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Abstract 

 

Artificial Intelligence has always had a long history with games. This project seeks to compare 

and understand various reinforcement learning algorithms namely, Temporal Difference 

Learning, Monte Carlo methods, Deep Q Network and its variants on the game of Blackjack 

targeting to compete and potentially outperform Edward Thorp’s strategy from his book “Beat 

the Dealer “. This report deals with the implementation of the mentioned algorithms and 

compares them based on their average payoff. From the initial findings, we were able to learn Q-

Learning was outperforming the other algorithms and was able to achieve a payoff close to 

Thorp’s strategy. However, the DQN model requires tuning to produce better results which 

would the next step of this project. This would be followed by the implementation of Double 

DQN and Dueling DQN algorithms for further comparison. Despite the challenges faced, the 

project is well on schedule with the on-going fine-tuning of the DQN model. 
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1. Introduction 

Reinforcement Learning is a form of Machine Learning and a branch of Artificial Intelligence-

inspired by behavioral psychology. It originated from a science experiment studying how 

animals learn tasks by receiving rewards In computer science, reinforcement learning is an 

approach to understand and automate goal-directed learning 

and decision making, therefore it is often referred to as the 

science of making optimal decisions.  Formally, in RL, a 

software agent seeks to learn an optimal policy π* by 

interacting with the environment. At each time step t, the 

agent receives a representation St of the environment’ states, 

choosing an action At, to be executed in the environment, 

yielding the representation of the successor state St and a 

reward signal Rt+1. The optimal policy aims to maximize the 

cumulative reward of all time steps Gt.  

Gt = Rt+1 + γ Rt+2 + γ2 Rt+3 + … = ∑ γk-1 Rt+k  

where the discount factor 0 ≤ γ < 1 is modeled to bound the total reward by exponentially 

decaying it. To further understand the agent-environment interactions, they are modeled as MDP 

Markov Decision Process which is explained in Section 3.1. Almost all RL problems can be 

formalized as MDPs. Various RL algorithms are used to solve such MDPs. 

A popular application of RL algorithms is to play games. RL and games share a long beneficial 

saga. The game of Backgammon was the first success, where the RL algorithm surpassed the top 

human players. Since then, RL has been applied to many other games. Not all games have been 

cracked or solved but the subset is increasing as multiple variations of state of the art RL 

algorithms are being developed and tested. 

There are two major reasons why such a history has formed. Firstly, it is relatively cheaper to 

train simulations as compared to the physical world. For example, a teaching a robot to walk 

would face constant expensive maintenance costs while training. Thus, the simulations server as 

a suitable platform for benchmarking and comparing various RL algorithms. Second, studying 

Figure 1: An illustration of a 

Reinforcement Learning 

Framework 
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games have often been used to learn about human intelligence and the challenges faced by us. 

They have proven to a challenging task for RL algorithms as well as the games become more 

complex similar to us humans.  

 

1.1 Aim and Structure 

The goal of this project is to understand the game of Blackjack, a previously solved game and 

compare and investigate the various state of the art reinforcement learning algorithms to see how 

they hold up against the proposed strategy by Edward Thorp. As a result, the paper explores, 

Monte Carlo simulation, on/off-policy learning, Deep Q Network, and its variants to simulate the 

game of Blackjack. The results of this paper could provide a solid basis to show the progress 

made by reinforcement learning algorithms as well as providing a better understanding of the 

previously explored methods and their pertinence. 

Section 2 of the report introduces the concept of MDPs and further introduces many RL 

techniques used to solve them such as Monte Carlo, on/offline policies and Deep Q Network 

which would be implemented in this project. Section 3 introduces the game of Blackjack and its 

rules as well as the benchmark domain set by Edward Thorp’s strategy. Section 4 compares and 

evaluates the results of the various RL algorithms developed. Section 5 details the phases of the 

project, along with the progress of the project, and finally, Section 6 concludes the report by 

discussion the work to be done. 
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Figure 2: Student MRP from David Silver class 

2. Background 

2.1 MDP 

The Markov property states that “the future is independent of the past given the present”. 

