method that does not rely on explicit equations of motion, but rather
on an implicit understanding of the world obtained by trial and error.

Another motivation to study drifting is that Paul Frère [9] points out the use-
fulness of drifting to turn fast around sharp bends. Since high-speed stability is of
greater importance to ordinary touring vehicles and competition cars, they tend
to understeer, and for a competition car average circuit time is improved by going
fast through fast bends while slowing down through sharp ones [9]. However, a
car is able to turn sharp bends faster by drifting because the yaw angle formed by
the drift brings the vehicle in line with the straight path following the bend even
before the vehicle completes the turn [9].
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1.2 Objective

The objective of this project is to get a remote controlled car to maintain a sus-
tained circular drift autonomously. This paper proposes a framework for learning
the best way to drift using simulation aided reinforcement learning which is one
approach to solving the problem without having to input the dynamics of the sys-
tem explicitly. Then the project aims to transfer the learned optimal drift policy
or strategy from the simulation to a physical RC car for further learning.

1.3 Scope

The area of drifting falls into two categories – sustained drift and transient drift.
Due to the wide breadth of the two categories and the time and cost constraints,
our project will mainly focus on sustained drift, and more specifically steady state
circular drift on an RC car with constant forward throttle. Additionally, despite
the wide range of reinforcement learning algorithms available, due to reasons elab-
orated in the remaining of the report, we investigate two different algorithms to
obtain the sustained circular drift controller - DQN and PILCO.

1.4 Deliverables

The complete implementation of the project is available on https://github.com/
kanakkabara/Autonomous-Drifting. There are a few major deliverables in this
project, which are outlined below:

1. Reinforcement Learning (RL) algorithms – Implementation of Double duel-
ing Deep Q-networks for finding an optimal drift controller as well as model
based policy search with PILCO.

2. Drift controller - A successful sustained circular drift controller along with
tests to prove its robustness and stability.

3. Drift metric - A drift metric to objectively quantify the quality of a drift.

4. Simulator – We trained the RL algorithms on a simulated car that models
the RC car in an environment with physics that mimic the real world. The
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Figure 2: Time-lapsed path traced by the car on the simulator using
the successful sustained circular drift controller.

environment was used to test and improve different RL algorithms efficiently
and quickly, without causing any wear or damage to the RC car.

Figure 3: The final simulated car

5. A remote controlled (RC) car – This car is a 1/10th scale model of an actual
car, integrated with sensors (Inertial measurement unit combined with mag-
netometer and optical sensors) for measuring data like the translational and
angular velocities of the car to perform steady state circular drifting. The
project then aims to transfer the optimal policy learned in simulator onto
the RC car for validation.
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Figure 4: The final RC car

1.5 Contributions

The project introduces the following novel ideas, as elaborated further in Rein-
forcement Learning Report:

1. Using double dueling Deep Q-networks (DQN) to find an optimal drift con-
troller.

2. Using policy learned from the DQN model to initialize PILCO learning.

3. A drift metric, Dm, to objectively evaluate a sustained circular drift:

Dm = 1
T

T∑
t=0

exp
(
−(||st − starget||2

2σ2

)
∈ [0, 1]

1.6 Outline of Reports

The documentation for this project is divided into three reports. Although
the reports share the same background and motivation behind the project, each
emphasizes on the methodology, experiments, results and difficulties encountered
for different aspects. A reader is thus suggested to refer to all three individual
reports to acquire a complete understanding of the project. The three reports are
as follows:

Report outlining the simulator and communication, written by Kanak
Kabara, describes the implementation of an RC car in a simulated environment.
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It also talks about the communication network connecting the various components
of this project.

Report outlining the Reinforcement Learning Algorithms, written by
Sourav Bhattacharjee, focuses on the main aspects of the project and contains the
detailed description of the two Reinforcement Learning techniques used and the
associated results.

This report highlights the implementation of the RC car and the various chal-
lenges faced in indoor localization and velocity estimation. The remainder of this
report proceeds as follows. First, it will provide a literature review on the various
methods that have been used to estimate the position of the RC car. Next, it will
give a detailed description of all the different components involved in making the
system. Finally, it will conclude by presenting some results and elaborating on the
cost associated with the project.
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2 Literature Review

2.1 Position Estimate

As mentioned in Section 3.1 of the Reinforcement Learning Report, we initially
started with a full Markovian state representation of [x, y, θ, ẋ, ẏ, θ̇]. In order
to get an accurate estimate of the position of the car without using any external
systems, various techniques for indoor localization were considered. A GPS is the
obvious choice for a standalone car, however, a GPS is accurate to 3 meters at
most [10], which is unacceptable for this project. Thus, other techniques were
considered as summarized in the following paragraphs.

