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Abstract 

 

Artificial Intelligence has always had a long history with games. This project seeks to improve 

our understanding of popular card games played in Casinos using Reinforcement Learning and 

Deep Learning. The project aims to achieve so, to expand our knowledge of the strategies that 

are used in Blackjack and Texas Hold’em Poker. Ultimately, helping us understand how we can 

maximize our profit strategies, why the house always comes out on top and how machines and 

algorithms can perform complex strategic decisions that surpass human capabilities. The first 

game the project investigates is Blackjack. The aim is to study and explore various strategies 

learned by various reinforcement learning algorithms namely, Temporal Difference Learning, 

Monte Carlo methods, Deep Q Network, and its variants, to improve our understanding of the 

optimal strategies involved in order to maximize our overall earnings. The next game the paper 

will tackle, Texas Hold’em Poker, would take our understanding of the algorithms implemented 

previously further, to build a smart Poker AI, and perform an analysis to understand how to 

learns against different kinds of Poker players to improve our understanding of machines that can 

perform complex strategic decisions. 
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1. Introduction 

Reinforcement Learning is a form of Machine Learning and a branch of Artificial Intelligence-

inspired by behavioral psychology. It originated from a science experiment studying how 

animals learn tasks by receiving rewards. In computer science, reinforcement learning is an 

approach to understand and automate goal-directed 

learning and decision making, therefore it is often 

referred to as the science of making optimal 

decisions.  Formally, in RL, a software agent seeks to 

learn an optimal policy π* by interacting with the 

environment. At each time step t, the agent receives a 

representation St of the environment’ states, choosing 

an action At, to be executed in the environment, 

yielding the representation of the successor state St 

and a reward signal Rt+1. The optimal policy aims to 

maximize the cumulative reward of all-time steps Gt.  

Gt = Rt+1 + γ Rt+2 + γ2 Rt+3 + … = ∑ γk-1 Rt+k  

where the discount factor 0 ≤ γ < 1 is modeled to bound the total reward by exponentially 

decaying it. To further understand the agent-environment interactions, they are modeled as MDP 

Markov Decision Process which is explained in Section 3.1. Almost all RL problems can be 

formalized as MDPs. Various RL algorithms are used to solve such MDPs. 

A popular application of RL algorithms is to play games. RL and games share a long beneficial 

saga. The game of Backgammon was the first success, where the RL algorithm surpassed the top 

human players. Since then, RL has been applied to many other games. Not all games have been 

cracked or solved but the subset is increasing as multiple variations of state of the art RL 

algorithms are being developed and tested. 

There are two major reasons why such a history has formed. Firstly, it is relatively cheaper to 

train simulations as compared to the physical world. For example, teaching a robot to walk 

would face constant expensive maintenance costs while training. Thus, the simulations server as 

Figure 1: An illustration of a 

Reinforcement Learning 

Framework 
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a suitable platform for benchmarking and comparing various RL algorithms. Second, studying 

games have often been used to learn about human intelligence and the challenges faced by us. 

They have proven to a challenging task for RL algorithms as well as the games become more 

complex similar to us humans.  

 

1.1 Aim and Structure 

The goal of this project is to improve our understanding popular card games played in Casinos, a 

previously solved game, Blackjack and a complex game with present AIs at par human level, 

Texas Hold’em Poker.  

For Blackjack, the project involves comparing and investigating the various state of the art 

reinforcement learning algorithms to see how they hold up against the proposed strategy by 

Edward Thorp. As a result, the paper explores, Monte Carlo simulation, on/off-policy learning, 

Deep Q Network, and its variants to simulate the game of Blackjack. The results of this paper 

could provide a solid basis to show the progress made by reinforcement learning algorithms as 

well as providing a better understanding of the previously explored methods and their pertinence. 

For Texas Hold’em Poker, the project, learns from the results of Blackjack as well as other 

sources, to build a custom DQN based AI agent for the game and perform an analysis to 

understand how to learns against different kinds of Poker players, namely maniacs, rocks, calling 

stations and killers. The results of this paper could help improve our understanding of how 

machines and algorithms can perform complex strategic decisions that surpass human 

capabilities. 

