
Software report

AUTONOMOUS DRIFTING RC CAR

WITH REINFORCEMENT

LEARNING

May 9, 2018

Supervisor: Dr. D. Schnieders

Sourav Bhattacharjee (3035123796)

Kanak Dipak Kabara (3035164221)

Rachit Jain (3035134721)

Written by Kanak Kabara

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Abstract

The advent of self-driving cars has pushed the boundaries on the safety of auto-

mobiles, but most modern self-driving car systems ignore the possibility of a car

slipping resulting from inclement weather or driver error [1]. Passengers and by-

standers would benefit heavily if self-driving cars could handle slipping by learning

to drift with the turn rather than against it (by applying the brakes, or turning

away, which is the instinctive action), preventing many fatalities [2].

Our project is aimed at studying the drifting of an autonomous remote controlled

(RC) car using reinforcement learning (RL) techniques. Specifically, we experi-

mented with a model-free approach with dueling double Deep Q-networks (DQN)

and a model-based approach with Probabilistic Inference for Learning COntrol

(PILCO) for finding an optimal drift controller. Since robotic systems are prone

to wear with use, a simulator is used to model the car dynamics and train a

preliminary drift controller which is then transferred to the real car.

Using these techniques, we were successful in obtaining an optimal drift con-

troller on the simulator, which was stable and robust to varying physical condi-

tions. Other than the drift controller, this project makes important contributions

in the form of novel approaches like using DQN for obtaining a drift controller and

using the policy learned from DQN for PILCO initialization. Additionally, this

report presents a metric, Dm, to objectively quantify the quality of a sustained

circular drift.

Page 1 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Acknowledgement

We would like to thank our supervisor, Dr. Dirk Schnieders, for guiding us through-

out the project. We are also grateful for the help received from a friend, Mr. David

Ip, who helped us acquire the hardware needed for this project. Finally, we are

thankful for the help we received from Dr. Chris R. Roberts with various hardware

issues encountered.

Page 2 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Contents

1 Introduction 5

1.1 Background and Motivation . 5

1.2 Objective . 7

1.3 Scope . 7

1.4 Deliverables . 7

1.5 Contributions . 9

1.6 Outline of Reports . 10

2 Methodology 11

2.1 OpenAI Gym . 11

2.2 Robot Operating System . 13

2.2.1 Inertial Measurement Unit (IMU) data fusion 13

2.2.2 ROS on Android . 14

2.2.3 Demonstration . 15

2.3 Gazebo Simulator . 17

2.3.1 Modelling the RC car . 17

2.3.2 Proportional–integral–derivative (PID) Controllers 20

2.3.3 Body Frame Velocities . 21

2.4 System Architecture . 24

3 Conclusion 26

References 27

Page 3 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

List of Figures

1 Definition of drifting . 5

2 Successful drift controller executing a drift on the simulator 8

3 The final simulated car . 8

4 The final RC car . 9

5 The reinforcement learning architecture 11

6 ROS Nodes and Queues involved in IMU Fusion 15

7 Relationship between Joints and Links of the simulated RC car . . 18

8 Relationship between the Gym environment and PID controllers . . 20

9 Tf tree structure . 22

10 ROS Network structure for RC car 24

11 ROS Network structure for Simulated RC car 25

Abbreviations

Abbreviation Meaning
2WD Two wheel drive
4WD Four wheel drive
DQN Deep Q-Networks
EKF Extended Kalman Filter

HTTP Hypertext Transfer Protocol
IMU Inertial Measurement Unit
ODE Open Dynamics Engine
PID Proportional–integral–derivative

PILCO Probabilistic Inference for Learning
COntrol

RC Remote Controlled
RL Reinforcement Learning

ROS Robot Operating System
URDF Unified Robot Description Format
XML Extensible Markup Language

Page 4 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

1 Introduction

Before discussing the implementation details of the project, it is crucial to un-

derstand the background of the problem we are trying to solve, and the actual

scope. This section addresses that and highlights the need to study and solve the

problem of drifting, and outlines how we plan to do so with an approach based on

simulation aided reinforcement learning. For the purposes of this report, drifting

is defined as the oversteering of a car which results in the loss of traction of the

rear wheels. This results in the front wheels pointing in the opposite direction to

the turn and the car appears to be moving sideways as shown in Figure 1.

