

Department of Computer Science,

Faculty of Engineering,

The University of Hong Kong

COMP4801 Final Year Project

A First-Person VR Puzzle Game
Supervised by Dr. T. W. Chim

FYP18015 Individual Final Report

Wong Ka Wing (3035124269)

Date of submission: 14/04/2019

Abstract

Many industries have aggressively employed virtual reality technology for cooperating this

unique virtual feature into their project in order to enhance the performance of their desired

result. Typically the game industry has found a big impulse from this technology to its field, and

VR gaming thus became a trendy experience for players all over the world. In the meantime,

machine learning has also been aggregated into gaming too. Programmers are so eager to find

possibilities that make this technology to be more mature to integrate with a new game idea. This

paper are then subjected to the purpose of presenting the work around of "Dream Driver”, a VR

puzzle game which merges the concept of Reinforcement Learning and puzzles games, tries to

present a virtual reality experience to players with a smart level-difficulty controller behind. In

the following chapter, the project background, methodology and results will be examined in

detail.

1

Acknowledgement

We would like to extend our sincere thanks to all individuals and organizations who have kindly

assisted and offered help to this project.

We are highly indebted to our supervisor Dr. T. W. Chim for his regular supervision, sharing of

his experience and ideas for this project. He has always conducted meetings with us and giving

us useful advices and feedbacks.

We would like to give special thanks to FIGHT 4 DREAM LIMITED for their expert suggestion.

They have aggressively provided us advices and answered our questions regarding game

development.

2

Table of Contents

Abstract 1

Acknowledgement 2

Table of Contents 3

List of Figures 5

Abbreviations 5

1. Introduction 6
1.1 Background 6
1.2 Scope 7
1.3 Objectives 7
1.4 Outline 8

2. Methodology 9
2.1 Game Design Document 9

2.1.1 Design Principle 9
2.2 Unity Game Engine 10

2.2.1 Unity 3D Game Implementation 10
2.2.1.1 Hierarchy and Referencing of Objects 11
2.2.1.2 Commonly Used Methods 11

2.2.2 Unity Vive Input Utility 12
2.2.2.1 Hardware to Software Level Referencing 12

2.2.3 Unity ML-Agents Toolkit 13
2.2.3.1 Agent Observation 13
2.2.3.2 Agent Reward function 14
2.2.3.3 Agent Action 14
2.2.3.1 Training Parameters 15

3. Results 15
3.1 Progress Along the Project 15

3.1.1 Game Design 16
3.1.2 Hardware Testing 16
3.1.3 Version Control 17

3.2 Final Results 17
3.2.1 Feature Implementation 17

3

3.2.1.1 Locomotion with Gesture 18
3.2.1.2 Dream Driver 19

3.2.1.2.1 Energy Absorption 19
3.2.1.2.2 Summon and Sword Skill 21

3.2.2 Machine Learning 21
3.2.2.1 Level Design 22
3.2.2.1 Agent Training 22
3.2.2.2 Level Difficulty Control 23

3.2.3 Visuals and Art 23
3.2.3.1 Artistic Evaluation 23
3.2.3.2 Post-processing 24

4. Challenges Encountered 25
4.1 Design Decision 26
4.2 Artistic Work 26
4.2 SDK Support 26

5. Future Planning 27
5.1 System Involved 27
5.2 Machine Learning Application 27

Conclusion 28

References 29

4

List of Figures

Figure 1 HTC Vive Headset, Controllers and Base Stations 6

Figure 2 Inspector drag and drop 11

Figure 3 Trigger and Collision State 11

Figure 4 VIU Scripting 12

Figure 5 Example Environment - 3D Ball 14

Figure 6 Setting Up the Hardwares 16

Figure 7 Hardware Testing 16

Figure 8 Ninja Run Locomotion 18

Figure 9 Ray Casting From Controllers 18

Figure 10 Dream Driver 19

Figure 11 Energy Cube and Power Station 20

Figure 12 Power Station with Absorbed Energy Order From Blue to Yellow 20

Figure 13 Animation of Successfully Absorption 20

Figure 14 Sword with Cyan Energy 21

Figure 15 Experiment laboratory scene in game 24

Figure 16 Keys and Clues without Post-processing 25

Figure 17 Keys and Clues with Post-processing 25

Abbreviations

VR Virtual Reality

ML Machine Learning

GDD Game Design Document

SDK Software Development Kit

VIU Vive Input Utility

API Application Programming Interface

5

1. Introduction

In this chapter, the background information of the project will be introduced by the evaluation of

the status in different industries using VR. Following with the scope and objectives, the

motivation of developing a VR puzzle game will also be addressed. Lastly, the outline of this

paper is located at the end for reference.