Section 2 of the report introduces the concept of MDPs and further introduces many RL 

techniques used to solve them such as Monte Carlo, on/offline policies and Deep Q Network and 

its variants which would be implemented in this project. Section 3 introduces both the game and 

their rules as well as the benchmarks/analysis reference points used for this report. Section 4 

compares and evaluates the results of the various RL algorithms developed for Blackjack and 

gives a detailed description of the architecture used for Poker and its analysis. Section 5 details 

the phases of the project, along with the progress of the project, and finally, Section 6 concludes 

the report by a brief discussion of the casino card games and the project. 
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Figure 2: Student MRP from David Silver class 

2. Background 

2.1 MDP 

The Markov property states that “the future is independent of the past given the present”. 

Meaning that the state encapsulates all relevant information from the history and once a state is 

known, the history can be disregarded.  Mathematically, the property states that a state St is 

Markov if and only if P [St+1 | St ] = P [St+1 | S1, ..., St ]. A Markov chain is a sequence of possible 

states satisfying the Markov property; further, Markov Decision Processes are extensions of 

Markov chains which involve multiple such decisions or actions. Figure 4 shows an example of 

such an MDP for a course, wherein a student could be in different states (class 1,2,3, Facebook, 

sleep, pub or pass) and the terminal state being to sleep. Each student can perform various 

actions to go to a different state of their choice (with a certain probability) and to achieve certain 

reward points. An episode (a series of events for a student) would end when they reach the sleep 

state with the total points, they would have with them at that moment. The map of all the states, 

actions, transition probabilities and rewards points can be referred to as an MDP. 

 

 



11 

Figure 3: Monte Carlo iteration cycle  

Formally, an MDP can be defined as a tuple ⟨ S, A, P, Ry ⟩ where 

1.  S is a finite set of states 

2.  A is a finite set of action 

3.  P is a state transition probability matrix,  Pa,s  = P [St+1 = s0 | St = s, At = a] 

4.  R is a reward function,  Ra,s = E [Rt+1 | St = s, At = a]  

5. γ is a discount factor γ ∈ [0, 1] 

To solve MDPs, there many RL fundamental techniques such as value and policy-based iteration 

algorithms. These algorithms do not always assume that the agent knows the MDP model 

beforehand and rely on experience to determine so.   

Before we discuss some of the techniques that will be implemented in this report, we need 

understand the concept of Q-value of a state-action pair (s,a), denoted by Q*(s,a). It is the sum of 

discounted future rewards the agent can expect on average after reaching state s and choosing 

action a, before seeing the outcome of this action and It can be formulated as follows,  

Q*(s,a) = max 𝔼 [rt + γ rt+1 + γ2 rt+2 + γ3 rt+3 + .... ] 

 

2.2 Monte Carlo 

Monte Carlo methods use the concept of averaging sample returns. The basic principle behind 

this algorithm is using randomness to solve problems that might be deterministic in nature. In 

RL, MC can be used to approximate policies to solve MDPs.  
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As shown in figure 3, MC is a two-step cycle, the first step being the MC policy evaluation, 

which updates the approximate Q-value function to approach the true function asymptotically 

using random sampling of multiple experiences of the simulation. The second step is the MC 

policy improvement, where the algorithm, starting from an arbitrary policy improves to converge 

to an optimal policy by making the policy greedy with respect to the current Q-value function. 

To say mathematically, π(s) = arg max Q(s,a). 

The following is known to converge by the simple theorem stating each πk+1 is uniformly better 

than πk, unless it is equal to πk, which implies both are optimal policies. Thus, ensuring that MC 

will converge to an optimal policy and an optimal Q-value function by sampling.  

 

2.3 Temporal Difference Learning 

Similar to MC methods, TD methods also learn directly from raw experiences without a model 

or any previous knowledge of the environment’s dynamics. There are two approaches to learn a 

policy: on and off-policy learning. To illustrate the difference between the two, let us discuss the 

biggest and the most basic problem faced by RL algorithms: exploitation vs exploration problem. 