(a) Steering around bend (b) Drifting around bend

Figure 1: Drifting is defined as the oversteering of a car which results in
the loss of traction of the rear wheels. This results in the front wheels
pointing in the opposite direction to the turn and the car appears to be
moving sideways. The diagram illustrates the difference between simply
turning around a bend and drifting around a bend.

1.1 Background and Motivation

Passenger vehicles usually implement stability control in a number of ways like

differential braking [3], active steering [4] [5] or integrated chassis control [6] [7] [8].

Other methods, based on independent wheel torque, have also been developed to

make passenger vehicles more stable. However, these methods function by making

sure that the tires avoid slipping. In doing so, these methods essentially restrict

the operation of the vehicle. Similarly, control algorithms in current self-driving

car systems (Anti-lock brake systems, Electronic stability control etc.) try and

mitigate the chances of slipping due to its unpredictable nature [1]. Sufficiently

lowering the speed of the car and making turns that are not too tight will mostly

Page 5 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

prevent slipping, but this does not consider cases where the system must make

evasive moves to avoid crashes or when a car is already in a slipping state due to

the driver’s fault. For example, hydroplaning, which refers to a situation where a

layer of water builds up between the car tires and the road, is a major reason for

vehicle accidents. According to the United States’ Department of Transportation,

15.97% of all vehicle crash fatalities in the United States [2] are attributed to wet

and icy roads. An autonomous car system should be prepared for the scenarios

outlined above to ensure the safety of the passenger and bystanders, regardless of

the weather conditions or the state of the car. To reduce fatalities and ensure that

these car systems are as robust and safe as possible, it is essential to study drifting,

and eventually deduce how cars can respond quickly to unintentional slipping states

as those encountered due to hydroplaning. Not only can drifting be useful to steer

out of these unintentional slipping states, but can also be useful in taking full

advantage of the capabilities of a vehicle to avoid accidents in emergencies.

Many of the systems discussed above try to tackle the issue of stability control

and slipping by approaching it as an optimal control and open looped problem with

explicit dynamics model. Approaches using optimal control are often deterministic

and use closed-form expressible equations of motions. The resulting policies de-

pends entirely on the model used to compute them. Sometimes, these restrictions

on the model neglect parts of the true system either because they are non-linear

or they are just not well-enough understood to be expressed in equations. We thus

propose a method that does not rely on explicit equations of motion, but rather

on an implicit understanding of the world obtained by trial and error.

Another motivation to study drifting is that Paul Frère [9] points out the use-

fulness of drifting to turn fast around sharp bends. Since high-speed stability is of

greater importance to ordinary touring vehicles and competition cars, they tend

to understeer, and for a competition car average circuit time is improved by going

fast through fast bends while slowing down through sharp ones [9]. However, a

car is able to turn sharp bends faster by drifting because the yaw angle formed by

the drift brings the vehicle in line with the straight path following the bend even

before the vehicle completes the turn [9].

Page 6 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

1.2 Objective

The objective of this project is to get a remote controlled car to maintain a sus-

tained circular drift autonomously. This paper proposes a framework for learning

the best way to drift using simulation aided reinforcement learning which is one

approach to solving the problem without having to input the dynamics of the sys-

tem explicitly. Then the project aims to transfer the learned optimal drift policy

or strategy from the simulation to a physical RC car for further learning.

1.3 Scope

The area of drifting falls into two categories – sustained drift and transient

drift. Due to the wide breadth of the two categories and the time and cost con-

straints, our project will mainly focus on sustained drift, and more specifically

steady state circular drift on an RC car with constant forward throttle. Addition-

ally, despite the wide range of reinforcement learning algorithms available, due

to reasons elaborated in the Reinforcement Learning Report, we investigate two

different algorithms to obtain the sustained circular drift controller - DQN and

PILCO.

1.4 Deliverables

The complete implementation of the project is available on https://github.com/

kanakkabara/Autonomous-Drifting. There are a few major deliverables in this

project, which are outlined below:

1. Reinforcement Learning (RL) algorithms – Implementation of Double duel-

ing Deep Q-networks for finding an optimal drift controller as well as model

based policy search with PILCO.

2. Drift controller - A successful sustained circular drift controller along with

tests to prove its robustness and stability.