1.1 Background

The rapid growth of VR technology has brought up a numerous of applications in different

industries, like medical [1], logistics and business [2]. Among all, gaming is one of the field that

has been substantially promoted because this technology absolutely brings the user experience to

a next level [3]. Undoubtedly, VR games are being releasing onto the market. Game developers

attempt aggressively to explore more innovative idea to fully utilize the experience that VR

technology provides. Some work on various game types and some focus on the hardware support

[4] which collapse into the same goal of enhancing the human senses in the virtual world.

At this stage in the VR game industry, the leading companies in the market like HTC, Samsung

and Sony have published a similar model of VR components to all around the world (see Figure

1) [5][6][7]. These standard equipments are constituted by a headset, a pair of controller and a

pair of base station. Providing with a set of these devices, players could have their visual and

interactive illusion of being in the virtual world by wearing the headset and playing the object

around with the controllers.

On the other hand, machine learning are coming in gaming too. For examples, Google has

invented Emoji Scavenger Hunt taking the idea of supervised learning in 2018 [8]. Applying the

neural network built behind, the system can do a image classification to match the input photo by

user. Unity, a game development platform has also started to explore the possibilities from

reinforcement learning in lately 2017 [9], which is also the time the ML toolkit for Unity that

first officially available for developers. They proves the evolution of game.

6

Figure 1. HTC Vive Headset, Controllers and Base Stations [5].

1.2 Scope

Puzzle games are a popular game type on different platforms. When it comes to VR, game

developers have suggested some great idea like virtual escape room [10]. However, lack of

interaction related implementation turns out to be the common failure of VR puzzle games upon

our observation and experience. Puzzle game should be solvable within a reasonable logic, any

restrictions that does not allows players to demonstrate their common sense are a bad practice for

a puzzle game design [11]. Especially for such a VR puzzle game that highlighting the

importance of interaction, it becomes the best choice for a VR game project aiming to enhance

the player’s visual feeling and experience in the virtual world.

1.3 Objectives

The primary objective of our project is to develop a VR puzzle game in Unity and coding with

C# languages. Players can play the game with a PC and a set of HTC Vive VR kit. In order to

reinforce the virtual experience for players, the game aims to mitigate all the unnatural and weird

feeling brings up by the unresponsive reaction for every object interaction. With the idea of

open-ended puzzle integrated, players will have even more freedom to explore the virtual world

and adopt the best way they find to pass a level in game. Supporting with the logic scripts

implemented, this feature will probably provide another excitement to our players while they are

being in the virtual world.

7

The secondary objective of developing the game is to try to integrate the Reinforcement

Learning technique into the puzzle game using the ML agent toolkit provided by Unity, which

we are aiming to develop an architecture that could be utilized the power from the neural

network trained in a creative manner. In our project, we are going towards the direction that

allows the neural network to find a best path for a solution to the puzzle provided in each level.

Then a list of action generated by the model can be used to match with a list of actual player’s

choice, and compute for the performance of the player in that level, so to control the difficulty of

next level procedurally.

However, this is nearly an impossible task to finish a complete version of the game with the

quality assurance within a short period of time. As a result, the final deliverable will only be the

first phase of the entire game. In which it leads to the final objective of this project, that is to get

ready for the future implementation. To achieve this, we have to maintain our code its

readability, modifiability and sustainability for adapting any possible structural change

afterward.

1.4 Outline

This paper demonstrates the processes to build up a VR puzzle game from scratch, which

includes the preparation work for setting up a VR ready environment, designing procedure for

pointing out the details of workflow and implementation method for achieving the desired

outcome and effect in the game.