2.3.1 Exploitation vs Exploration 

The problem faced by RL algorithms is to update the Q-value function to reach its reach value in 

as fewer updates as possible. The question of exploitation and exploration rises to achieve the 

above; Should the algorithm spend more time exploring, unknown regions of the MDP or should 

it focus on updating the Q-values faster with the information it already holds. 

To solve the exploration-exploitation dilemma, most algorithms adopt an epsilon-greedy 

methodology. In particular, the agent picks actions uniformly at random with probability ε and 

greedily with probability 1 - ε. To encourage exploration during the start of training and 

exploitation near the end of training, epsilon is set to 1 and linearly annealed to 0.1 over the 

training. 
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2.3.2 Q-Learning: Off-policy  

In Offline Learning Q-value function directly approximates to optimal by acting randomly and 

independent of the policy being followed as long as it focuses on exploring the environment 

thoroughly. The Q-value function is updated according to, 

Q(st, at) ← Q(st, at) + α [ rt+1 + γ  max Q(st+1, at)) ] 

An off-policy learning algorithm is proven to learn the optimal policy even if it is acting 

randomly although it might take more time to do so. 

2.3.3 SARSA: On-policy 

State-Action-Reward-State-Action involves learning online, implying the agent learns the value 

of the policy the agent is actually carrying out, i.e. also during the exploring stage. The online 

policy updates the Q-value function after each step using the following,  

Q(st, at) ← Q(st, at) + α [ rt+1 + γ Q(st+1, at+1) − Q(st, at) ] 

SARSA will find a policy that is optimal, by taking into account the exploration step that is 

inherited in the policy.   

 

2.4 Deep Q-Networks 

With the introduction of Deep Learning, neural networks help us approximate the Q-value 

function, leading to the introduction of DQN algorithm proposed by Google DeepMind as 

modeled in figure 5 for an Atari game. Approximating Q-value function help learn different 

state-action pairs together, improving the speed at which Q-value table is learned. As a result, the 

replacement of the Q-value table by a Neural Network. This nonlinear function approximator 

aims to minimize the loss function, 

Li(θi) = E (s,a,r,s0)∼U(D)  [( r + γ max Q(s′, a′ ; θ′i ) − Q(s, a ; θi ))2 ] 
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However, the introduction report recognized that by simply adding a Deep neural net based 

function approximator lead to its instability in converging to the optimum solution. They then 

went ahead to describe 3 techniques to overcome this problem.  

2.4.1 Experience Replay 

Experience Replay was first proposed by long-ji in 1993 which mentioned that DNN was often 

overfitting and therefore unable to produce various experiences. The paper then suggested the 

concept of storing past experiences which included state transitions, actions, and rewards i.e. the 

building blocks of Q Learning to overcome this problem. This helped reduce the correlation 

between experiences while updating the DNN and involved the reuse of older transitions to avoid 

catastrophic forgetting, a problem commonly faced by neural nets. Finally, Experience Replay 

also involved updating the DNN in mini-batches which helped increase the learning speed. 

 

 

Figure 4: DQN network with a Convolution Neural Network illustrating Q function 

approximation 
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2.4.2 Target Network 

The algorithm updates as Q(s,a) →  r + γ maxaQ(s′,a) on each step. We can observe that the 

target depends on the last update and changes after every update, like a dog chasing its tail that 

every time the dogs moves so does the position of the target i.e. the tail. The dog eventually 

starts spinning in circles unable to catch its tail, indicating that it is never able to reach the target. 

Similarly, DNNs with updating targets often fail to converge, leading to oscillations around the 

optimal solution. To overcome this problem, the DeepMind’s paper suggested the use of separate 

target networks. A target network is a previous network that is fixed (in time) and is updated 

after certain updates (generally thousand steps). This gives the DNN enough time to converge to 

the saved target network. The new update state becomes Q(s,a) →  r + γ maxaQ̂(s′,a) where 

Q̂(s′,a) represents the target network. 