3. Drift metric - A drift metric to objectively quantify the quality of a drift.

Page 7 of 27

https://github.com/kanakkabara/Autonomous-Drifting
https://github.com/kanakkabara/Autonomous-Drifting

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Figure 2: Time-lapsed path traced by the car on the simulator using
the successful sustained circular drift controller.

4. Simulator – We trained the RL algorithms on a simulated car that models

the RC car in an environment with physics that mimic the real world. The

environment was used to test and improve different RL algorithms efficiently

and quickly, without causing any wear or damage to the RC car.

Figure 3: The final simulated car

5. A remote controlled (RC) car – This car is a 1/10th scale model of an actual

car, integrated with sensors (Inertial measurement unit combined with mag-

netometer and optical sensors) for measuring data like the translational and

angular velocities of the car to perform steady state circular drifting. The

Page 8 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

project then aims to transfer the optimal policy learned in simulator onto

the RC car for validation.

Figure 4: The final RC car

1.5 Contributions

The project introduces the following novel ideas, as elaborated further in the

Reinforcement Learning Report :

1. Using double dueling Deep Q-networks (DQN) to find an optimal drift con-

troller.

2. Using policy learned from the DQN model to initialize PILCO learning.

3. A drift metric, Dm, to objectively evaluate a sustained circular drift:

Dm =
1

T

T∑
t=0

exp

(
−(||st − starget||2

2σ2

)
∈ [0, 1]

Page 9 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

1.6 Outline of Reports

The documentation for this project is divided into three reports. Although the

reports share the same background and motivation behind the project, each em-

phasizes on the methodology, experiments, results and difficulties encountered for

different aspects. A reader is thus suggested to refer to all three individual re-

ports to acquire a complete understanding of the project. The three reports are

as follows:

Report outlining the Hardware, written by Rachit Jain, highlights the im-

plementation of the RC car and the various challenges faced in indoor localization

and velocity estimation.

Report outlining the Reinforcement Learning Algorithms, written by

Sourav Bhattacharjee, focuses on the main aspects of the project and contains the

detailed description of the two Reinforcement Learning techniques used, and the

associated results.

This report outlines the crucial software elements in this project and proceeds

as follows. First, the report talks about OpenAI Gym and the motivation behind

using it in this project. Then, the implementation details for the simulation envi-

ronment and the communication stack are discussed. Finally, the report is ended

with some concluding remarks.

Page 10 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

2 Methodology

This project consists of 3 major components - the hardware, the Reinforcement

Learning (RL) agents and the various software elements that bind the entire system

together. The subsequent sections talk about the binding software elements, which

include OpenAI Gym for Reinforcement Learning, Robotics Operating System

(ROS) for communication and Gazebo for simulation.

2.1 OpenAI Gym

The components of the RL algorithm described in Section 3 of the Reinforcement

Learning Report can be summarized into the [agent, state, action, environment]

representation:

Agent

Environment

atst

st+1

rt

Figure 5: The diagram shows the architecture of the reinforcement
learning framework. The agent interacts with the environment accord-
ing to a policy by taking actions and evaluates how good or bad taking
a particular action (at) in a particular state (st) is by observing the next
state it transitions to (st+1) and the reward it receives along the way
(rt). [10]

The two most crucial components, the agent and the environment, were simple

to implement without the use of any libraries, but the ability to test various

agents without making changes to the environment, or vice versa, was crucial

in order to have a clean and structured system. This was especially important

given the number of experiments performed during the course of our project. The

Page 11 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

ideal solution had to be a plug-and-play system where we could easily switch out

different agents or environments without having to modify other aspects of the

system.

OpenAI Gym is an open-source library that is built on the tenet of providing

all the tools necessary to develop and compare RL algorithms. OpenAI Gym

allowed us to define an environment, which the agent acts upon. The environment

then returns the observation and reward. Essentially, this allowed us to use the

principle of Separation of Concerns (SoC). The environment is just a ‘black box’

to the RL agent, and hence we could switch out agents easily without having to

alter the environment. It is the responsibility of the Gym environment to calculate

the state of the car and give an appropriate reward. It is also the responsibility of

the Gym environment to accept any action that is supplied to it by the RL agent,

and perform it on the car (real or simulated).

This separation of concern allowed us to experiment with the DQN and PILCO

agents that use completely different learning styles on the same environment to

deduce the most efficient strategy for learning an optimal drift controller, which is

discussed further in Section 3 of the Reinforcement Learning Report.