2.1.1 Wheel Encoder

One of the approaches we considered to get the position estimate of the car
was using a wheel encoder. A wheel encoder is an electro-mechanical device that
measures the rotations per minute (RPM) of the wheel of an RC car. The rotations
obtained can then be multiplied by the circumference of the wheel to obtain the
distance travelled by the RC car.

However, a major drawback of using a wheel encoder is the large error in the
estimate of the distance travelled that amounts from the slipping of the tires [11].
In addition, as mentioned earlier, our state consists of x and y displacements but
only a scalar distance can be obtained from the wheel encoder and not the required
individual displacement components.

2.1.2 Computer Vision

One of the other methods to calculate the displacement of the RC car is to use
computer vision. However, calculating displacement using computer vision and
synchronizing it with the Inertial Measurement Unit (IMU) data is a challenging
task. Furthermore, we wanted a stand-alone car, whereas using computer vision
to calculate the displacement required external cameras.
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3 Methodology

The Figure 5 shows the components of the RC car connected together. The
subsequent sections describe these components and summarize the problems faced
while using them.

XBee

MPU9250 

Arduino 

Electronic Speed
Control

Battery Eliminator
Circuit 

Motor

Servo 

RL Agent

XBee

Action
Packets

State
Packets

Figure 5: Components of RC car: Actuators are represented in blue
and the sensor is represented in orange

3.1 Actuators

The RC car contains two actuators - a JX Coreless Servo and a Speed Passion
10.5R brushless motor. The servo controls the steering angle of the car while the
motor is responsible for the throttle. The servo was constrained to an angle of 65
to 115 degrees from the horizontal axis, considering 90 degrees as the centre. This
was done to make sure that the servo is not damaged and the values are predicated
on the constraints of the axle in our RC car.
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(a) JX Servo Coreless Digital
Standard 4410MG

(b) Speed Passion 10.5R Brushless
Motor

Figure 6: The two actuators used in the project - motor and servo

In order to eliminate the instability of the motor throughput resulting from volt-
age surges, we also included a battery eliminator circuit (BEC) for each actuator
on the car.

3.2 Sensors

As mentioned in Section 3.1 of the Reinforcement Learning Report, we started
with a full Markovian state representation for the car ([x, y, θ, ẋ, ẏ, θ̇]), and the
subsequent sections outline some of the approaches undertaken to get estimates
for the different components of the state.

3.2.1 Position Estimate

This section talks about the methods that were experimented with, to estimate
the position of the car.

3.2.1.1 IMU double integration

The displacement of an object can be found by integrating the acceleration data
twice (double integration). An IMU device fitted on the car provides the x, y
and z components of the acceleration with respect to the car reference frame. We
integrated the x and y components of the acceleration to get the x and y velocity of
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the car. During integration, we assume the acceleration is constant for a very small
time so integration was done every microsecond. The x and y velocities obtained
were further integrated to find the x and y displacements of the car, which were
then used to obtain an estimate for the car’s position.

There was some drift and noise in the acceleration data from the IMU device
and thus, a method called progressive averaging [12] was used to reduce the error
in the acceleration data.

After inspecting the displacement obtained by double integration of the acceler-
ation, we realized that it was diverging quicker than what we had expected. The
solution to the problem is fusion of the IMU data with one more source – usu-
ally a GPS. An accurate GPS is expensive to buy and did not fit into out cost
constraints. Thus, we considered another method for position estimation - optical
flow.

Figure 7: A PX4Flow camera fit-
ted with 2mm lens. It works on
the principle of optical flow and
can be used to detect the velocity
and displacement of a robot.

3.2.1.2 Optical Flow

Optical flow is defined as the change
of light in the image due to relative mo-
tion between the object and the camera’s
sensor [13]. The subsequent section dis-
cusses two devices (PX4Flow and Optical
Mouse sensor) based on the optical flow
principle which we used to calculate the
displacement of the RC car.

PX4Flow: We used an optical flow
camera called PX4Flow for estimating
the displacement of the RC car. For
PX4Flow to work, it has to be mounted
such that the lens of the camera focuses
on some changing pattern. The camera
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can be mounted on the RC car in two ways – facing down or facing up but both
methods have their flaws.

If the camera is mounted facing upwards, the car is constrained to the en-
vironment which has some pattern at the height of at least 0.5 meters due to the
focal length of lens being used [14]. We did not want the car to be constrained to
some environment and thus, this approach was not taken.