Meaning that the state encapsulates all relevant information from the history and once a state is 

known, the history can be disregarded.  Mathematically, the property states that a state St is 

Markov if and only if P [St+1 | St ] = P [St+1 | S1, ..., St ]. A Markov chain is a sequence of possible 

states satisfying the Markov property; further, Markov Decision Processes are extensions of 

Markov chains which involve multiple such decisions or actions. Figure 4 shows an example of 

such an MDP for a course, wherein a student could be in different states (class 1,2,3, Facebook, 

sleep, pub or pass) and the terminal state being to sleep. Each student can perform various 

actions to go to a different state of their choice (with a certain probability) and to achieve certain 

reward points. An episode (a series of events for a student) would end when they reach the sleep 

state with the total points, they would have with them at that moment. The map of all the states, 

actions, transition probabilities and rewards points can be referred to as an MDP. 
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Figure 3: Monte Carlo iteration cycle  

Formally, an MDP can be defined as a tuple ⟨ S, A, P, Ry ⟩ where 

1.  S is a finite set of states 

2.  A is a finite set of action 

3.  P is a state transition probability matrix,  Pa,s  = P [St+1 = s0 | St = s, At = a] 

4.  R is a reward function,  Ra,s = E [Rt+1 | St = s, At = a]  

5. γ is a discount factor γ ∈ [0, 1] 

To solve MDPs, there many RL fundamental techniques such as value and policy-based iteration 

algorithms. These algorithms do not always assume that the agent knows the MDP model 

beforehand and rely on experience to determine so.   

Before we discuss some of the techniques that will be implemented in this report, we need 

understand the concept of Q-value of a state-action pair (s,a), denoted by Q*(s,a). It is the sum of 

discounted future rewards the agent can expect on average after reaching state s and choosing 

action a, before seeing the outcome of this action and It can be formulated as follows,  

Q*(s,a) = max 𝔼 [rt + γ rt+1 + γ2 rt+2 + γ3 rt+3 + .... ] 

 

2.2 Monte Carlo 

Monte Carlo methods use the concept of averaging sample returns. The basic principle behind 

this algorithm is using randomness to solve problems that might be deterministic in nature. In 

RL, MC can be used to approximate policies to solve MDPs.  
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As shown in figure 3, MC is a two-step cycle, the first step being the MC policy evaluation, 

which updates the approximate Q-value function to approach the true function asymptotically 

using random sampling of multiple experiences of the simulation. The second step is the MC 

policy improvement, where the algorithm, starting from an arbitrary policy improves to converge 

to an optimal policy by making the policy greedy with respect to the current Q-value function. 

To say mathematically, π(s) = arg max Q(s,a). 

The following is known to converge by the simple theorem stating each πk+1 is uniformly better 

than πk, unless it is equal to πk, which implies both are optimal policies. Thus, ensuring that MC 

will converge to an optimal policy and an optimal Q-value function by sampling.  

 

2.3 Temporal Difference Learning 

Similar to MC methods, TD methods also learn directly from raw experiences without a model 

or any previous knowledge of the environment’s dynamics. There are two approaches to learn a 

policy: on and off-policy learning. To illustrate the difference between the two, let us discuss the 

biggest and the most basic problem faced by RL algorithms: exploitation vs exploration problem. 

2.3.1 Exploitation vs Exploration 

The problem faced by RL algorithms is to update the Q-value function to reach its reach value in 

as fewer updates as possible. The question of exploitation and exploration rises to achieve the 

above; Should the algorithm spend more time exploring, unknown regions of the MDP or should 

it focus on updating the Q-values faster with the information it already holds. 