Additionally, as a future extension, the OpenAI Gym drift environment can be

made open source to the OpenAI community so that various other algorithms can

be tested on the same environment to find more effective and efficient solutions.

Page 12 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

2.2 Robot Operating System

The various components described in this project require some channel of com-

munication between them to exchange information - state information from the

car or the simulator needs to be communicated to the RL agent to compute re-

wards and costs, and deduce the next action. Actions need to be communicated

to the car or Gazebo to control the car. We could have used simple forms of com-

munication like sockets, HTTP requests/responses, but this would have coupled

the two components too tightly, making it difficult to replace the simulator with

the physical RC car, or switch between different agents and environments. Having

tightly coupled components would have also made it difficult for different team-

mates to work on different aspects of the project. Hence, it was crucial to have a

communication protocol that was as decoupled as possible.

Robot Operating System (ROS) is one such framework that allowed us to set

up a decoupled, asynchronous communication system. At its core, ROS provides

a messaging interface for different processes (referred to as ROS nodes) to commu-

nicate with each other, among other features. ROS provides a queuing mechanism

for a ROS node to send a message to another ROS node by posting a message in

a ROS queue that can be read by another ROS node, completely asynchronously.

ROS nodes do not need to worry about other nodes and how they are implemented,

and instead only need to know the address of the ROS queue. Additionally, ROS is

language agnostic, which was important since the PILCO agent was implemented

in MATLAB while the simulator environment was implemented in Python. By do-

ing so, we created a completely decoupled communication network, which allowed

us to work on modules independently, and interchangeably.

There are various open source ROS packages that were used in this project. The

following sections highlight the packages incorporated.

2.2.1 Inertial Measurement Unit (IMU) data fusion

As discussed in Section 3.2.2 of the Hardware Report, after considering various

methods for getting accurate estimates of the velocity of the car from the car’s ref-

Page 13 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

erence frame, we came to the decision of performing integration on the acceleration

data from multiple IMUs. In order to do so, IMU data from the MPU9250 sensor

and an Android device placed on the car were combined together to obtain the

acceleration of the car. The noise in the IMU data is assumed to have a Gaussian

distribution. Hence, using multiple sources of IMU data allowed us to eliminate

the noise as much as possible and get a cleaner reading of acceleration.

The biggest issue with using two completely stand alone systems lies in synchro-

nizing the system clocks to get time sensitive information - the IMU reading from

the two sensors need to match up exactly so that they can be combined to obtain

a better estimate for the velocity components.

In order to do so, the message filters package was used. A time synchronization

message filter was set up to collect messages from the two sources and output

them only when the time stamps on the messages matched. A margin of 0.05

seconds was allowed to ensure that important IMU events were not lost in case the

time stamps did not match exactly. Once the IMU messages were synchronized,

they were passed into a robot localization node, which made use of an Extended

Kalman Filter (EKF) to compute the corresponding odometry data for the car.

This included the velocity, position and orientation of the car. Figure 6 below

shows the system architecture for computing velocity data.

Both the message filter and EKF robot localization nodes are implemented flex-

ibly to allow us to add more sources of IMU information quickly if more accurate

data is needed.

2.2.2 ROS on Android

In order to collect IMU data from an Android device, we leveraged the Android

library of the ROS framework. Using the Android library, we created an Android

application that was used to initiate a ROS node on the Android device and

communicate IMU data wirelessly to the master node on our laptops. The added

advantage of using an Android device for collecting IMU data is that numerous

Android devices can be added easily in case the data is still noisy.

Page 14 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

Figure 6: The diagram shows the architecture for using an Extended
Kalman Filter (EKF) for estimating velocity from IMU data. The IMU
data from different sources is synchronized using a message filter before
being passed to the robot localization node, which performs the data
fusion.

2.2.3 Demonstration

As outlined in Section 3.2.1 of the Reinforcement Learning Report, we explored

three methods of initialization for our PILCO algorithm: random initialization,

initialization with the DQN model and demonstration. Performing random ini-

tialization was straightforward - we simply had to take a series of random actions

either on the physical RC car or the simulator and get the resultant state from each

action. A similar method was used for the DQN model, where the model outputs

the actions to be taken. However, in order to collect data from the demonstration,

we needed teleoperation support for the car.

