
Interim report (COMP4801)

AUTONOMOUS DRIFTING RC CAR

WITH REINFORCEMENT

LEARNING

January 29, 2018

Supervisor: Dr. D. Schnieders

Sourav Bhattacharjee (3035123796)

Kanak Dipak Kabara (3035164221)

Rachit Jain (3035134721)

Autonomous drifting RC car with reinforcement learning Interim report

Abstract

The advent of self-driving cars has pushed the boundaries on how safe passenger

automobiles can be, but most modern self-driving car systems ignore the possibility

of a car slipping resulting from inclement weather or driver error. Passengers

and bystanders would benefit heavily if self-driving cars could handle slipping by

learning to drift with the turn rather than against it (by applying the brakes, or

turning away which is the instinctive action), preventing many fatalities [1].

Our project is aimed at studying the drifting (over steering of a car that results

in the loss of traction of the rear wheels) of an autonomous remote controlled (RC)

car. We use reinforcement learning techniques and algorithms to design a controller

for an RC car that learns to drift without human intervention. Reinforcement

learning is a branch of machine learning that primarily deals with learning a control

agent from trial-and-error, much like how humans learn by interacting with the

environment. Reinforcement learning has in recent years been used to learn all

sorts of robotic controllers and even defeat the best human player at Go. It is

an exciting realm of machine learning, and we decided on using it to teach an

RC car to maintain a steady state circular drift. As for the technique employed,

we use double dueling deep Q-networks and Q-learning as our primary algorithm.

However, using reinforcement learning (RL) typically requires many interactions

with the environment before learning anything useful. Since robotic systems are

prone to wear with use, we implemented a simulator by modeling the car dynamics,

where we run most iterations of the learning algorithm. In addition, since it is

imperative to define the reward function appropriately to make sure that our agent

learns the right behaviour in the shortest time possible, we also use potential based

reward shaping to shape the rewards the agent receives.

Page 1 of 40

Autonomous drifting RC car with reinforcement learning Interim report

The design philosophy behind the entire system we implemented to learn the

best way to drift revolves around modularity, allowing each component in our

implementation to be developed in isolation and easily replaceable with a different

implementation. Currently, we are halfway through our project with the double

dueling DQN algorithm and simulator completed and the hardware assembly of

the RC car is nearly complete as well.

Page 2 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Acknowledgement

We would like to thank our supervisor, Dr. Dirk Schnieders, for guiding us through-

out in the project. We are also grateful for the help received from a friend, Mr.

David Ip, who helped us acquire the hardware needed for this project and would

also like to express our sincere gratitude to Mr. Keith Chau for guiding us through

the writing of this report.

Page 3 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Contents

1 Introduction 6

1.1 Background and motivation . 6

1.2 Objective . 7

1.3 Scope . 8

1.4 Deliverables . 8

1.5 Outline of Report . 9

2 Literature review 10

2.1 Optimal control approach . 10

2.2 Reinforcement learning and potential reward shaping 10

2.3 Dueling double deep Q-network . 12

3 Methodology 15

3.1 Reinforcement learning and Autonomous Drifting 15

3.1.1 Model identification of car dynamics 16

3.1.2 Value function approximation 17

3.1.3 Reward definition . 17

3.1.4 Double Dueling DQN . 19

3.1.5 Reinforcement Learning Framework 20

3.2 Remote Controlled Car . 21

3.3 Simulation of environment . 24

3.4 Communication . 25

4 Current status and results 27

5 Difficulties encountered 33

6 Future plan and contingency plan 34

7 Conclusion 36

References 38

Page 4 of 40

Autonomous drifting RC car with reinforcement learning Interim report

List of Tables

1 Detailed future project plan and milestones. 35

List of Figures

1 The reinforcement learning architecture. 11

2 The reward function for autonomous drifting. 15

3 Dueling architecture. 19

4 Architecture of RC Car. 22

5 Architecture of ROS Network. 26

6 The assembled car. 27

7 Our simulator with the car in the modeled environment. 29

8 Mean Loss for Mountain Car over number of steps. 30

9 Mean Reward for Mountain Car over number of steps. 30

10 Mean Loss for Cart Pole over number of steps. 31

11 Mean Reward for Cart Pole over number of steps. 31

12 Mean Loss for Simulated Car . 32

13 Mean Reward for Simulated Car . 32

Page 5 of 40

Autonomous drifting RC car with reinforcement learning Interim report

1 Introduction

Before discussing the implementation details of the project, it is crucial to un-

derstand the background of the problem we are trying to solve, and the actual

scope. This section addresses exactly that and highlights the need to study and

solve the problem of drifting, and outlines how we plan to do so with an approach

based on simulation aided reinforcement learning. For the purposes of this report,

drifting is defined as the over steering of a car which results in the loss of trac-

tion of the rear wheels. This results in the front wheels pointing in the opposite

direction to the turn and the car appears to be moving sideways.

1.1 Background and motivation

Passenger vehicles usually implement stability control in a number of ways like

differential braking [2], active steering [3] [4] or integrated chassis control [5] [6] [7].

Other methods, based on independent wheel torque, have also been developed to

make passenger vehicles more stable. However, these methods function by making

sure that the tires avoid slipping. In doing so, these methods essentially restrict

the operation of the vehicle. Similarly, control algorithms in current self-driving

car systems (Anti-lock brake systems, Electronic stability control etc.) try and

mitigate the chances of slipping due to its unpredictable nature [8]. Sufficiently

lowering the speed of the car and making turns that are not too tight will mostly

prevent slipping, but this does not consider cases where the system must make

evasive moves to avoid crashes (in this case the speed and turn angle will most

likely be sharp) or when a car is already in a slipping state due to the driver’s

fault. For example, hydroplaning, which refers to a situation where a layer of

water builds up between the car tires and the road, is a major reason for vehicle

accidents. According to the United States’ Department of Transportation, 15.97%

of all vehicle crash fatalities in the United States [1] are attributed to wet and

icy roads. An autonomous car system must be prepared for the scenarios out-

lined above to ensure the safety of the passenger and bystanders, regardless of the

weather conditions or the state of the car. To reduce fatalities and ensure that

these car systems are as robust and safe as possible, it is absolutely essential to

Page 6 of 40

Autonomous drifting RC car with reinforcement learning Interim report

study drifting, and eventually deduce how they can respond quickly to uninten-

tional slipping states as those encountered due to hydroplaning. Not only can

drifting be useful to steer out of these unintentional slipping states, but can also

be useful in taking full advantage of the capabilities of a vehicle to avoid accidents

in emergencies.