To solve the exploration-exploitation dilemma, most algorithms adopt an epsilon-greedy 

methodology. In particular, the agent picks actions uniformly at random with probability ε and 

greedily with probability 1 -  ε. To encourage exploration during the start of training and 

exploitation near the end of training, epsilon is set to 1 and linearly annealed to 0.1 over the 

training. 
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2.3.2 Q-Learning: Off-policy  

In Offline Learning Q-value function directly approximates to optimal by acting randomly and 

independent of the policy being followed as long as it focuses on exploring the environment 

thoroughly. The Q-value function is updated according to, 

Q(st, at) ← Q(st, at) + α [ rt+1 + γ  max Q(st+1, at)) ] 

An off-policy learning algorithm is proven to learn the optimal policy even if it is acting 

randomly although it might take more time to do so. 

2.3.3 SARSA: On-policy 

State-Action-Reward-State-Action involves learning online, implying the agent learns the value 

of the policy the agent is actually carrying out, i.e. also during the exploring stage. The online 

policy updates the Q-value function after each step using the following,  

Q(st, at) ← Q(st, at) + α [ rt+1 + γ Q(st+1, at+1) − Q(st, at) ] 

SARSA will find a policy that is optimal, by taking into account the exploration step that is 

inherited in the policy.   

 

2.4 Deep Q-Networks 

With the introduction of Deep Learning, neural networks help us approximate the Q-value 

function, leading to the introduction of DQN algorithm proposed by Google DeepMind as 

modeled in figure 5 for an Atari game. Approximating Q-value function help learn different 

state-action pairs together, improving the speed at which Q-value table is learned. As a result, the 

replacement of the Q-value table by a Neural Network. This nonlinear function approximator 

aims to minimize the loss function, 

Li(θi) = E (s,a,r,s0)∼U(D)  [( r + γ max Q(s′, a′ ; θ′i ) − Q(s, a ; θi ))2 ] 
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However, the introduction report recognized that by simply adding a DNN based function 

approximator lead to its instability in converging to the optimum solution. They then went ahead 

to describe 3 techniques to overcome this problem.  

2.4.1 Experience Replay 

Experience Replay was first proposed by long-ji in 1993 which mentioned that DNN was often 

overfitting and therefore unable to produce various experiences. The paper then suggested the 

concept of storing past experiences which included state transitions, actions, and rewards i.e. the 

building blocks of Q Learning to overcome this problem. This helped reduce the correlation 

between experiences while updating the DNN and involved the reuse of older transitions to avoid 

catastrophic forgetting, a problem commonly faced by neural nets. Finally, Experience Replay 

also involved updating the DNN in mini-batches which helped increase the learning speed. 

 

 

Figure 4: DQN network with a Convolution Neural Network illustrating Q function 

approximation 
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2.4.2 Target Network 

The algorithm updates as Q(s,a) →  r + γ maxaQ(s′,a) on each step. We can observe that the 

target depends on the last update and changes after every update, like a dog chasing its tail that 

every time the dogs moves so does the position of the target i.e. the tail. The dog eventually 

starts spinning in circles unable to catch its tail, indicating that it is never able to reach the target. 

Similarly, DNNs with updating targets often fail to converge, leading to oscillations around the 

optimal solution. To overcome this problem, the DeepMind’s paper suggested the use of separate 

target networks. A target network is a previous network that is fixed (in time) and is updated 

after certain updates (generally thousand steps). This gives the DNN enough time to converge to 

the saved target network. The new update state becomes Q(s,a) →  r + γ maxaQ̂(s′,a) where 

Q̂(s′,a) represents the target network. 

2.4.3 Reward Clipping 

Different Environments have different reward scales. for example, in a game of pong, upon 

winning the round the player is awarded 1 point, whereas in a paceman, the points are the sum of 

pellets collected before being caught by a ghost or completing the level.  This variation in the 

scoring could make the training unstable. The DeepMind’s paper suggested a very simple re-

scaling solution i.e. to clip rewards to +1 for positive rewards and -1 for negative rewards which 

improved the stability of the algorithm. 