Conversely, if the camera is mounted facing downwards, it requires a lens of focal
length 2mm mounted at least 0.5 meters above the ground to measure the desired
velocity of the car [14]. Mounting the camera at that height on the top of the car
would result in an unstable structure and is not practical. Thus, we considered
using another device using the optical flow principle - an optical mouse sensor.

Figure 8: Optical Mouse Sensor:
It works on the principle of optical
flow but has its own flaws like it
fails to detect high velocity move-
ments.

Optical Mouse Sensor: Sekimori
et al. [15] outline a method of utilizing
the optical sensor in a mouse to calculate
the displacement of mobile robots. This
paper utilizes the same optical flow prin-
ciples mentioned earlier, but in a much
more accessible form, in the sense that
significant patterns are not required to
measure a discernible change.

In our project, we started by ob-
taining data from the optical sensor by
connecting it to the Arduino. The data
obtained from the mouse for smaller mag-
nitudes of velocity was accurate, but
there were major discrepancies in the
data when the velocity was higher.
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3.2.2 Velocity Estimation

As mentioned in Section 3.2.4 of the Reinforcement Learning Report, the state
of the car was changed from

st = [x, y, θ, ẋ, ẏ, θ̇] (1)

to
st = [ẋcar, ẏcar, θ̇] (2)

For the new state, we needed the velocity of the car from the car’s reference
frame and several methods were tested as outlined below.

3.2.2.1 PX4Flow

Calculation of velocity was similar to the method of calculating distance using
PX4Flow optical camera and we faced the same problems as discussed earlier.

3.2.2.2 IMU

The noise in the IMU acceleration data can be reduced by fusing it with one
more data source. Fusion was done using a ROS library as discussed in Section
2.2.1 of the Software Report, which takes in data from different sources to obtain a
better estimate for the acceleration. In our case, we used the IMU on an Android
phone as the secondary data source.

3.3 Wireless Communication with XBee

Xbee is a device used for wireless communication between two devices and works
on the popular IEEE 802.15.4 standard. A combination of the xbee-python library
and ROS was used for end-to-end communication between two XBees.
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XBee XBee

Arduino RL Agent

Wireless Communication

Action
Packets

Action
Packets

State
Packets

State
Packets

Figure 9: Transfer of action and state packets using XBees. The RL
agent sends the action packets based on the state packets received from
Arduino. The Arduino takes the actions based on action packets re-
ceived from RL Agent and sends the corresponding state of the car.

Initially, we started with asynchronous communication between the Arduino
and the RL Agent. This meant that the Arduino transferred messages pertaining
to the car’s state to the RL Agent regardless of whether an action message was
received from the agent at every time step. As mentioned in Section 3.2.1 of the
Reinforcement Learning Report, we need to correspond the action to the state so
that we can model the dynamics of the car in the real world. Doing so was not pos-
sible with asynchronous communication. Additionally, the Arduino broadcasted
the data at a faster rate than the IMU update rate, which led to duplicate packets
being sent to RL Agent. Thus, we moved on to synchronous communication.

In synchronous communication between the RL Agent and the Arduino, the
RL Agent waits for the state from the car before choosing the next action. We
faced two problems with synchronous communication: loss of packets leading to
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deadlock and mapping of state and actions.

Some action packets from the RL Agent to the Arduino were lost because of a
buffer overflow, since an Arduino Uno uses only 100 bytes of buffer memory for
receiving data. The data from the RL Agent was being broadcasted at a faster rate
than Arduino could read, which resulted in packets being lost. To balance between
a high throughput and solve the problem, we experimented by using different time
delays on the RL Agent. The delay which solved the problem and achieved the
highest throughput was 50 milliseconds.

Other than the packet loss due to buffer overflow, there were some packets
lost because of a poor wireless connection between the RL Agent and the Arduino.
To ensure packet delivery, we used a timeout which transmits the state packet if
an action packet from the RL Agent is not received within a time window.

There was some latency between the action packets being received from RL
Agent and the state packets being sent from the car. Thus, mapping of state and
action was difficult. To correspond the actions taken to the state of the car, we
used a time-stamp (epoch time) when sending the actions and state which solved
the problem.
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4 Results

The results were collected on a stationary car and are presented below.