Many of the systems discussed above try to tackle the issue of stability control

and slipping by approaching it as an optimal control and open looped problem

with explicit dynamics model. Approaches using optimal control are often de-

terministic and use closed-form expressible equations of motions. The resulting

policies depends entirely on the model used to compute them. Sometimes, these

restrictions on the model neglect parts of the true system either because they are

non-linear or they are just not well-enough understood to be expressed in equa-

tions. We thus propose a method that is developed using a technique that does

not rely on explicit equations of motion, but rather on an implicit understanding

of the world obtained by trial and error.

One of our other motivations to study drifting is that Paul Frère [9] points out the

usefulness of drifting to turn fast around sharp bends. Since high-speed stability is

of greater importance to ordinary touring vehicles and competition cars, they tend

to understeer, and for a competition car average circuit time is improved by going

fast through fast bends while slowing down through sharp ones [9]. However, a car

is able to undoubtedly turn sharp bends faster by drifting because the yaw angle

formed by the drift brings the vehicle in line with the straight path following the

bend even before the vehicle completes the turn [9].

1.2 Objective

The objective of this project is to get a remote controlled car to learn to drift

autonomously. This paper proposes a framework for learning the best way to drift

using simulation aided reinforcement learning. We believe reinforcement learning

is a desired approach to solving the problem since we would like our algorithm to

learn the best way to drift without having to input the dynamics of the system

Page 7 of 40

Autonomous drifting RC car with reinforcement learning Interim report

explicitly. Then the learned optimal drift policy or strategy in simulation will be

transferred for further learning on the physical RC car.

1.3 Scope

The area of drifting falls into two categories – sustained drift and transient

drift. Due to the wide breadth of the two categories and the time constraints,

our project will mainly focus on sustained drift, and more specifically steady state

circular drift. In particular, our first objective is to get the RC car to maintain

a steady state circular drift because it is the easiest to accomplish. Additionally,

if time allows, we may also try to get the car to learn how to escape a drift state

and return to a safe stop or continue in a straight-line motion. Furthermore, we

may try to experiment with getting the car to drift in a pattern like the pattern

”8”, for instance, to see how much more difficult it is compared to having the car

in a state of steady circular drift.

1.4 Deliverables

There are three major deliverables in this project:

1. Reinforcement Learning (RL) algorithms – We will implement and test var-

ious RL algorithms like Double Dueling Deep Q-networks with Q-learning,

Iterative Linear Quadratic Regulator and Actor-Critic to perform steady

state circular drift and compare their performance. These algorithms will

run on the simulator (described below) to give an optimal policy for drifting,

which will then be transferred to the RC car to validate the algorithm.

2. Simulator – We will run the RL algorithms on a simulated environment that

approximates the RC car in a world with physics that mimics the real world.

The environment can be used to test and improve different RL algorithms

efficiently and quickly, without causing any wear and tear or damage to the

RC car.

3. A remote controlled (RC) Car – This car will be a 1/10th scale model of

an actual car, integrated with sensors (Inertial measurement unit combined

Page 8 of 40

Autonomous drifting RC car with reinforcement learning Interim report

with magnetometer and optical sensors) for measuring data like the position,

speed of the car and polar angles, to perform steady state circular drifting.

The optimal policies created on the simulator will be transferred onto the

RC car to validate our results.

1.5 Outline of Report

The remainder of this report proceeds as follows. First, we will provide a litera-

ture review on the various methods that have been used to implement steady-state

drifting, the possible RL algorithms that we may use for development and the mo-

tivation behind using neural nets to approximate optimal drift strategy in the

project. Next, we will give a detailed description of all the different components

involved in making the system, and the architecture design that combines them.

Then, we will talk about the status of the project’s development, results obtained,

and the various difficulties faced so far. Finally, we will conclude by discussing

the future steps for the months remaining, and a few possible extensions to the

project we may decide to tackle.

Page 9 of 40

Autonomous drifting RC car with reinforcement learning Interim report

2 Literature review

2.1 Optimal control approach

Sustained drift with various optimal control techniques has been explored through

multiple prior research. For instance, Velenis et al. [10] described a simple single-

track vehicle model using equations of motion to design a ‘sliding’ control policy

to stabilize steady state conditions using basic acceleration/braking applied to the

wheels. Similarly, Hindiyeh and Gerdes [11] developed an open-loop control policy

using nested feedback loops to attempt stable drift equilibrium. They too devel-

oped a complex model of the vehicle, chassis and wheels to form the basis of their

control policy. On the other hand, Wu and Yao [12] created a control algorithm

to stabilize a RC drifting car by balancing the tail sliding with counter-steering

measures to prevent slipping during circular motion. Their system is based on

understanding the dynamics of the car, including the planar force and moment

generated by the car’s wheels during drifting. These modeled approaches work

well in scenarios where the model encapsulates the various dynamics of the real-

world, but do not work well when the dynamics of the world are not understood

completely to be modeled by equations of motion. The open-loop approach of the

optimization cannot be implemented in the presence of uncertainties [13]. Thus,

a better approach, which is independent of the underlying models, is needed.

This is the perfect use case for learning-based methods, specifically Reinforce-

ment Learning (RL), in particular model-free approaches. Since model free RL

algorithms learn policies by directly interacting with the environment, the policies

are dependent on the real-world instead being reliant having a known model. The

subsequent sections discuss exact model-free approach taken to solve our problem.