We developed two systems for performing teleoperation on the car:

• Keyboard: The arrow keys were mapped to send throttle and servo com-

mands to the car. The teleop twist keyboard ROS package was used to cap-

ture keystrokes and convert them to the appropriate linear and angular ve-

locities.

• Joystick: One popular method for drifting is to make use of opposite locking

or counter steering (turning the steering in the opposite direction of the

intended direction of motion). In order to do so, one needs the ability to

Page 15 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

quickly change steering directions, which is not possible with a keyboard

teleoperation node. Hence, a joystick controller was used. The joy ROS

package was used to set up the joystick and publish joystick commands,

which were processed to produce the appropriate actions.

Page 16 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

2.3 Gazebo Simulator

Even with the Open AI Gym environment optimally set up, it usually takes

RL agents thousands of iterations before they are able to converge to an optimal

strategy for reward maximization. Running many iterations on the RC car is not

feasible for a few reasons:

1. The hardware will get worn out quickly.

2. The battery cannot last for thousands of iterations.

3. The car may get damaged, since the agent will experiment with sub-optimal

moves in early stages of the algorithm.

Hence, to circumvent these problems, we needed to train our algorithm in a

simulated environment first.

Gazebo is an open-source simulation library which allows us to design and model

the RC car and quickly test the RL agents in a realistic world. It uses the Open

Dynamics Engine (ODE) as the physics engine, with properties like friction, gravity

etc., in a simulated world. It also allows us to easily create a robot that will mimic

the behavior of the real RC car, which is crucial, since we want the controller

trained on the simulation to work equally well in the real world.

2.3.1 Modelling the RC car

Gazebo makes use of the Unified Robot Description Format (URDF), which

is an XML format for defining accurate robotic models. Essentially, models are

defined using links and joints, where a joint is used to connect two links. We

started at the root link, known as the base link and built on top of that.

Page 17 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

base_link

base_link_to_chasis

xyz: 0 0 0
rpy: 0 -0 0

imu_joint

xyz: 0 0 0.19
rpy: 0 -0 0

chassis

chassis_to_left_front_wheel

xyz: 0.13 0.105 0.01
rpy: 0 -0 0

chassis_to_left_rear_wheel

xyz: -0.13 0.105 0.01
rpy: 0 -0 0

chassis_to_right_front_wheel

xyz: 0.13 -0.105 0.01
rpy: 0 -0 0

chassis_to_right_rear_wheel

xyz: -0.13 -0.105 0.01
rpy: 0 -0 0

left_steering_link

left_steering_joint

xyz: 0 0 0
rpy: 0 -0 0

left_front_axle_carrier

left_front_axle

xyz: 0 0 0
rpy: 1.5708 -0 0

left_front_wheel

left_rear_axle_carrier

left_rear_axle

xyz: 0 0 0
rpy: 1.5708 -0 0

left_rear_wheel

right_steering_link

right_steering_joint

xyz: 0 0 0
rpy: 0 -0 0

right_front_axle_carrier

right_front_axle

xyz: 0 0 0
rpy: 1.5708 -0 0

right_front_wheel

right_rear_axle_carrier

right_rear_axle

xyz: 0 0 0
rpy: 1.5708 -0 0

right_rear_wheel

imu_link

Figure 7: This figure shows the relationship between the joints and links
of the simulated RC car. The rectangles represent the links, whereas
the ovals represent joints. They combine together to form the simulated
body of the car.

As seen in Figure 7, our robot consists of the following links:

1. Base Link: The root link on top of which the rest of the robot is defined.

2. Chassis: The base frame of the car, which houses the electronic components

as defined in Section 3 of the Hardware Report. Practically speaking, the

various components on top of the chassis will not affect physical properties

of the car relevant to drifting other than the mass. The mass distribution on

the actual car is evenly spread out, and hence the mass of all components on

Page 18 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

top of the chassis were added directly into the mass of the chassis to reduce

complexity.

3. IMU link - Physical mount for the IMU.

4. Left/Right Front/Rear Axle Carrier: All wheels have an axle joint, actuating

on which causes the wheels to roll. The physical link connected to the axle

is defined as the axle carrier.

5. Left/Right Steering Link: The front wheels of the RC car can be actuated

on by the servo, causing the front wheels to turn. Since the servo is not

directly defined, the steering link connects the chassis to a steering joint.