The remainder of this report proceeds as follows. First, we introduce the methodology for

implementing a VR game including the justification of software choices and the methodology for

combining the idea of ML into the game. Followed with our final result obtained in this project,

the difficulties encountered and the mitigate solutions have also been discussed. Lastly, we close

with the conclusion of this paper.

8

2. Methodology

This chapter introduces two main tools for developing a VR game. The first one is game design

document where it act as a implementation guideline for programmer to follow with. The second

one is Unity, one of the most well known game development platform. Major implementation

details will be discussed in this part.

2.1 Game Design Document

Before starting the project at once by digging into the coding part, a game design document

(GDD) is employed to present the idea in a systematic manner after brainstorming [13]. The

GDD generally includes the game identity, mechanics summary, features, interface and art style

etc. These kind of keyword allows the developer to focus on the scope of the game. Some

detailed GDD also provides several use cases to indicate every details coming from an idea. As

the routine is explained step by step, developers can easily follow the instruction and implement

the required logic accordingly. It boosts the efficiency of development process by making

everything clear.

2.1.1 Design Principle

As being a beginner in game development, most of our work can be done are highly relying on

the SDK provided by the publisher, especially for those newly released VR-related package

where only a limited modification can be applied to avoid the faulty deconstruction of content

structure, the design principle is then mostly depending on the practicality of the implementation.

While the feasibility is being taken into account, the time cost is also a concern in the design

process. Therefore, the scale of project has to be always under control. To conclude, the first

priority of our design principle is to be practical.

9

For the general in-game ideas, the most efficient way for us is referring to the game ideas on the

current market. As puzzle game is a typical game type, we have concluded three main design

principles after conducting the research. They involves the common sense, solvable by brute

force and relativity guarantee. The first one means the solution to the puzzle can always has a

trivial answer like a natural phenomenon, the second one means the puzzle can always be solved

within a reasonable trials and the last one means the flawless logic between puzzle should always

be presented. And the game ideas are generated by these principles to ensure there is enjoyment

provided to every player inside the game.

2.2 Unity Game Engine

Unity is a famous game development platform which provides a clear user interface and a set of

simple commands and operations built-in [14]. The main reason for choosing Unity as the game

engine is we have had experience to play around it in our previous game development course, we

are more familiar with it. In addition, comparing to another game engine, Unity supports high

level javascript and C# languages for development. These two languages are rather handy

especially for beginners as everything can be defined like an English sentence [15]. The asset

store associated along with Unity is also intrinsic to an efficient development. As a amount of

high quality assets can be obtained free from charge on the asset store, we as an engineer can

have no worry regarding the art stuff too.

2.2.1 Unity 3D Game Implementation

To develop a first-person VR game, we need a 3D environment and a 3D physics mechanics

supported inside the game. In the following sub-chapter, hierarchy of a set of objects, commonly

used game mechanics and visuals will be addressed in detail.

10

2.2.1.1 Hierarchy and Referencing of Objects

Unity Editor provides a handy interface in both the hierarchy tree and inspector for dragging and

dropping object such as scripts and assets under a certain field to treat as a parameter or child of

its parent (see Figure 2). Taking advantage from this, we can access to a specific object in the

code by assigning a publicly accessible variable in the inspector with drag and drop or reference

the object by calling the “GetComponent” function directly from a game object. It keeps the

whole structure of the game hierarchy a sense of independent by means of not adopting any

specific architectural pattern such as Model-View-Controller model to avoid any of constraint

derived from it.

2.2.1.2 Commonly Used Methods

Trigger and collision detection are broadly used in the implementation. To apply the trigger

detection, we add the component of collider to a desired object and set it to be a trigger. Similar

for the collision detection, we add a rigidbody component on it, so the physics related calculation

will be automatically performed in the game engine when two entity are collided together. After

that, they are cheated as an event listener to respond to the status change with the collided object

(see Figure 3). With such convenient listener provided, we implemented the action response

logic to achieve our desired outcome in most of the cases.