2.4.3 Reward Clipping 

Different Environments have different reward scales. for example, in a game of pong, upon 

winning the round the player is awarded 1 point, whereas in a paceman, the points are the sum of 

pellets collected before being caught by a ghost or completing the level.  This variation in the 

scoring could make the training unstable. The DeepMind’s paper suggested a very simple re-

scaling solution i.e. to clip rewards to +1 for positive rewards and -1 for negative rewards which 

improved the stability of the algorithm. 

 

2.5 Variations of DQN 

2.5.1 Prioritized Action Replay 

One of the improvements mentioned in [9] was to understand the way experience is used. [10] 

introduced PER, a strategy that adjusts its samplings distribution, by treating all samples 

differently. It does so, as some samples are not the same, we can learn or extract more 

information from some as compared to others. Priority is given to those samples which are of 

more use, being the ones that do not fit well into the current Q function estimations. In simple 

terms, it can be explained by saying when we encounter a new scenario, we think about it again 
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Figure 5: CNN architecture used in DQN 

(first) and Dueling DQN (second). The 

convolutional layers split into two part by 

separate fully connected layers. The Q 

function is formed from the value function and 

advantage function at the end of the network. 

and again and adjust the model accordingly until it fits. Results from the [10] showed that DQN 

with PER outperformed DQN in 41 out of 49 Atari 2600 games. 

2.5.2 Double DQN 

One limitation of the DQN was the overestimation of Q values during training by DQN due to 

the max used to set targets. This resulted in overly optimistic policies. [8] introduced Double 

Learning, where two Q functions are learned independently. One is used to determine 

maximizing action and other for estimating its value. The paper showed that this method was 

able to eliminate the maximization bias. The new target formula for Double DQN is  

Q(s,a) →  r + γ Q̅(s′, maxaQ(s′, a)) 

On testing Double Learning on 49 Atari games, it produced two to four times the average scores 

of the standard DQN. 

2.5.3 Dueling DQN  

Another limitation of DQN is that the Q-values are learned separately for actions for the same 

state. To tackle this issue, a generalization of state-action pairs with the same state can be done. 

A simple approach would be the update the Q-value as following (where V is the value function 

and A is the Advantage function) 

Q(s,a; θ,α,β) →  V(s; θ,β)  + A(s,a; θ,α) 

However, [12] labeled the use of such a method inefficient, since the value and advantage 

functions generated are not unique to the problem.  
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To solve the problem, the authors of [12] suggested an updated definition of the Q value 

function. 

Q(s,a; θ,α,β) →  V(s; θ,β)  + { A(s,a; θ,α) - maxa A(s,a′; θ,α) } 

The updated Q-value function lead to the convolutional layers split the network into two parts as 

shown in figure 5, highlighting the difference between the original CNN model and the modified. 

The Q function is formed from the value function and advantage function at the end of the 

network. According to [2] the dueling CNN DQN model significantly outperformed DDQN. 

2.5.4 Other Variants 

The development of DQN in 2012, followed the release of many variations of the algorithm such 

as Double DQN and Prioritized Experience Replay as mentioned. Others include Multi-step 

DQN, Noisy networks, Distributional DQN, and Rainbow DQN. Multi-step DQN use multistep 

targets as compared to single targets used by previously mentioned DQNs. Noisy networks aim 

to improve the epsilon-greedy strategy used for exploration by adding noise to the CNN model. 

Distributional DQN treats the Q-values as a distribution rather than an individual value. Finally, 

Rainbow DQN seeks to combine the mentioned complimentary algorithms. Noisy networks and 

Multistep DQN of these algorithms have been proven to not improve the performance, however, 

they considerably improve the stability of learning to help solve more complicated task sand. 

Whereas Distributional DQN considers the sampling distribution, enforcing the overfitting 

transitions to be explored. This method was in fact proved to improve performance and increase 

the learning rate. Finally, Rainbow DQN combining all these features resulted in significantly 

higher performance, learning and stability when compared to any individual variants. 