6. Left/Right Front/Rear Wheel: The wheels of the RC car.

To connect the various links described above, our robot consists of the following

joints:

1. Base link to chassis: Simple fixed joint connecting the chassis to the root

link.

2. IMU joint: Simple fixed joint connecting the physical IMU mount to the

link.

3. Chassis to Left/Right Front/Rear wheel: Simple fixed joint connecting the

chassis to the entire wheel housing (i.e. the axle joints, steering joints, and

the wheels).

4. Left/Right Steering Joint: Revolute joint (used for single axis fixed rotations,

such as wheels turning) connecting the steering link to the axle. This is the

joint that is actuated on to turn the wheels, causing the direction of motion

of the car to change.

5. Left/Right Front/Rear Axle: Continuous joint (used for single axis contin-

uous rotations, such as wheels rotating) connecting the axle carrier to the

physical wheel. This is the joint that is actuated on to rotate the wheels,

causing the car to move forward. To simulate a four wheel drive (4WD), all

Page 19 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

the axles are actuated on, whereas only the rear axles are actuated on for a

two wheel drive (2WD).

2.3.2 Proportional–integral–derivative (PID) Controllers

In order to actuate on the joints defined above, we attached controllers, which

are Gazebo’s equivalent of servos and motors. The ros control package was used

to create these controllers. The package makes use of a typical closed (feedback)

loop control system to accurately control the output signals to an actuator.

Figure 8: Each controller exposes a ROS queue where the desired joint
velocity/effort can be published by the Gym environment. Upon re-
ceiving the desired signal, the PID controller uses the current state of
the joint to calculate the correction signal needed to achieve the desired
signal.

Figure 8 visualizes the controller system, which takes the joint state, acquired

from encoders on the actuator, as input. Each controller exposes a ROS queue

where the desired joint velocity or effort can be published. The PID controller

uses the current state of the joint to calculate and send a correction signal to the

actuators in order to control the output.

The simulated RC car has six such controllers - one on each of the four axle

joints, and the two steering joints on the front wheels. Only the rear axle joints

Page 20 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

are used on a 2WD version of the car, whereas all four axles are used on the 4WD

car. Once the Gym environment receives an action to be executed, it calculates

the appropriate desired signal to be sent to each PID controller.

2.3.3 Body Frame Velocities

As outlined in Section 3.1 of the Reinforcement Learning Report, we initially

had a full Markovian state of [x, y, θ, ẋ, ẏ, θ̇], where each value is with reference

to the world frame. It was easy to acquire the state directly from Gazebo, since

it maintained a comprehensive state of all models in the simulation environment.

However, once we arrived on the final state representation of [ẋcar, ẏcar, θ̇], we

required velocities from the car’s reference frame i.e. body frame velocities. We

considered two possible methods for solving this problem:

1. Integrating IMU data: Using the IMU on the simulated car, we could have

used the acceleration data and integrated it to get the instantaneous body

frame velocities. However, the biggest problem with this approach is the

drift in velocity data caused by noise accumulation over time.

2. Vector Transformation: Since velocities are vector quantities, we could sim-

ply use a vector transformation from the world frame to the car’s reference

frame. Gazebo provides all the data required to generate a transform, and

hence it is comparatively easier to use this method. This method would give

us precise and accurate velocity data, resulting in an optimal drift controller.

In order to simulate the collection of body frame velocities from the real world,

using the IMU would be the most logical option. However, the controller learned

from noisy data would be inaccurate, and would simply fail to sustain a circular

drift. Thus, we decided to go with the less realistic, but more accurate approach

of vector transformation.

There are two ROS packages that helped us store and maintain the appropriate

transformations needed to track the body frame with reference to the world frame:

Page 21 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

• tf : Keeps track of multiple coordinate frames by maintaining the relationship

between frames in a tree structure in real time. Using the tree structure,

vectors and points can be transformed between any two coordinate frames.