Figure 2. Inspector drag and drop Figure 3. Trigger and Collision State

11

2.2.2 Unity Vive Input Utility

As we are adopting the HTC Vive VR kit as our hardware support, we need a dedicated SDK

provided by the manufacturer to establish the connection between the user input and virtual

environment. Vive Input Utility SDK package was available in Unity asset store serves as this

purpose. There are script and APIs calls responding to the input of each hardware component.

And it implies the APIs will be relied more frequently in the implementation especially for some

of the game mechanics.

2.2.2.1 Hardware to Software Level Referencing

HTC Vive has recently released their exclusive SDK package, “Vive Input Utility” onto the

Unity asset store. The SDK consists of the aforementioned testing scene, a detailed tutorial and

guideline explaining the relationship and interaction method between the VR components and

the virtual world. The APIs function call across different testing scripts provided are all well

defined such that developers can match a basic level interaction with each of the hardware

component such as the button press down action trigger (see Figure 4), and the script that defined

all the properties of a grabbable should have as to be attached to an game object. These features

are noticeable to be quite similar as an event listener too, which helps a lot with our

implementation when we were getting more familiar with the code beforehand.

Figure 4. VIU Scripting [16].

12

2.2.3 Unity ML-Agents Toolkit

To achieve the integration of machine learning technology and game development, the most

feasible way for beginners is to look for plugins supported by the game development platform.

Luckily we got our very first beta version of an open-source software which has just released

from Unity, namely the ML-Agents [17]. This SDK helps developers and researchers to map

games and simulations built in the Unity Editor into environments where intelligent agents can

be trained using Deep Reinforcement Learning, Evolutionary Strategies, or other machine

learning methods through a simple to use Python API. A set of example projects and baseline

algorithms were also included in the SDK for users to get an intuition on how to apply those onto

their projects. In such sense, we definitely need this for our project and the detailed

implementation will be discussed in the following sub chapter.

2.2.3.1 Agent Observation

Observation in a deep learning process represents the status in an environment that the artificial

intelligent need to know for deciding the next action. In the script provided in the ML-Agents

SDK, we have to specify the observations to be added in each cycle. Combining the observations

and previous knowledge gained from the reward function which will be discussed next, the agent

should have sufficient information to determine a better decision for obtain a higher reward.

Quoting the example from the official tutorial, it is just like to learn to balance a rotating ball on

a platform (see Figure 5), you need to add the observation of the state of each relevant unit such

as the rotation of the platform, the relative position of the ball, and the velocity of the ball [18].

In such case, the trained model can therefore theoretically perform well comparing to the absent

of observations.

13

Figure 5. Example Environment - 3D Ball [19].

2.2.3.2 Agent Reward function

The reward in a reinforcement learning is an indicator to reflect the correctness of the action

taken by the agent. The PPO reinforcement learning algorithm established by Unity works

behind the scene, monitoring the performance and providing guideline to the agent by optimizing

the cumulative reward earned from the decision made by the agent. As be mentioned in the

previous paragraph, this algorithm should work with the observations. Taking the same example

of 3D Ball, we should have the reward set to be negative in order to indicate as a punishment of a

wrong decision making. For example, a negative reward can be given when the next action

determined by the agent will lead to the ball fell down from the platform, vice versa. After a set

of condition and constraints implemented in the reward function, the agent will learn the best

action procedurally by the first sight of the observation in latter iteration cycle. This theorem

applies exactly the same in our project.

2.2.3.3 Agent Action

A list of action can be defined in the agent action function, while each of the item in the list

represents the index of a list of command. And there could be discrete or continuous vector

action spaces. In a simpler case such as in a two dimension game environment, the action

indicating the movement along x or y axis can be stored in a discrete format with only a Vector2

type parameter. In our project, an index of a list of command in discrete space will be more

suitable in the sense that we want to allocate a true action for the agent but not a floating value.

14

2.2.3.1 Training Parameters

For the python training, we have not dig deep into the parameters that vary the efficiency. The

most frequent changed values are the learning rate, batch and buffer size, gamma and the

maximum steps the training takes. The learning rate is decreased if we found the training is full

of fluctuation, and the reward does not increase consistently. And we are setting the batch and

buffer size rather small as to lower the times of experience before the agent updates any decision

criteria in order to fit our small discrete vector action space. For the gamma, it acts as a discount

parameter to the future reward, and it is typically set close to 1 to just make the training result

more stable in the very last training duration. And the maximum steps are setting to reasonably

large to make sure the result are stable enough. (Since my project partner is responsible for the

training, please find more detail in his paper).