2.2 Reinforcement learning and potential reward shaping

Reinforcement learning techniques are employed in this project to learn an agent

that maximizes the sum of expected future rewards [14], which is much like how

humans learn by interacting with their environment. As illustrated in Figure 1,

the agent interacts with the environment according to a policy by taking actions

Page 10 of 40

Autonomous drifting RC car with reinforcement learning Interim report

and evaluates how good or bad taking a particular action in a particular state

(At) is by observing the next state it transitions to (St+1) and the reward it re-

ceives along the way in the next time step (Rt+1). A state space is all the possible

states that an agent can experience in the environment at any particular time

while an action space is the set of all possible actions an agent can take [14].

A policy is a function that maps from the state space to an action [14]. More

concretely, a policy is a function π : S → a, where S and a are the state space

and an action in the action space respectively. If an action π(s) is taken by an

agent in state s, it is said that the agent is acting according to policy π. The

goal of any reinforcement learning problem is to find a policy π that maximizes

the expected sum of discounted future rewards (reward at state s is given by R(s)),

Es0,s1,... =
[
Σt=0γ

tR(st)|π
]

(1)

Figure 1: The reinforcement learning architecture.

The most imperative component of the reinforcement learning framework is

defining the rewards. The reward function is like a semantic that controls the

policy learned by an RL agent. So, it is absolutely essential to come up with a

proper reward function that encourages our learning agent to behave in a way we

Page 11 of 40

Autonomous drifting RC car with reinforcement learning Interim report

want it to [15]. Andrew describes one of these approaches to defining this reward

through potential based shaping in [15]. The fundamental idea behind potential

based reward shaping is that the learning agent is rewarded along the path we want

it to follow and not just a huge reward at the end of achieving a goal. Another

property of potential-based rewards is that it avoids the agent from being stuck in

a sub-optimal positive reward loop and does not alter the optimal policy [15]

2.3 Dueling double deep Q-network

The final step in our methodology is coming up with the proper reinforcement

learning algorithm to use. For our project, Q-learning [14] is used to find an

optimal policy for drifting. The reason Q-learning was chosen as our tool to tackle

the problem of finding an optimal drift policy is that it is an off-policy learning

algorithm and is model-free. That means the algorithm learns by ”looking over

someone else’s shoulder” without being explicitly told the dynamics of the system.

This allows it to explore the state space by using a stochastic behaviour policy, β,

while converging to a deterministic optimal policy, π. The algorithm is represented

with a Q-learning neural network. Let’s say at time step t the state of the car is

s, the action chosen according to the current policy is a and the next state the

car ends up in after taking the action a is s′. According to the online Q-learning

algorithm, the target for the (st, at) pair is given by

yt = R(st, at) + γmaxa′∈AQφ(s′, a′), 0 ≤ γ < 1 (2)

where 0 ≤ γ < 1 is the discount factor [14] and φ is the parameters of the neural

net. Thus, the weights, φ, of the neural network are adjusted to account for

the error in the target and current value via optimization methods like gradient

descent. Concretely,

φ← φ− αdQφ

dφ
(st, at)(Qφ(st, at)− yt) (3)

The basic online Q-learning algorithm has no convergence guarantees. (3) is

not strictly a proper gradient descent since the target itself is ever changing and

dependent on the parameters of the network. However, many research attempts

Page 12 of 40

Autonomous drifting RC car with reinforcement learning Interim report

have been made to increase the chance of convergence, the ideas of which have been

incorporated into our implementation. Firstly, in the online Q-learning algorithm,

the state-action pairs are correlated (the next state is highly dependent on the

current state and action taken). To overcome this problem, we use an approach

similar to [16] and draw random batches of experience from an experience buffer,

which holds the agent’s past experiences. Secondly, we use two networks instead

of one - a target network and a primary network, which overcomes the problem of

overestimation of action values as described in [17]. The target network is used to

get an estimate of the target in (2) while the parameters of the primary network

are updated using optimization methods. The parameters of the target network

are updated towards that of the primary network at a rate τ [17].

Finally, inspired by [18], we use a dueling Q network architecture with separate

value streams and advantage streams. The reason behind doing so is to allow the

network to learn the state value functions independently from the advantage of

taking an action and remove the coupling to any specific action. An analogy to

this is imagining seating at the beach and enjoying the sunset. The reward of the

that moment is tied to only the state that an individual exists in and does not

depend on any action taken.

We explored a number of other reinforcement learning algorithms and settled

on Q-learning for a number of reasons. Firstly, we encountered an algorithm

called PEGASUS [19], which works with both continuous state and action spaces.

The PEGASUS algorithm works by making the simulated environment more

deterministic by removing the randomness. This is done by choosing a string

of random numbers that is used throughout the training as an input into the

simulator such that for a particular state-action pair it outputs the same next

state (no longer stochastic). It then builds a regression model on the state-action

space [19]. In our project, since we have discretized the action space, we can afford

to use just regular Q-learning with value function approximation to generalize to

the continuous state space as discussed in a previous subsection.

Page 13 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Another algorithm that we came across is PILCO [20]. In [21], Cutler and How

describe a framework where we can initialize the policy using an optimal control

software and combine that with PILCO run both in simulation and data gath-

ered from the actual RC car to learn a policy in a data efficient manner. The idea

behind PILCO is that during the learning phase, the algorithm also models the un-

certainty of the environment using Gaussian processes [22]. The added advantage

of doing this over regular model-based learning is that the agent is more cautious

to assigning higher priority to actions in policies that are more uncertain [20]. The

learning is simulation-aided, which means most of the learning takes place in a

simulator. The algorithm also converges quickly to an optimal policy. Although,

the idea of learning an optimal policy really quickly using PILCO is appealing,

we decided to use Q-learning instead because it is much simpler to implement than

PILCO. Given that none of us had prior experience with reinforcement learning,

we decided to use an algorithm that is much simpler conceptually and quicker to

implement within the time constraint set for the project. We do, however, intend

to explore using PILCO in our project eventually if we get get time towards the

end.