• robot state publisher : Takes the joint states data from the controllers defined

in the section above and publishes the positions of the joints to tf. It uses

the URDF of the robot to get the exact kinematic model of the robot to

publish precise information. view_frames Result

base_link

chassis

Broadcaster: /robot_state_publisher
Average rate: 10000.000 Hz

Most recent transform: 0.000 (47.236 sec old)
Buffer length: 0.000 sec

imu_link

Broadcaster: /robot_state_publisher
Average rate: 10000.000 Hz

Most recent transform: 0.000 (47.236 sec old)
Buffer length: 0.000 sec

left_steering_link

Broadcaster: /robot_state_publisher
Average rate: 10000.000 Hz

Most recent transform: 0.000 (47.236 sec old)
Buffer length: 0.000 sec

left_rear_axle_carrier

Broadcaster: /robot_state_publisher
Average rate: 10000.000 Hz

Most recent transform: 0.000 (47.236 sec old)
Buffer length: 0.000 sec

right_steering_link

Broadcaster: /robot_state_publisher
Average rate: 10000.000 Hz

Most recent transform: 0.000 (47.236 sec old)
Buffer length: 0.000 sec

right_rear_axle_carrier

Broadcaster: /robot_state_publisher
Average rate: 10000.000 Hz

Most recent transform: 0.000 (47.236 sec old)
Buffer length: 0.000 sec

world

Broadcaster: /gazebo_drift_car_gym_497_1521712772220
Average rate: 50.374 Hz

Most recent transform: 47.227 (0.009 sec old)
Buffer length: 4.943 sec

left_front_axle_carrier

Broadcaster: /robot_state_publisher
Average rate: 50.203 Hz

Most recent transform: 47.197 (0.039 sec old)
Buffer length: 4.920 sec

left_rear_wheel

Broadcaster: /robot_state_publisher
Average rate: 50.203 Hz

Most recent transform: 47.197 (0.039 sec old)
Buffer length: 4.920 sec

right_front_axle_carrier

Broadcaster: /robot_state_publisher
Average rate: 50.203 Hz

Most recent transform: 47.197 (0.039 sec old)
Buffer length: 4.920 sec

right_rear_wheel

Broadcaster: /robot_state_publisher
Average rate: 50.203 Hz

Most recent transform: 47.197 (0.039 sec old)
Buffer length: 4.920 sec

left_front_wheel

Broadcaster: /robot_state_publisher
Average rate: 50.203 Hz

Most recent transform: 47.197 (0.039 sec old)
Buffer length: 4.920 sec

right_front_wheel

Broadcaster: /robot_state_publisher
Average rate: 50.203 Hz

Most recent transform: 47.197 (0.039 sec old)
Buffer length: 4.920 sec

Recorded at time: 47.236

Figure 9: The tf tree structure maintains the relationships between any
two links of the RC car. Using this tree, once we have the velocity of
the car in the world frame, we can easily transform that vector into the
car reference frame.

Figure 9 shows the tf tree structure. There are two things to note here. The

transforms between the world frame and the base link frame are published man-

ually after the relevant model state is collected from Gazebo. The remaining

transforms between the base link and the other links defined above are handled by

Page 22 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

the robot state publisher. Thus, using this tree, we can get the velocity of the car

in the base link coordinate frame world frame using the world frame velocities.

Page 23 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

2.4 System Architecture

Combining the various concepts introduced above, we can get the entire system

architecture needed to replicate this project. The ROS network that was used

to connect the various components is shown in Figures 10 and 11. Blue rect-

angles represent processes running as ROS nodes, while the thicker solid arrows

represent the ROS queues (the text beside each arrow denotes the queue name).

Additionally, dashed arrows represent library function calls, while the red dotted

lines represent wireless data transmission.

Figure 10: ROS network structure for the RC car which shows the RL
agent interacting with the Gym environment using the abstract ROS
queues for state and action. It also shows how the Gym environment
acquires the state of the RC car using the EKF localization node. Fi-
nally, the diagram also shows how the actions from the RL agent are
forwarded to the Arduino for teleoperation.

Figure 10 denotes the ROS network structure for the RC car. It shows the RL

agent interacting with the Gym environment using the abstract ROS queues for

state and action. It also shows how the Gym environment acquires the state of the

RC car using the EKF localization node. Finally, we can also see how the actions

Page 24 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

from the RL agent are forwarded to the Arduino for teleoperation.

Figure 11: ROS network structure for the Simulated RC car. We can
see how the Gym environment acquires the state of the RC car using
the Gazebo model state publisher. Additionally, the diagram illustrates
how the actions from the RL agent are forwarded to the PID controllers,
which communicate with Gazebo to perform the desired actions on the
car.