3. Results

In this chapter, the progress and the final result for our project is presented. It includes the design

progress of the game ideas, a successful hardware testing result, and the method we have adopted

to help with version controlling. Lastly, the main features implemented in terms of puzzle game

and the integration of machine learning algorithm will also be presented.

3.1 Progress Along the Project

As the preparation work are also important in game development, the progress we have made all

along from the beginning will be discussed following for record. They includes the game design

procedure, hardware testing and version controlling.

15

3.1.1 Game Design

After conducting research on the trending style of puzzle game available on the market, we have

settled down with the topic and criteria of our game. We have finished the majority part of our

GDD with writing down all the unique features, systems, art style and level design of our game.

As developing a puzzle game requires a lot more innovative idea, each stage need to have its

own characteristic and be a much more different one than another. These tasks are pending to be

designed and added into our to-do list in Trello, an application that allows users to manage their

projects and organize things in a easy, flexible and visual way. With the help of Trello, we can

keep track of our process of development and achieve division of work easily. It will be a

convenient tool when we come to the stage of implementation.

3.1.2 Hardware Testing

The HTC Vive VR components have been successfully set up and tested in our own place

followed by the step by step instructions (see Figure 6 and 7). We have gone through the

connection of the headset and computer, firmware update of the controller and room scale

measuring performed by the two paired up base stations for motion tracking. We finished and

passed also a built in tutorial associated in Steam VR and a Unity version testing scene to ensure

the functionality of all the hardware.

Figure 6. Setting Up the Hardwares. Figure 7. Hardware Testing.

16

3.1.3 Version Control

Upon the study on the newly released official API, we started our very first project for testing

purpose. The characterised summon feature in our game has been successfully implemented by

working around mainly the trigger checking and the event handler to response to an event while

the collision between the controller and the virtual object has been detected. This project

progress has been located on Github, an online repository for developers to store their work and

monitor the working schedule. Github also serves another function, which is to help different

contributors to maintain a different version of code by cooperating with a git client software. We

adopted Sourcetree for this purpose.

3.2 Final Results

In this Chapter, the final result presented in the deliverables will be discussed. They includes the

feature implementation of the puzzle game and the part of applying the training result from the

ML-agents.

3.2.1 Feature Implementation

In order to reinforce the uniqueness of Dream Driver, two features will be employed in Dream

Driver. They are locomotion with gesture and Dream Driver. The remaining subsections

introduce the detail of each feature.

17

3.2.1.1 Locomotion with Gesture

To further facilitate the future implementation, another testing scene has been built for evaluating

different functionalities of the predefined logic scripts provided in the VR SDK. It includes the

basic grabbable logic which once the script has been attached and applied on to an object, the

object will react to the VR controller trigger button while the controller is hovering the object.

And the follow up response of the object like sticky and unblockable state could also be

controlled by other advanced script inheriting from the basic one. Based on these evaluations, the

common grab and drag mechanism in most of the VR game could be easily achieved and applied

into our puzzle game.

In addition, our originated implementation for the locomotions in VR has been successfully

done. To achieve the simulation of floating in the air that people would possibly have their

experience in the dream, we found out that ninja run mechanism (see Figure 8) is the most

suitable case to accomplish this fantasy as it is a rather natural gesture for people to realise their

forward movement without struggling with their hands or feet around the same position. And the

work around is theoretically simple. Only the raycaster has been used to capture the direction

pointing by the controller (see Figure 9). After that, the players will be translated forward

according to the negative value of the ray casting direction.

 Figure 8. Ninja Run Locomotion. Figure 9. Ray Casting From Controllers.

18

3.2.1.2 Dream Driver

Dream Driver is one of our feature system. In the storyline, It acts as a tool for storing magical

power and releasing sword skill by consuming magical power. Dream Driver’s appearance

similar to a watch. It is attached on the player’s left hand throughout the whole game (see Figure

10). Before the player is able to release a sword skill, player needs to absorb magical power. In

order to achieve this particular function, there are three main logics cooperating with each other.