Page 14 of 40

Autonomous drifting RC car with reinforcement learning Interim report

3 Methodology

With the relevant decisions made after a comprehensive literature review, we

now talk about the design of this project. Since this project involves many different

components, it is important to understand each one of them in isolation before

the actual implementation can be discussed. This section describes the four major

components that form the system, and the justification behind them.

3.1 Reinforcement learning and Autonomous Drifting

Figure 2: The reward function for autonomous drifting.

After discussing the reinforcement learning framework previously in the litera-

ture review, Figure 2 helps to relate it to our project. More concretely, for our

project the reward for the agent is computed based on the position of the car in the

2 dimensional x-y space. Position space is restricted to the 2 dimensions because

it will result in less computation done by the agent to converge to an optimal drift

policy. The reward is maximized if the car manages to maintain a fixed radius,

Page 15 of 40

Autonomous drifting RC car with reinforcement learning Interim report

r, from the centre of the circular drift trajectory, and the further it deviates from

this circular track the larger the penalty it receives (negative reward).

To ensure effective exploration of policies, the agent needs to have a stochastic

policy initially which eventually converges to a deterministic optimal policy [14].

This is a great approach for many RL problems, but cannot be afforded since

exploring policies with an actual physical robot will lead to wear of the robot

itself. Therefore, these iterations are run in a simulator. However, the dynamics

of the drifting RC car cannot be easily expressed in equations and a method is

devised to circumvent that entirely, as described in the subsequent sections.

3.1.1 Model identification of car dynamics

As previously discussed, our learning algorithm works with a simulator. How-

ever, expressing dynamical equations to represent the physical system is difficult.

Thus, to fit a model of the dynamics of our drifting RC car, a different approach

is taken. The car is first driven with a remote control for several minutes and

record the states that it visits and the actions that are taken at each state. The

state of the car is s = [x, y, θ, ẋ, ẏ, θ̇], where x, y, θ, ẋ, ẏ, θ̇ are the x-coordinate,

y-coordinate, polar angle, x velocity, y velocity and angular velocity respectively.

The action, a, is an integer where a ∈ A and A = [65, 75, 85, 90, 95, 105, 115] which

determines the steering angle. A is the entire discrete action space.

In [15], Andrew describes the symmetries present in trying to control a heli-

copter autonomously using reinforcement learning. There are certain symmetries

in the motion the of the helicopter that can be modelled into the learning to make

sure the agent converges to an optimal policy quickly. Similarly, there are many

symmetries in our system of the RC car. For example, it does not really matter

whether the car is at the origin or at a point (20, 25) when it needs to pick an

action so as to rotate clockwise from that state. These symmetries will be encoded

into our model by fitting the model not to the states in spatial coordinates but

in the car body coordinates src = [θ, ˙xrc, ˙yrc, ˙θrc]. Locally weighted linear regres-

sion [23] is used to model the dynamics of the car with st (state at time t) and at

(action taken at time t) as the inputs and the state differences as the output (eg,

Page 16 of 40

Autonomous drifting RC car with reinforcement learning Interim report

δẋt = ẋt+1 − ẋt). This model is fitted for each of the elements of the states. The

reason behind choosing locally weighted linear regression as our tool for model

identification is that given a test state-action pair, already seen states and actions

that are similar will have a greater effect on predicting the output for the test pair

than states and actions that are less similar. That is, similar state-action pairs are

given a higher priority weight.

3.1.2 Value function approximation

After modeling the physical system, the next hurdle that needs to be overcome

is that of the continuous state space. RL algorithms for small number of discrete

states are relatively simple because the action values (the total expected discounted

reward when an agent is at state s and takes action a [14]) for the individual states

can be stored in a simple lookup table. What makes this approach difficult in our

project is the fact that our RC car has a continuous state space and infinitely

many states. For example, the x and y coordinates for the car’s position and the

linear velocities ẋ and ẏ are all real and continuous, contributing to the infinite

state space. Thus, a different approach is needed to generalize to the state space

for our RC car. That is why a function approximator will be used, like a neural

net, to approximate the Q-values and generalize over the entire state space for the

RC car. More concretely, given a state the car is in, s as the input, our function

approximator will output q̂(s, a,w), where w are the parameters of the function

approximator (weights in the neural net) for all a ∈ A. q̂(s, a,w) will give us the

approximate Q-value for the state-action pair and we do not need to store the

action values in a table for each pair.

3.1.3 Reward definition

For our project, we use potential based reward shaping to make sure the car

follows a circular pattern [15]. In addition, a negative reward is added that pe-

nalizes for deviation of the car’s path from the target trajectory. Since the target

trajectory is circle, an equation for the circle can be obtained and the reward for

the deviation is the negative of the squared error between the car’s actual position

and the target trajectory. Moreover, to discourage large actions (drastic changes

Page 17 of 40

Autonomous drifting RC car with reinforcement learning Interim report

in steering angle), the reward will also contain the negative of the squared value of

the action. Our final reward is a summation of all these individual rewards. More

concretely, the final reward, R is related to the potential reward, Rp, the deviation

reward, Rd, and the reward arising from action magnitude, Ra as

R = Rp(∆θ)−Rd(d, r)−Ra(a),where (4)

Rp(∆θ) =

1, if ∆θ > 0

−1, otherwise
(5)

Rd(d, r) = (d− r)2 (6)

Ra(a) = a2 (7)

Page 18 of 40

Autonomous drifting RC car with reinforcement learning Interim report

3.1.4 Double Dueling DQN

As previously discussed in the literature review section of this report, we settled

with using double dueling deep Q-networks for Q-learning of the action values

due to the fact that it is an off policy and model-free algorithm. This also means

that we do not explicitly need to know the dynamics of the system. The dueling

architecture of our network in the implementation is illustrated in Figure 3. Our

network comprises of a few fully connected layers and dropout layers initially, which

then branches into two separate advantage and state value streams to combine

again into a final fully connected layer to output the final action values. Although

we plan to experiment with the number of the hidden layers their size to get an

optimal network, our current implementation comprises of 3 fully connected layers

initially of hidden size 500 and dropout 0.5. The 3 fully connected layers in the

separate streams have a size of 300 each.