 

2.6 Other Deep Reinforcement Learning Algorithms 

Apart from DQN and its variants, other deep reinforcement algorithms have also been developed 

such as deep deterministic policy gradients and proximal policy optimization algorithms which 

output action probabilities instead of Q-value table. However, for the purpose of this report, we 

would only be exploring the earlier mentioned algorithms as they cover a broader range of 

variation of types of RL Algorithms  



18 

3. Methodology  

3.1 Blackjack 

The game of Blackjack is a well-known 

casino card game. The objective of the game 

is to obtain cards whose total values are as 

high as possible without exceeding 21 and 

beat the dealer by either achieving a sum 

greater than the dealers or letting the deal 

draw additional cards until their hand exceeds 

21. The standard deck of 52 cards is used, 

where all face cards count as 10, and an ace 

can count either as 1 or as 11.  

For this report, we consider the following version of the game, where the game starts off by 

dealing two cards to both the player and the dealer. One of the dealer’s cards is shown to the 

player i.e. is face up and the other is face down or unknown to the player. If the player has an ace 

and a face card, the player has a natural and will win the round, unless the dealer also has a 

natural, then it would be a tie. Generally, this is not the case, the player can then hit or pass. Hit 

implies that additional cards are requested, until a stick or bust (stop or exceed 21). A bust 

implies an automatic loss. If the player either passes or sticks, it becomes the dealers turn. The 

dealer can also hit or stick, however, is restricted to fixed strategy; stick on a sum of 17 or 

greater, else hit. Similar to the player going bust, if the dealer gets a bust, the player wins. If none 

of the cases happen, the outcome is determined by whose final value is closer to 21. 

Luckily, Blackjack can easily be formulated as a finite MDP. where the rewards allocated are +1, 

−1 or 0 to the player/agent for winning, losing or drawing, respectively. Each hand is considered 

as a round and the total number of rounds is the total training time. All players start with a 

reward of 0 at the beginning of a game. 

 

3.2 Edward Thorp’s Strategy and a Random Strategy 

To benchmark, the Blackjack algorithms Edwards Thorp's strategy was used as a best case or 

target to beat strategy and a random strategy was considered to define the worst case. 

Figure 6: Game of Blackjack 
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(a) using random strategy (b) using Edward Thorp’s strategy 

In 1962 Edwards Thorp wrote a book “Beat the Dealer” which explored the philosophy and 

mathematics behind Blackjack, defining a set of instructions that gives any players the best 

possible odds of long-term success. The book further introduces the concept of card counting, a 

popular technique that is still used by gamblers to maximize their profits.  

The algorithm running Edwards Thorp’s Strategy is used as the pinnacle reference point for the 

RL algorithms to compete and achieve. Figure 7 (b) shows the implemented algorithm following 

this strategy achieves an approximate total reward of -623.4 when the number of hands and 

rounds are 10000 and 1000 respectively. 

A random strategy is used to get an idea of the range of total reward that can be achieved by a 

player who is unaware of the rules yet knows their possible actions. The implemented algorithm 

randomly hits or passes and achieves an approximate total reward of -3960 when the number of 

hands and rounds are 10000 and 1000 respectively as shown in figure 7 (a). 

 

  

 

 

 

 

 

Figure 7: Average Payoff after 10000 hands per round to estimate range 
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3. 3 Texas Hold’em Poker  

Texas Hold’em Poker is an equally 

popular casino card game with many 

variations. This report would be dealing 

with is No Limit Texas Hold‘em 

variation of the game. The objective of 

the game is to maximize your stack in 

hand. The winner of each hand is the one 

who has the best hand at the showdown 

(after 5th round) or is the last person 

remaining on the table. The winner then receives all the pot value on the table. However, the 

second implies the best hand always doesn’t win; signifying the importance of bluffing in the 

game. At the beginning of each hand, all players are given two cards. Two players need to bid a 

fixed initial amount to get the round started. Once the bidding is over, 3 cards are displayed on 

the table followed by another round of betting occurs. This is repeated until there are 5 cards on 

the table. After the final round of bidding, the showdown takes place, where all players reveal 

their hand and compare who has the highest combination. Figure 7 lists the rank of hands from 

highest to lowest. At each round, the player can check (when is there is no initial bet), call (when 