 

2. 5 Other Variations of DQN 

The development of DQN in 2012, followed the release many variations of the algorithm such as 

Double DQN and Prioritized Experience Replay. Double DQN involved the use of two different 

DNNs. It has been proven to not improve the performance, however, it considerably improves 

the stability of learning to help solve more complicated tasks. Prioritized Experience Replay 

which is another popular variation played with the sampling distribution, enforcing the 

overfitting transitions to be explored again and again until the model shifts to fit it. This method 

was in fact proved to improve performance and increase the learning rate.  
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2.6 Other Deep Reinforcement Learning Algorithms 

Apart from DQN and its variants, other deep reinforcement algorithms have also been developed 

such as deep deterministic policy gradients and proximal policy optimization algorithms which 

output action probabilities instead of Q-value table. However, for the purpose of this report, we 

would only be exploring the earlier mentioned algorithms as they cover a broader range of 

variation of types of RL Algorithms. If time allows, such Deep RL algorithms may be covered 

for a deeper analysis. 

 

3. Methodology  

3.1 Blackjack 

The game of Blackjack is a well-known 

casino card game. The objective of the game 

is to obtain cards whose total values are as 

high as possible without exceeding 21 and 

beat the dealer by either achieving a sum 

greater than the dealers or letting the deal 

draw additional cards until their hand exceeds 

21. The standard deck of 52 cards is used, 

where all face cards count as 10, and an ace 

can count either as 1 or as 11.  

For this report, we consider the following version of the game, where the game starts off by 

dealing two cards to both the player and the dealer. One of the dealer’s cards is shown to the 

player i.e. is face up and the other is face down or unknown to the player. If the player has an ace 

and a face card, the player has a natural and will win the round, unless the dealer also has a 

natural, then it would be a tie. Generally, this is not the case, the player can then hit or pass. Hit 

implies that additional cards are requested, until a stick or bust (stop or exceed 21). A bust 

implies an automatic loss. If the player either passes or sticks, it becomes the dealers turn. The 

dealer can also hit or stick, however, is restricted to fixed strategy; stick on a sum of 17 or 

Figure 5: Game of Blackjack 
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(a) using random strategy (b) using Edward Thorp’s strategy 

greater, else hit. Similar to the player going bust, if the dealer gets a bust, the player wins. If none 

of the cases happen, the outcome is determined by whose final value is closer to 21. 

Luckily, Blackjack can easily be formulated as a finite MDP. where the rewards allocated are  

+1, −1 or 0 to the player/agent for winning, losing or drawing, respectively. Each hand is 

considered as a round and the total number of rounds is the total training time. All players start 

with a reward of 0 at the beginning of a game. 

 

3.2 Random Strategy 

A random strategy is used to get an idea of the range of total reward that can be achieved by a 

player who is unaware of the rules yet knows their possible actions. The implemented algorithm 

randomly hits or passes and achieves an approximate total reward of -3960 when the number of 

hands and rounds are 10000 and 1000 respectively as shown in figure 6 (a). 

 

  

3.3 Edward Thorp’s Strategy 

In 1962 Edwards Thorp wrote a book “Beat the Dealer” which explored the philosophy and 

mathematics behind Blackjack, defining a set of instructions that gives any players the best 

Figure 6: Average Payoff after 10000 hands per round to estimate range 
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possible odds of long-term success. The book further introduces the concept of card counting, a 

popular technique that is still used by gamblers to maximize their profits.  

The algorithm running Edwards Thorp’s Strategy is used as the pinnacle reference point for our 

RL algorithms to compete and achieve. Figure 6 (b) shows the implemented algorithm following 

this strategy achieves an approximate total reward of -623.4 when the number of hands and 

rounds are 10000 and 1000 respectively. 

 

4. Results and Discussion  

4.1 Initial Results 

Figure 6 sets a target to beat and defines a worst-case boundary set by Edward Thorp’s strategy 

and the random strategy respectively. The offline and online policy-based TD Learning 

algorithms, Q-Learning and SARSA, MC and DQN were implemented and tuned in the current 

stage of the project. Figure 7(a) and (b) indicates that when the number of hands was set to 

10000 and the number of rounds to 1000, the average payoff obtained was -710.5 by Q-Learning 

and -2133.7 by SARSA; indicating that the Q-Learning algorithm outperformed SARSA by 

significant margin, in terms of achieving of learning the correct strategy which could potentially 

because the game of Blackjack only contains two actions, hit and pass at each step and hence, 

updating the policy after each action would not be improving learning. 