Figure 3: Dueling architecture.

Page 19 of 40

Autonomous drifting RC car with reinforcement learning Interim report

3.1.5 Reinforcement Learning Framework

The various components of the RL algorithm described above are simple to

implement without the use of any libraries, but having the ability to test various

computational algorithms for the same [agent, action, environment] space without

making changes to the rest of the system was important in order to have a robust

and structured system where we could easily test various RL algorithms. The

ideal solution would be to have a plug-and-play system where we could switch out

different RL algorithms without having to modify other aspects of the system.

OpenAI Gym is an open-source library that is built on the tenet of providing all

the tools necessary to develop and compare Reinforcement Learning algorithms.

OpenAI Gym allows us to define an environment, which the agent can act upon

using actions. The environment then returns the observation and reward. Es-

sentially, this allows us to use the principle of Separation of Concerns, where the

environment is just a ‘black box’ to the RL agent, and hence we can switch out

agents easily without having to change out the environment. It is the OpenAI

Gym environment’s responsibility to query the position of the car and give an

appropriate reward. It is also the OpenAI Gym environment’s responsibility to

accept any action that is supplied to it by the RL agent, and perform it on the car

(real or simulated).

This separation of concern will allow us to test different RL agents that use

different learning styles to figure out the most efficient strategy for learning.

Page 20 of 40

Autonomous drifting RC car with reinforcement learning Interim report

3.2 Remote Controlled Car

The actual RC car will be connected with an Arduino microcontroller that will

act as the hub of all computations that need to be performed to take actions on

the car. The Arduino will have the following components:

• Inertial Measurement Unit (IMU) sensor – Inertial Measure Unit is an elec-

tronic device which is used to get motion data of a body such as acceleration,

orientation, angular velocity etc. It uses a combination of gyroscope (angu-

lar velocity and orientation), accelerometer (acceleration) and magnetometer

and provides reliable position for stabilization. We use MPU9250 which is a

9-axis Motion Processing Unit – 3-axis for gyroscope, 3-axis for accelerome-

ter and 3-axis for magnetometer. MPU9250 uses I2C protocol for the com-

munication. The other IMU that could have been used was MPU6050 but

since MPU9250 is the world’s smallest 9-axis motion tracking device with

smaller chip size, better performance and low power consumption, we choose

MPU9250 (SFUptownMaker). Also, MPU6050 is a 6-axis motion tracking

device (3-axis for gyroscope, 3-axis for accelerometer) and lacks magnetome-

ter.

• XBee module – XBee is a wireless module which provides end to end commu-

nication service. It creates its own network and can communicate with other

XBees in its network. It needs atleast one more XBee for communication.

Figure 2 shows the network made by two XBees. One XBee is connected

to the Arduino and the other XBee is connected to the laptop. They create

their own network and communicate with each other wirelessly. Similarly, in

the project, one XBee is connected to the Arduino in the car and the other

XBee is connected to the system. The XBee connected to Arduino sends the

motion data received from IMU to the XBee connected to system. Similarly,

the XBee connected to the system sends commands to XBee connected to

the car.

Figure 4 describes the detailed architecture of the components on the RC car

(blue boxes). There are two actuators on the RC car, a servo motor to control

Page 21 of 40

Autonomous drifting RC car with reinforcement learning Interim report

the steering direction and a brushless electric motor to control the throttle. The

motor will be connected to an Electronic Speed Control (ESC) module to provide

power and regulate the voltage consumption by the motor.

Figure 4: Architecture of RC Car.

The ESC module is connected to the Arduino board, and the throttle actions

received by the Arduino board are passed to the ESC to be executed on the motor.

The throttle for the motor will be kept constant to simplify the learning problem.

The servo is connected to the Arduino directly, and the steering commands are

passed directly to the servo. The servo we use takes a discrete set of integers that

determine the angle. The values we will use for the our steering angle is the set [65,

75, 85, 90, 95, 105, 115]. The value 90 means the servo is in the center. Values less

than 90 steers the car to the left while values greater than 90 steer it to the right.

After experimentation, we found that the minimum value that the servo takes is

65 and the maximum is 115. Any value below or above the limits will damage the

structure of the car. Moreover, a decision was reached on using steps of 10 for the

values because smaller steps do not cause discernible change in steering angle.

Page 22 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Actions commands from the OpenAI environment are passed to the XBee mod-

ule, which forwards them to the Arduino board. The board then make the decision

to forward it to the appropriate actuator. Similarly, the sensor data is collected

from the IMU by the Arduino microcontroller and forwarded to Zigbee module,

which forwards it further to the OpenAI environment at 50Hz, a frequency chosen

to balance the computation load and human latency perception.

Page 23 of 40

Autonomous drifting RC car with reinforcement learning Interim report

3.3 Simulation of environment

Even with the Open AI Gym environment optimally set up, it will take agents

thousands of iterations before they are able to figure out the optimal strategy for

reward maximization. Running many iterations on the RC car is not feasible for

a few obvious reasons:

• The hardware will get worn out quickly

• The battery cannot last for thousands of iterations

• The car may get damaged, since the agent will experiment with random

moves in early stages of the algorithm

Hence, to circumvent these problems, we need to test our algorithm in a simu-

lated environment before we can move to the actual environment.