they want to bid the same amount as the previous player, to remain in the game), raise (to 

increase the stake of the game) or fold (leaving the game with the loss of the amount already 

invested in the pot).  Unlike Blackjack, Poker cannot be constructed into finite MDP easily, as 

the reward from the pot is a discrete variable and hence harder to estimate the reward function as 

well as the probability function at each stage. Another major reason is that the information 

available is imperfect, i.e. a player does not have all the information in-hand (they do not the 

cards of the other players). For this report, we refer to the stack in the player's hand as its final 

earnings. Each hand consists of 5 rounds and the total number of hands is the total training time. 

All players start with a reward of 10,000 units amount at the beginning of a game. 

 

Figure 8: Game of Poker 
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Figure 9: The rank of hands from highest to lowest. Retrieved from [13]. 
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3. 4 Poker Strategies 

There are different kinds of poker players, each playing abiding by their own strategies.  

3.4.1 Tight vs Loose 

The first thing that one can observe a player’s strategy is how frequently he plays or folds. If 

someone tends to play only good hands and folds often, they are a tight player. On the other 

hand, if a person takes part in a lot of hands, they are considered to be a loose player. 

3.4.2 Passive vs Aggressive 

The next observation one can make is how often does the player bets. A player who calls or 

check more often is referred to as a passive player and a player who raises or bets more is an 

aggressive player.  

3.4.3 Killers-Maniacs-Rocks-Calling Stations 

With the help of the above classifications, we can categorize most play styles as either killers, 

maniacs, rocks or calling stations.  

Killers are tight and aggressive. They strategize to play and bet big but do not particularly play 

many hands. They tend to play and raise with a strong hand to win big with confidence.  

Maniacs are loose and aggressive. As the name suggests, these players always aim to bet high as 

well go infrequently. These players are well, just maniacs and they often start placing bets from 

the starting hands, in order to steal blinds. 

Rocks are tight and passive, being the opposite of Maniacs. These players play less and prefer to 

check or call or fold. They tend to wait for a good hand but are often timid and cautious about 

raising the pot. 

Calling stations are loose and passive. These kinds of players play a lot of hands but rarely raise. 

They tend to hope their hand will improve and then they can win. 
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4. Results and Discussion  

4.1 Blackjack  

Figure 7 sets a target to beat and defines a worst-case boundary set by Edward Thorp’s strategy 

and the random strategy respectively. The offline and online policy-based TD Learning 

algorithms, Q-Learning and SARSA, MC, DQN and its variants were implemented. Figure 10(a) 

and (b) indicates that when the number of hands was set to 10000 and the number of rounds to 

1000, the average payoff obtained was -710.5 by Q-Learning and -2133.7 by SARSA; indicating 

that the Q-Learning algorithm outperformed SARSA by significant margin, in terms of achieving 

of learning the correct strategy which could potentially because the game of Blackjack only 

contains two actions, hit and pass at each step and hence, updating the policy after each action 

would not be improving learning. 

Similarly, MC, as seen from figure 10(c), achieved an average payoff -1866.3, with 10000 hands 

and 1000 rounds, performing slightly better than SARSA, but not as well as Q-Learning. This 

shows that the mechanism of random sampling might not be the best strategy to tackle this 

problem and further research on Q-Learning and its variants would be more useful.  

Finally, from figure 10(d) DQN again in 10000 hands and 1000 round of training was able to get 

an average payoff -1864.475, performing worse than Q-Learning. This was a surprising result as 

it was expected to perform like Q-Learning. This was potentially due to the simplicity of the 

game, as the MDP is formulated easily and can be stored in a 2D matrix, neural nets which 

perform estimation to store these values, are not as accurate as the hard-values stored in the 

matrix. Similarly, upon testing Double DQN and Dueling DQN (figure 10(e & f)), it performed 

as expected i.e. was not an improvement over the DQN model, also achieving an average payoff 

of 2180, 2137, illustrating the complex we made the model, there seemed to be a slight decrease 

an accuracy in the results.  
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(a) TD: Q-Learning (b) TD: SARSA 