Among these three main logics, energy absorption, summon, and activating sword skill has been

successfully implemented.

Figure 10. Dream Driver.

3.2.1.2.1 Energy Absorption

In order to activate a particular sword skill, the player has to first collect the corresponding

colored energy by placing the colored energy cube inside the corresponding power station (see

Figure 11), while different energy will have different ways to obtain. Next, Generator will be

charged with energy and activated for absorption (see Figure 12). When the player get close

enough to the Charged Generator and hold down the grip button of the left controller for several

seconds, the energy will be successfully stored into the Driver and the animation of successfully

absorption will be played (see Figure 13).

19

Figure 11. Energy Cube and Power Station.

 Figure 12. Power Station with Absorbed Energy Order From Blue to Yellow.

Figure 13. Animation of Successfully Absorption.

20

3.2.1.2.2 Summon and Sword Skill

After obtained the energy, the player will be able to summon a sword with emitting color as
same as the color of absorbed energy (see Figure 14). The player can summon the sword by hold
down the grip button of the right controller for several seconds. After summoning the sword, the
system will activate the corresponding sword skill to release the seal of the room and escape out
of here. While the seal of the room are a combination of three different colored power, player
therefore has to first absorbed the corresponding color in order to get out of the stage.

Figure 14. Sword with Cyan Energy.

3.2.2 Machine Learning

Integrating the machine learning algorithm, we trained a agent to observe the environment and

react with a fastest solution path to solve the puzzle in each level. To demonstrate the idea of

how well would be a trained agent compared to a human player. We first need to establish a

puzzle game environment for it to familiar with. And this moves us to the stage design of the

puzzle game. In the following, the preparation works and results all about machine learning in

gaming will be discussed.

21

3.2.2.1 Level Design

Three features or we called level difficulties have been implemented in order to demonstrate the

usage of the ML-Agents toolkit. The first difficulty would be rather simple which is to test how

well a player can match a color cube to a corresponding color plate. While the second level of

difficulty is to test how well a player can figure out the pattern to a specific dependence between

two entities which demand only the observation of the change using the mechanism of rotation

around the center basis. This is make use of a concept of parallel world such that the colored

cube in two different world will have different position and if the player tries to move the cube

along one direction, the other cube in the next world will be moved in another direction. And for

the final difficulty is similar to the second, which is to test how sensitive is the player can

observe for the environmental change from taking different combination of actions. And this is

actually the phenomenon we want player to notice that while player is grabbing a special magic

cube, other cubes will lose their gravity.

3.2.2.1 Agent Training

To facilitate the training, we have to configure the environment and reward to our agent inside

the defined function provided along with the ML-Agents toolkit. As be mentioned in previous

chapter, we need an observation collection, reward mechanism and a set of action provided to the

agent. In this case, we add all of the useful information of a stage could have into the

observation, such as how the level has been set up, the present of colored cube, parallel world

and magic cube, etc. And for the reward function, we predefined the branch that the agent could

be taken, and reward the agent when it find the a correct list of action to solve the puzzle, and

punish otherwise. Lastly for the action, we took the similar strategy of predefined all possible

action the agent can take in all of the level, and let the agent choose and update its action from

the same pool.

22

3.2.2.2 Level Difficulty Control

Upon the agent was well trained, we run the agent behind the scene along with a real player’s

attempt. The agent would the compute for the best solution for a specific level that the player is

playing. The list of action of the player will also be recorded in order to compare with the result

bring up by the agent when the player can successfully pass a stage. In this sense, once we do the

comparison between the player’s performance and the theoretically optimal solution by the

agent, we know how well is the player perform and thus to manage and generated a level with

the difficulty that can be reflected by the result. And we can achieve a game that could

procedurally increase the level difficulty according to the player performance applying the

technique of machine learning.

3.2.3 Visuals and Art

The following will talk about the minimum work we have finished for the visuals and artistic

work, mainly the artistic evaluation and the post-processing.