Gazebo is an open-source simulation library which allows us to “rapidly test al-

gorithms, design robots, and train AI system using realistic scenarios”. It uses the

Open Dynamics Engine (ODE) to provide a robust physics engine, with properties

like friction, gravity etc., in a simulated world. It also allows us to easily create

a robot that will try to match the behavior of the real RC car. This is crucial,

since we want our algorithm (that is trained on the simulation) to work in the

real world, not just on the simulation. Along with the robot, we also get some

pre-defined sensors that we can add to our simulated robot to easily test out the

complete system.

Page 24 of 40

Autonomous drifting RC car with reinforcement learning Interim report

3.4 Communication

Open AI Gym and Gazebo need some channel of communication between them

so that Gazebo can provide the sensor data needed ((x,y) position, throttle level

etc.) to the Gym environment which is used to estimate a reward. The Gym

environment also needs to send action commands to the Gazebo simulator so that

it can move the car around. We could have used simple forms of communication

like sockets, HTTP requests/responses, but this would couple the two components

too tightly, making it difficult to switch out Gazebo for the RC car later. Having

tightly coupled components also makes it difficult for different team mates to work

on different aspects of the project. Hence, it was crucial to have a communication

protocol that was as decoupled and asynchronous as possible.

Robot Operating System, or ROS, is one such framework that allows us to set

up a decoupled, asynchronous communication system. At its core, ROS provides

a messaging interface for different processes (referred to as ROS nodes in ROS

nomenclature) to communicate with each other, among other features. ROS pro-

vides a queuing mechanism for a ROS node to send a message to another ROS

node by posting a message in a ROS queue that can be read by another ROS node,

completely asynchronously. ROS nodes do not need to worry about other nodes

and how they are implemented, and rather only need to know the address of the

ROS queue. By doing this, we can create a completely decoupled communication

network, allowing us to work on modules independently, and interchangeably.

In context to our project, the ROS network that will be used to connect the

various components is denoted in Figure 5. Black rectangles denote processes

running as ROS nodes, while the arrows represent the ROS queues, and the text

beside each arrow denotes the message type that will be passed in each queue.

This figure represents the entire system architecture. Note that both the RC car

and the Gazebo simulator accept the same data, and send the same data. This is

what will allow us to use the two interchangeably without affecting the RL agent.

From the agent’s perspective, it is simply performing actions on a car, and does

not care about whether it is a real or simulated one.

Page 25 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Figure 5: Architecture of ROS Network.

The general flow of information would be:

1. RL Agent sends action to Gym Environment via the Actions ROS queue.

2. Gym Environment forwards action to either the simulator or the car (de-

pending on the settings) using the second Actions ROS queue.

3. The RC car/Gazebo would execute the action, and send its new sensor data

on the Sensor data ROS queue.

4. The Gym Environment calculates the reward based on the new state, and

sends it to the RL agent using the State and Reward ROS queue.

Now that we have a complete understanding of the various components and how

they interact with each other to implement RL, we will now look at the current

status of these components.

Page 26 of 40

Autonomous drifting RC car with reinforcement learning Interim report

4 Current status and results

We have made considerable progress with our project last semester. We have

already assembled our remote controlled car as shown on Figure 6. Before we

purchased any of the equipment, the different electronics had to be selected ap-

propriately to find the right balance between size (since we had a limited amount

of space on the chassis of the car) and performance. Other than these two factors,

we also had to account for the total power consumption of each component and

find the right battery that could provide enough voltage to each of the compo-

nents without damaging the equipment. Electronic components used include the

electronic speed controller (ESC), which helps to regulate the amount of current

delivered to the motor in the car. This in turn helps to maintain and control the

speed of the car. Since the motor has a voltage requirement of 8.4V, the power

to it is delivered from a 2S Lithium Polymer (LiPo) battery pack, which is at the

center of chassis in Figure 6. Furthermore, a battery elimination circuit (BEC)

along with a voltage regulator is used to obtain a 5V supply to power the other

electronic components on the car, such as the servo that controls the steering an-

gle and the microcontroller that sends the throttle and steering commands. It is

important to note that we have fitted the car with drifting wheels (as shown in

the Figure 6) instead of regular rubber RC tires to make it easier for the car to

slide and drift.

Figure 6: The assembled car.

Page 27 of 40

Autonomous drifting RC car with reinforcement learning Interim report

To ensure that the whole system runs wirelessly, we use two XBee modules which

work using the I2C Protocol. One XBee id connected to the microcontroller on

the car, while the other XBee is connected to a computer running the main script

on Arduino Board using the Servo Library. We mapped the standard WASD keys

to be able to control the car using a keyboard, and get the IMU data back from

the car every time a new throttle/steering command is sent.

In addition, we have also implemented the simulator in Gazebo to help us model

the environment. The first task was to set up the two interfaces needed in order to

communicate with the OpenAI Gym environment – the first interface was needed

to accept action commands (i.e. steering and throttle commands), while the second

was to send sensor data from the RC car to the OpenAI environment. We set

up the ROS queues for both these data types, and also created different scripts

needed to initialize each queue, the Gazebo ROS node and launch the simulated

environment.

Once we had the interfaces set up, the most important task was to model the

actual RC car in the environment. Our first version of the simulated car was

extremely unstable, as the weight distribution, among other factors, was unequal.

To tackle this issue, we measured various physical properties of the car, and input

these as variables in the simulator. This stabilized the car considerably. Figure 7

shows the car in the simulator.

Finally, we have completed the implementation of the Double Dueling DQN

algorithm described previously. The DQN was implemented in Tensorflow, which

is a popular framework for creating deep neural networks.

Page 28 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Figure 7: Our simulator with the car in the modeled environment.

To ensure that the implementation of the algorithm was correct, it was used to

solve two baseline problems in the RL realm - Mountain Car and Cart Pole. To

quantify the performance of the algorithm, we use two metrics - the mean loss and

mean reward of the agent over the number of steps of the algorithm. The loss is

formulated as the squared difference between the expected action value and the

target action value. As the agent learns the expected action values over number of

steps, the value converges with the target action value, and hence the loss should

decrease over number of steps. The reward is simply the total reward the agent

earns over an episode of the algorithm, which should be increasing over the number

of steps as the agent learns the appropriate behavior.