(c) Monte Carlo (d) Deep Q Network 

(e) Double Deep Q Network (f) Dueling Deep Q Network 

 

Figure 10: Average Payoff after 10000 hands per round using RL algorithms 
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4.2 Texas Hold’em Poker  

As compared to Blackjack, Poker is more complex as well as an imperfect game meaning that 

the player does not have all the information available to them. Therefore, the algorithms that 

performed the best for blackjack might not be applicable for poker. However, from our 

understanding of these algorithms and with the help of neural networks for approximation, the 

project builds a customized Deep Q-network (section 2.4). 

4.2.1 Architecture 

The Poker AI implements a custom Deep Q-network, bring together many aspects of already 

tried and tested improvements and variations of DQN (as mentioned in section 2.5).  

The neural net is a standard feedforwarding network with three full connected hidden layers and 

32,16,4 rectified linear units respectively for the output, utilizing the relu activation function. 

The duel embedding forces the architecture to split into two parts by separate fully connected 

layers, forcing a zero-sum game between the two networks (section 2.5.3). The AI also 

implements various improvements (section 2.4.x) and strategies such as prioritized action replay 

(section 2.5.1), double DQN (section 2.5.2) and Multi-step mechanism (mentioned in section 

2.5.4). Manual hyperparameter tuning was performed to optimize the algorithm.  

4.2.2 Analysis 

The algorithm is trained over 2000 rounds (or hands), with an initial stack of 10,000 units given 

to each player. For the analysis, the algorithm plays against 3 other players at a time where all 

players are either of the mentioned four kinds of players maniacs, killers, rocks and calling-

stations (section 3.4.2). The blue line in Figures 11 to 14 represent the AI. 

Figure 11 shows the AI against Killers who are tight and aggressive. They are the type of players 

that only go in with their good hands and are always betting big, which explain the multiple 

vertical slopes in the graph. As they are folding often, it harder to constantly win against them. 

Hence why once the player represented by orange line was able to win big at the beginning, it 

was hard for the AI to win against it. After around 1000 hands, the AI against the orange player 

seems to be oscillating, as the AI is not letting the player win nor is player is constantly folding 

upon receiving weak hands. 
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Like figure 11, figure 12 shows the AI against three maniacs. Since they are aggressive players 

as well, we see the vertical slopes present in the graph. However, over time when the AI starts to 

learn their methodology and it is successfully able to profit off them as unlike rocks, maniacs are 

loose players and do not fold so often.  

In both cases, since the players are aggressive, the AI is able to win big and get a stack of around 

16k, up by more than 50% of the starting amount. 

Figure 13 displays how the AI learns against Calling Stations. Since these players are more 

passive, the slopes are more gradual. After around 1000 hands, the AI learns about this detail and 

tries to use it to its advantage by trying to bid more, hence the rise of vertical slopes towards the 

end.  

Finally, Figure 14 shows the AI playing against Rocks, who like calling stations are also passive 

and thus do not bet huge, in-turning producing gradual slopes. However, since they are tight 

players, the AI is not able to take advantage of them even after multi rounds of training to extract 

profits.  

In the last two cases, the tightness of the players made a huge difference as although the AI was 

eventually able to make huge profits from calling stations, around 18k after 1000 hands, would 

eventually be able to cash out all the players from the game, the AI was unable to extract any 

kind profit off from the tight rocks, only being able to achieve around 13k, but similar to its 

behavior to calling stations, the AI was slowly and steadily gaining profit without suffering from 

multiple losses.  