Similarly, MC, as seen from figure 7(c), achieved an average payoff -1866.3, with 10000 hands 

and 1000 rounds, performing slightly better than SARSA, but not as well as Q-Learning. This 

shows that the mechanism of random sampling might not be the best strategy to tackle this 

problem and further research on Q-Learning and its variants would be more useful.  

Finally, from figure 7(d) DQN in 10000 hands and 1000 round of training was able to get an 

average payoff -1864.475, performing worse than Q-Learning. This was a surprising result as it 

was expected to perform like Q-Learning. Further research is required to understand on why 

DQN was unable to perform so well. This means rebuilding and tuning the model and then 

finding academic articles to back up a claim to understand its failure.  
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(a) TD: Q-Learning (b) TD: SARSA 

(c) Monte Carlo (d) Deep Q Network 

 

4.2 Limitations and Difficulties 

Several difficulties were encountered to optimize and tune the RL algorithms since there is no 

quick or formalized mechanism of optimizing the hyperparameters for the models. This lead to 

slower progress of work since manual optimization of hyperparameters is expensive and time-

consuming. Further, different results could be produced than the ones currently achieved through 

more aggressive tuning, which could potentially affect our observations. 

Figure 7: Average Payoff after 10000 hands per round using RL algorithms 
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Another factor causing delay was resource constraints. The RL algorithms were taking a long 

time for training, due to the lack of a powerful computer and proper use of the cores of the 

computer. To reduce the time taken, further investigations regarding would be required to aiming 

to make the algorithms more efficient. 

 

5. Future Work 

With the current progress of the project, implementation and tuning of MC methods, TD 

Learning Q-network and SARSA, and DQN have been complemented and tuned, with the 

exception of DQN which requires further tuning. The next step involves studying and 

implementing variations of the DQN algorithm namely the Double DQN and the Dueling DQN, 

further if time allows looking into other deep learning RL algorithms. All the stages of the 

project have been summarized in table 1. 

 

Date Task 

September 2018 Preliminary Research 

● Study Reinforcement Learning, Game Theory, and Multi-agent 

Systems 

● Read Research papers and organize Ideas 

1st October 2018 Phase 1 Deliverables (Inception): Project Scheme, Detailed 

Project Plan 

October 2018 ● Implement Random strategy 

● Implement Edward Thorp’s strategy 

November 2018 ● Implement MC 

● Implement SARSA 

December 2018 ● Implement Q-network 

● Tune the implemented algorithms and establish results 

Mid-January 

2019 

Phase 2 Deliverables (Elaboration): Presentation and Interim Report 

Table 1: Project Schedule 
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January - 

February 2019 

● Implement DQN 

● Implement other variations of DQN  

March - April 

2019 

● Tune the implemented algorithms 

● Compare the algorithm, establish results  

● Establish Justifications for results 

Mid-April 2019 Phase 3 (Construction): Final Presentation and Final Report 

 

 

6. Conclusion 

This project seeks to compare and understand various reinforcement learning algorithms on the 

game of Blackjack and to compete and potentially outperform Edward Thorp’s strategy from the 

book “Beat the Dealer “. This report first introduced the background studies and theory behind 

various reinforcement algorithms that were implemented at this stage of the project. The report 

then introduced the game of Blackjack, along with the implementation of a random algorithm to 

identify the worst-case scenario and of Edwards Thorp’s strategy. The report further discussed 

our findings from the implementation of the four reinforcement learning algorithms namely, Q-

Learning, SARSA, Monte Carlo and DQN. These results showcased that Q-Learning was able to 

achieve the highest payoff and was nearly at the level of Thorp’s strategy. However, the DQN 

model still requires further to tuning for it to potentially provide better results. Finally, the next 

stage of the project is to understand and implement Double DQN and Dueling DQN algorithms 

to analyze their payoffs with the previously implemented algorithms and Thorp’s strategy. 
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