Page 29 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Both these trends can be observed for the Mountain Car problem in Figures 8

and 9 below.

Figure 8: Mean Loss for Mountain Car over number of steps.

Figure 9: Mean Reward for Mountain Car over number of steps.

Page 30 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Similarly, we can observe these trends for the Cart Pole problem in Figures 10

and 11 below.

Figure 10: Mean Loss for Cart Pole over number of steps.

Figure 11: Mean Reward for Cart Pole over number of steps.

Page 31 of 40

Autonomous drifting RC car with reinforcement learning Interim report

Finally, once the required behavior was observed in the baseline problems and

we were confident our implementation is correct, the first iteration of the double

dueling DQN algorithm was executed on the simulated car. Figures 12 and 13

illustrates the trend mean loss and mean reward of the agent after 17 hours of

training respectively. Once again, the results are congruent with what we had

expected.

Figure 12: Mean Loss for Simulated Car

Figure 13: Mean Reward for Simulated Car

Page 32 of 40

Autonomous drifting RC car with reinforcement learning Interim report

5 Difficulties encountered

There are a few challenges that we have faced already. Firstly, the simulator that

we implemented initially was imperfect and the car in it was behaving strangely,

particularly with respect to the amount of effort needed to get it to move in a line.

We soon realized the cause for this was that physical quantities, such as the mass

of the car, were not modeled perfectly in our simulator, which was causing it to

behave differently to what we had expected. Consequently, we introduced such

physical parameters into our modeling to resolve the issue.

Secondly, the IMU sensor used was incredibly noisy and the measurement read-

ings we were initially getting were inaccurate. To work around that issue, we

passed our data through a low-pass filter to filter out as much of the noise as

possible.

Page 33 of 40

Autonomous drifting RC car with reinforcement learning Interim report

6 Future plan and contingency plan

Some crucial components of our project needs to be completed, and they will be

the focus for the next few months. Firstly, we plan to install an optical sensor on

the chassis to get the position of the car, similar to how a mouse gets its position

on the computer screen, and we plan to finish this by the end of January. In

addition, so far, we have used a simulator for the learning which gave us a model

of the optimal drift policy to bootstrap off the learning in the actual car. To

validate the model, we will transfer it to the physical RC Car. By transferring

the policy onto the physical car, there can be some unforeseen issues and thus,

we plan to finish t by the end of February. Algorithms like the double dueling

DQN we have already implemented are model free, make no assumption of the

dynamics of the system and learn by virtue of trial and error. As a result, they

typically require more iterations to converge to an optimal policy. To make our

policy model converge in fewer number of iterations, we plan to explore model

based approaches as well, like Iterative Linear Quadratic Regulator and Dynamic

Differential Programming. Although the dynamics of the system are not explicitly

formulated, such algorithms first try to build a model of the dynamics based on

interactions of the agent with the environment, which is then used to plan an

optimal trajectory. Since such methods first try to model the dynamics instead,

the overall policy will converge to an optimal one in much fewer iterations. We

plan to finish this by mid-March, and compare the performance of both model-free

and model-based approaches in learning an optimal drift policy. Finally, we will

continue iterating on the algorithms to get the car to drift in patterns leading up

to the final presentation. Table 1 on the next page outlines the future plan.

Since we are dealing with the hardware implementation in our project as well,

it is always probable to run into unforeseen issues when transferring the optimal

policy to the physical RC car. Thus, it is important to to prepare for them, and

we have a contingency plan to tackle two potential problems which we might face.

Firstly, it is probable that the optical sensor data will not represent the accurate

position of the car. To tackle this issue, we plan to use computer vision and camera

triangulation to estimate the position of the car. A tag can be mounted on the car

Page 34 of 40

Autonomous drifting RC car with reinforcement learning Interim report

and a camera can be suspended on the ceiling which can help us with estimating

the position of the car. Secondly, the explicit reward function we have used so

far might be too simple to encourage sustained circular drift. In such a case, we

plan to use inverse reinforcement learning to learn an implicit representation of

the reward function instead.

Milestone Description Due data

M1 Install an optical sensor onto the chassis of the
car to get accurate position data.

31-01-18

M2 Transfer the learned optimal policy from simula-
tion to the physical RC car and validate results.

28-02-18

M3 Explore model-based approaches to finding the
optimal drift policy, like iterative LQR and DDP.

15-03-18

M4 Iterate on algorithms and run tests. 14-04-18

M5 Final report and Phase 3 deliverable on April 15,
2018

15-04-18

M6 Final presentation on April 20, 2018 20-04-18

Table 1: Detailed future project plan and milestones.

Page 35 of 40

Autonomous drifting RC car with reinforcement learning Interim report

7 Conclusion

To summarize, we justified why autonomous drifting cars are important and

how drifting can be useful in emergencies to avoid accidents. As we have already

discussed, current self driving cars and stability control techniques try to avoid

slipping tires and in doing so, restrict the capability of the car. However, we

need to exploit the full capability of a car during emergencies. So clearly, having

an autonomous drifting car that learns an optimal drift control policy using our

methods can help reduce the number of accidents caused by hydroplaning and

make roads safer.

Motivated with this intention, we proposed a framework that uses state of the art

model-free reinforcement learning algorithms like double dueling deep Q-networks

to learn an optimal controller for drifting an RC car to maintain a state of steady

circular drift. As discussed earlier, using a model-free approach makes no assump-

tion of the dynamics of the system, which is unknown. Furthermore, as already

mentioned, exploring policies by trial and error to find an optimal one in a physi-

cal robot like our car is not feasible because it leads to wear of the robot. So, we

proposed designing a simulator where our agent explores and learns this optimal

controller. Furthermore, we briefly discussed the advantages of Double dueling

DQN and Q-learning over other algorithms like PILCO. We also outlined how we

used potential based rewards to reward our agent in small quantities along the

path of the trajectory we want it to follow instead of a huge reward at the ter-

minal point. This helps to make sure our learning agent learns the behaviour we

want.