Overall, the AI was able to achieve eventually able to gain profit and beat all four kinds of 

players behaving differently in each situation. However, in all cases, the AI was learning to be 

more and more aggressive, regardless of the opponent being aggressive or passive. The 

opponent’s tightness was its restriction factor, affecting the rate at it was able to gain profits, 

wherein against tight players, it was slow but eventually making money. However, against loose 

players, its profitability was increasing a linear rate, and would eventually be able to cash out all 

other players over time. From all the observations made, we can conclude that the custom DQN 

AI ultimately started to behave like Maniac i.e. became aggressive and loose.  
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     Figure 11: AI vs Killers 

 

     Figure 12: AI vs Maniacs 
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       Figure 13: AI vs Calling Stations 

      

Figure 14: AI vs Rocks 
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4.3 Limitations and Difficulties – hard to find benchmarks 

Several difficulties were encountered to optimize and tune the RL algorithms since there is no 

quick or formalized mechanism of optimizing the hyperparameters for the models. This led to 

slower progress of work since the manual optimization of hyperparameters is expensive and 

time-consuming. Further, different results could be produced than the ones currently achieved 

through more aggressive tuning, which could potentially affect the observations. 

Another factor causing delay were the resource constraints. The RL algorithms were taking a 

long time for training, due to the lack of a powerful computer and proper use of the cores of the 

computer.  

Two problem specific to the Poker AI, firstly the difficulty in benchmarking the results. The 

analysis was provided to understand the algorithm and its working. However, due to lack of time, 

the report was unable to benchmark the AI against other AIs and human players. Second, 

graphical data could not be reproduced regarding when the AI was able to cash out different 

players due to the restriction of the environment, where the game would end if one player cashed 

out. 
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5. Future Work 

The project has successfully been completed. However, this does not mean there are no 

improvements that can be made. For starters, as these algorithms were written from scratch, they 

could be made more efficient and undergo further hyperparameter tuning. This is could produce 

slightly different results but will not change the conclusion.  

As mentioned as one of the difficulties (section 4.3), the Poker AI, lacked benchmarking. Hence, 

the report could investigate that by comparing and playing it against other AIs. Further, A GUI 

could also be built for the game and the AI, for humans to play with it for benchmarking against 

human players. 

For this report, all the previous stages of the project have been summarized in table 1. 
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Date Task 

September 2018 Preliminary Research 

● Study Reinforcement Learning, Game Theory, and Multi-agent 

Systems 

● Read Research papers and organize Ideas 

1st October 2018 Phase 1 Deliverables (Inception): Project Scheme, Detailed 

Project Plan 

October 2018 ● Implement Random strategy for Blackjack 

● Implement Edward Thorp’s strategy for Blackjack 

November 2018 ● Implement MC for Blackjack 

● Implement SARSA for Blackjack 

December 2018 ● Implement Q-network for Blackjack 

● Tune the implemented algorithms and establish results 

Mid-January 

2019 

Phase 2 Deliverables (Elaboration): Presentation and Interim Report 

January - 

February 2019 

● Implement DQN for Blackjack 

● Implement other variations of DQN for Blackjack 

● Implement DQN for Poker 

March - April 

2019 

● Implement additions features on the basic DQN model 

● Tune the implemented algorithms 

● Perform Analysis on the custom DQN 

● Establish Justifications for results 

Mid-April 2019 Phase 3 (Construction): Final Presentation and Final Report 

 

 

 

 

 

 

Table 1: Project Schedule 
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6. Conclusion 

This project sought out to improve our understanding of popular card games played in Casinos 

using Reinforcement Learning and Deep Learning. The first part of the project compared various 

reinforcement learning algorithms on the game of Blackjack and was benchmarked against 

Edward Thorp’s strategy from the book “Beat the Dealer “. RL algorithms namely, Q-Learning, 

SARSA, and Monte Carlo along with Deep RL algorithms namely DQN, Double DQN, and 

Dueling DQN were implemented. The results showcased that Q-Learning was able to achieve the 

highest payoff and was nearly at the level of Thorp’s strategy and concluded that for the simple 

game of blackjack which can be formalized as an MDP, state approximation with the help of 

neural nets only complicated the matter. The second part of the report involved the development 

of a custom DQN model on the game of Texas Hold’em Poker, which was then trained and 

analyzed against four different kinds of players, namely, killers, maniacs, rocks and calling 

stations. The results concluded that the after around 500 rounds of training, the AI took an 

aggressive approach regardless of the type of player it was facing, eventually behaving like a 

maniac (aggressive and loose) and was easily able to outplay those players. 
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