4.1 Position Estimate

4.1.1 IMU Double Integration

Figure 9 on the next page shows the error accumulation in the X and Y dis-
placement after 20 seconds of the car being stationary. X or Y displacement and
time are plotted on y-axis and x-axis respectively. The X and Y displacement has
drifted around 0.6 meters after around 20 second of run.
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Figure 10: Displacement drift after integration: X or Y displacement
and time are plotted on y-axis and x-axis respectively. The X and Y
displacement has drifted around 0.6 meters after around 20 second of
run.

X and Y displacement has drifted around 0.6 meters in 20 seconds, which shows
the problem of drift as mentioned earlier.
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4.1.2 PX4Flow

The Figure 11 shows the drift in the X and Y displacement when plotted for
14 seconds. There was a drift of up to 800 meters in the X-displacement and 300
meters in Y-displacement of the car.
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Figure 11: PX4Flow displacement drift: X or Y displacement and time
are plotted on y-axis and x-axis respectively. X and Y displacement of
the car has drifted around 800 and 300 meters respectively.
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4.2 Madgwick Filters

We also used Madgwick filters to reduce the noise and error in the acceleration
data. The Figure 12 shows the X and Y acceleration before the implementation
of Madgwick filters.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5000 10000 15000 20000 25000

X	
AC

CE
LE
RA

TI
O
N
	(M

ET
ER

/S
EC

O
N
D2

)

TIME	(MICROSECONDS)
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Figure 12: Before the use of Madgwick filters, there is a lot of noise in
the acceleration data from the IMU.
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After implementation of Madgwick filters, the X and Y acceleration of the car
was stable as represented by Figure 13.
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(a) X acceleration after filtering
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Figure 13: After using Madgwick filters, the noise in X and Y acceler-
ation has decreased drastically, giving us much more accurate data.
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4.3 XBee Packet Drop

Table 1 summarizes the different experiments performed to alleviate the prob-
lems related to packet losses discussed earlier. In each experiment, 500 packets
were sent from the RL Agent.

Experiment Packets received
by Arduino

Packets received
(%)

Asynchronous 261 45.5%
Synchronous (10ms delay) 412 82.4%
Synchronous (30ms delay) 473 94.6%
Synchronous (50ms delay) 500 100%

Table 1: XBee synchronous and asynchronous experiments: Differ-
ent delays were used in synchronous communication and the highest
throughput was achieved with 50ms delay.

As mentioned earlier, adding a delay in synchronous communication solved the
problem of packet loss.
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4.4 Voltage Surges

As mentioned earlier, there were voltage surges when the motor was connected
to the battery because of a single BEC. Figure 14 shows the voltage across the
motor when only the steering command was sent.
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Figure 14: Voltage Surges without BEC: When the servo was given
a command, there were voltage surges in motor which caused it to
accelerate. This happened because of the use of one BEC.
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5 Cost of Components

We realized that acquiring all the components of the car would not be possible in
the given project budget. We were able to loan some of the parts of the RC car,
mainly the chassis and servo. For the remaining parts, the prices are shown in
Table 2.

Component Price (in HK$)
Speed Passion 10.5R Brushless Motor 160

Arduino 160
XBee S2C and XBee Explorer 512

XBee Shield 150
MPU9250 146

Hobbywing XeRun 120A ESC 540
Drift Tires 290
Lipo Battery 180

Total 2,138

Table 2: Cost of all the components used in the car
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6 Conclusion

To summarize, we justified why autonomous drifting cars are important and
how drifting can be useful in emergencies to avoid accidents. As we have already
discussed, current self driving cars and stability control techniques try to avoid
slipping tires and in doing so, restrict the capability of the car. However, we
need to exploit the full capability of a car during emergencies. So clearly, having
an autonomous drifting car that learns an optimal drift control policy using our
methods can help reduce the number of accidents caused by hydroplaning and
make roads safer.

Motivated with this intention, we first discussed the different methods that
we experimented with to estimate the position and velocity of the RC car. We
also elaborated the synchronous and asynchronous communication between the
Arduino and the RL Agent and the challenges we faced while implementing them.
In addition, we presented the results for different experiments that were performed.
Finally, we outlined the costs involved in assembling the RC car.

Although the initial aim of the project was to implement autonomous sustained
circular drift in a physical RC car, we did not manage to achieve it completely
owing mostly to hardware challenges associated with indoor localization and cost
constraints (requiring a 4WD RC car). Nevertheless, much effort was put into
closely modelling the physical properties of an RC car in the simulator as men-
tioned in Section 2.3.1 of the Software Report. Thus, given our success in finding a
robust and stable sustained circular drift controller with the simulator, we firmly
believe the results can be easily replicated on a physical RC car once the hardware
is acquired.
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