Next, we explained what we have accomplished so far in terms of assembling the

car, implementing the simulator and running training iterations of the algorithm on

the simulator. Results from training the double dueling DQN were also presented.

As previously discussed, the results look promising and appear to be what we had

expected. As for the future plan, we hope refine our implementation of the double

dueling DQN and transfer the policy to the RC car by middle of February. In the

meantime, we will also try to obtain position data using optical sensors as discussed

Page 36 of 40

Autonomous drifting RC car with reinforcement learning Interim report

previously and incorporate Kalman filters to fuse it with the sensor information

from the inertial measurement unit to obtain a better estimate of the car’s position

and reduce noise. In the months following that, we will explore model-based

learning algorithms like iterative LQR and DDP. Although the dynamics of the

system are not known, we will build a model to estimate the dynamics instead

using function approximators like Gaussian processes and neural nets. We expect

model-based algorithms to converge faster because we try to learn the dynamics

first. We hope to then compare the two approaches in learning an optimal drift

policy before our final submission in April.

Page 37 of 40

Autonomous drifting RC car with reinforcement learning Interim report

References

[1] S. Saha, P. Schramm, A. Nolan, and J. Hess, “Adverse weather conditions

and fatal motor vehicle crashes in the united states, 1994-2012,” Environ-

mental Health, vol. 15, 2016.

[2] A. T. van Zanten, R. Erhardt, G. Landesfeind, and K. Pfaff, “Vehicle sta-

bilization by the vehicle dynamics control system esp,” IFAC Mechatronic

Systems, Darmstadt, Germany, pp. 95–102, 2000.

[3] J. Ackermann, “Robust control prevents car skidding,” IEEE Control Sys-

tems Magazine, vol. 17, pp. 23–31, 1997.

[4] K. Yoshimoto, H. Tanaka, and S. Kawakami, “Proposal of driver assistance

system for recovering vehicle stability from unstable statesby automatic

steering,” in Proceedings of the IEEE InternationalVehicle Electronics Con-

ference, 1999.

[5] A. Hac and M. Bodie, “Improvements in vehicle handling through integrated

control of chassis systems,” International Journal of Vehicle Design, vol. 29,

no. 1, 2002.

[6] J. Wei, Y. Zhuoping, and Z. Lijun, “Integrated chassis control system for

improving vehicle stability,” in Proceedings of the IEEE Inter- national Con-

ference on Vehicular Electronics and Safety,, 2006.

[7] A. Trachtler, “Integrated vehicle dynamics control using active brake steering

and suspension systems,” International Journal of Vehicle Design, vol. 36,

no. 1, pp. 1–12, 2004.

[8] F. Zhang, J. Gonzales, K. Li, and F. Borrelli, “Autonomous drift cornering

with mixed open-loop and closed-loop control,” in Proceedings IFAC World

Congress, 2017.

[9] P. Frère, Sports Car and Competition Driving. Bentley, 1969.

[10] E. Velenis, D. Katzourakis, E.Frazzoli, P.Tsiotras, and R.Happee, “Steady-

state drifting stabilization of rwd vehicles,” Control Engineering Practice,

vol. 19, 2011.

Page 38 of 40

Autonomous drifting RC car with reinforcement learning Interim report

[11] R. Hindiyeh and J. Gerdes, “A controller framework for autonomous drifting:

Design, stability, and experimental validation,” Journal of Dynamic Systems,

Measurement, and Control, vol. 136, 2014.

[12] S.-T. Wu and W.-S. Yao, “Design of a drift assist control system applied to

remote control car,” International Journal of Mechanical, Aerospace, Indus-

trial, Mechatronic and Manufacturing Engineering, vol. 10(8), 2016.

[13] E. Velenis, E. Frazzoli, and P. Tsiotras, “On steady-state cornering equilib-

ria for wheeled vehicles with drift,” Institute of Electrical and Electronics

Engineers, 2009.

[14] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998.

[15] A. Y. Ng, “Shaping and policy search in reinforcement learning.,” PhD thesis,

EECS, University of California, Berkeley, 2003.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. A. Riedmiller, “Playing atari with deep reinforcement learn-

ing,” CoRR, vol. abs/1312.5602, 2013. arXiv: 1312.5602. [Online]. Available:

http://arxiv.org/abs/1312.5602.

[17] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with

double q-learning,” CoRR, vol. abs/1509.06461, 2015. arXiv: 1509.06461.

[Online]. Available: http://arxiv.org/abs/1509.06461.

[18] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures

for deep reinforcement learning,” CoRR, vol. abs/1511.06581, 2015. arXiv:

1511.06581. [Online]. Available: http://arxiv.org/abs/1511.06581.

[19] A. Y. Ng and M. I. Jordan, “Pegasus: A policy search method for large

mdps and pomdps.,” In Uncertainty in Artificial Intellicence, Proceedings of

Sixteenth Conference, pp. 406–415, 2000.

[20] M.Deisenroth, D.Fox, and C. Rasmussen, “Gaussian processes for data-efficient

learning in robotics and control,” Pattern Analysis and Machine Intelligence,

IEEE Transactions, vol. 99, 2014.

Page 39 of 40

Autonomous drifting RC car with reinforcement learning Interim report

[21] M. Cutler and J. P.How, “Autonomous drifting using simulation-aided rein-

forcement learning,” 2016 IEEE International Conference on Robotics and

Automation(ICRA), 2016.

[22] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning.

MIT Press, Cambridge, MA, 2006.

[23] C. Atkeson, S. Schaal, and A. Moore, “Locally weighted learning.,” AI Re-

view, 1997.

Page 40 of 40