Figure 11 denotes the ROS network structure for the simulated RC car on

Gazebo. The abstract ROS queues for state and action are the same, hence proving

that the RL agent does not change behavior for the actual and the simulated RC

car. We can also see how the Gym environment acquires the state of the RC car

using the Gazebo model state publisher. Lastly, we can observe how the actions

from the RL agent are forwarded to the PID controllers, which communicate with

Gazebo to perform the desired actions on the car.

Page 25 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

3 Conclusion

To summarize, we justified why autonomous drifting cars are important and

how drifting can be useful in emergencies to avoid accidents. As we have already

discussed, current self driving cars and stability control techniques try to avoid

slipping tires and in doing so, restrict the capability of the car. However, we

need to exploit the full capability of a car during emergencies. So clearly, having

an autonomous drifting car that learns an optimal drift control policy using our

methods can help reduce the number of accidents caused by hydroplaning and

make roads safer.

Motivated with this intention, the report firstly outlines the need for separation

of concerns in this project, and how that was facilitated by OpenAI Gym. Next, it

introduces ROS, and how it was leveraged as the backbone of the communication

stack. We also discussed how ROS was used to acquire IMU data from an Android

device, fuse that data to get a velocity estimate, and capture demonstration data

from the RC car (physical and simulated). Next, we examined the need for a

simulated environment in this project, and how Gazebo was used for the same.

We gave a detailed description of how the robot model was created using URDFs,

and how we added actuators on the car in the form of PID controllers. Finally,

an overview of the entire system is presented to combine the information of the

various components introduced earlier in the report.

Although the initial aim of the project was to implement autonomous sustained

circular drift in a physical RC car, we did not manage to achieve it completely, ow-

ing mostly to hardware challenges associated with indoor localization as discussed

in Section 3.2.1 of Hardware Report report and cost constraints in acquiring a

4WD RC car. Nevertheless, much effort was put into closely modelling the physi-

cal properties of an RC car in the simulator as discussed in this report. Thus, given

our success in finding a robust and stable sustained circular drift controller with

the simulator, we firmly believe the results can be easily replicated on a physical

RC car once the hardware is acquired.

Page 26 of 27

Autonomous Drifting RC Car using Reinforcement Learning Final Report

References

[1] F. Zhang, J. Gonzales, K. Li, and F. Borrelli, “Autonomous drift cornering

with mixed open-loop and closed-loop control,” in Proceedings IFAC World

Congress, 2017.

[2] S. Saha, P. Schramm, A. Nolan, and J. Hess, “Adverse weather conditions

and fatal motor vehicle crashes in the united states, 1994-2012,” Environ-

mental Health, vol. 15, 2016.

[3] A. T. van Zanten, R. Erhardt, G. Landesfeind, and K. Pfaff, “Vehicle sta-

bilization by the vehicle dynamics control system esp,” IFAC Mechatronic

Systems, Darmstadt, Germany, pp. 95–102, 2000.

[4] J. Ackermann, “Robust control prevents car skidding,” IEEE Control Sys-

tems Magazine, vol. 17, pp. 23–31, 1997.

[5] K. Yoshimoto, H. Tanaka, and S. Kawakami, “Proposal of driver assistance

system for recovering vehicle stability from unstable statesby automatic

steering,” in Proceedings of the IEEE InternationalVehicle Electronics Con-

ference, 1999.

[6] A. Hac and M. Bodie, “Improvements in vehicle handling through integrated

control of chassis systems,” International Journal of Vehicle Design, vol. 29,

no. 1, 2002.

[7] J. Wei, Y. Zhuoping, and Z. Lijun, “Integrated chassis control system for

improving vehicle stability,” in Proceedings of the IEEE International Con-

ference on Vehicular Electronics and Safety,, 2006.

[8] A. Trachtler, “Integrated vehicle dynamics control using active brake steering

and suspension systems,” International Journal of Vehicle Design, vol. 36,

no. 1, pp. 1–12, 2004.

[9] P. Frère, Sports Car and Competition Driving. Bentley, 1969.

[10] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998.

Page 27 of 27

	Introduction
	Background and Motivation
	Objective
	Scope
	Deliverables
	Contributions
	Outline of Reports

	Methodology
	OpenAI Gym
	Robot Operating System
	Inertial Measurement Unit (IMU) data fusion
	ROS on Android
	Demonstration

	Gazebo Simulator
	Modelling the RC car
	Proportional–integral–derivative (PID) Controllers
	Body Frame Velocities

	System Architecture

	Conclusion
	References