3.2.3.1 Artistic Evaluation

In terms of the artistic work, the art style of our game has confirmed to be low poly. And as long

as the asset is suitable, we will stick to what can be acquired in the Unity asset store. Unless for

the featuring item in the game, we may have need to spare some more time to prototype the 3D

model by ourselves in other modelling software like blender. For our current progress regarding

the artistic work, a basic experiment laboratory scene has temporary built (see Figure 15). It will

be repeatedly used in every stage throughout the game as to convince the player to follow the

fundamental storyline where they are going to solve puzzles level by level to practice their

problem solving skill. Along with the scene building, the lighting of the environment, the

technical scene transition, the door open-and-close animation in between scenes has also been

implemented.

23

Figure 15. Experiment laboratory scene in game.

3.2.3.2 Post-processing

Post-processing is employed to enhance the quality of the visuals of Dream Driver’s game

environment. It is the process of applying full-screen filters and effects to a camera’s image

buffer before it is displayed to screen. It can drastically improve the visuals of the game

environment with little setup time. We use the post-processing mainly for the color grading and

the blooming of the brightness. It benefits Dream Driver because the pantone of our game is

being so dark and dull. It acquires players’ extra attention with the effect and helps to point out

some keys and clues of the puzzle naturally (see Figure 16 and Figure 17).

24

Figure 16. Keys and Clues without Post-processing.

Figure 17. Keys and Clues with Post-processing.

4. Challenges Encountered

This chapter introduces the difficulties encountered while making design decision and dealing

with the artistic work. The mitigation methods have also been addressed.

25

4.1 Design Decision

Gesture recognition is a typical example that we encountered as the major failure of our design

decision. As most of our game idea is suggested by the actual experience of being inside a

dream, the gesture recognition feature is adopted as a way to simulate the situation when one

tries to summon something inside a dream. However, we foresee the implementation difficulties

after the study of the API call. Without a further hardware support or fully implemented

algorithm, it will be an expensive task to accomplish the recognition process which will probably

affect the performance of the game. We decided to hold up the development of this feature until

we get some spare time to work on. And the alternative way is to replace with a summon system

to achieve this fantasy.

4.2 Artistic Work

A game is a combination of an innovative idea, implementation skill and artistic sense.

Unfortunately as an engineer, we do not expert in art. We have to keep the scale of workload in

respect of the artwork as small as possible. As a result, we decided to make use of what we could

get from the asset store. The basic scene of every puzzle stages will therefore be the same and

only alter slightly different by adding a reasonable amount of decorations to present the minimal

visual enjoyment.

4.2 SDK Support

Since two main SDK we are using, the Vive Utility Input and ML-Agents toolkit are two young

packages that has been released not far ago and updated versions are still keep releasing from the

manufacturers. By this reason, we can only work on what has been given especially in the

machine learning case, we cannot train our agent better until the ppo algorithm has enhanced by

the Unity team. Luckily, it is still feasible to apply our knowledge from the machine learning

class, train a agent and apply it on a simpler application level, and we think it is far more enough

while we are only use the machine learning technique as a experimental basis.

26

5. Future Planning

In this chapter, three major steps to complete a full game will be discussed. They included all

kind of system things and the enhancement of the machine learning application.

5.1 System Involved

After finishing up the entire game experience, the next thing to handle will be all kind of the

game system, such as the save and load system for players to record his current progress of the

game and user interface for players to interact with the game menu, etc. In the script, the function

call that invoking sound effect should also be integrated into the game later in case to provide

players extra enjoyment.

5.2 Machine Learning Application

As be mentioned in previous chapter, the application of the machine learning is not generally

developed for all kind of the game, which is being only dedicated to our project now. We are

attempting to develop an general architecture or system afterward to make the training of

machine learning can be applicable for a various of environment and could be dynamically

learned from the changed environment without providing predefined guideline by hand, so to

facilitate all kind of games that subjected to the procedurally increment of level difficulty

mechanism.

27

Conclusion

The final goal of this project is to develop a VR puzzle game named “Dream Driver” which

utilize the machine learning technique to control the level difficulty procedurally. This paper

introduces the basic background regarding the gaming industry and demonstrates the motivation

of working on a new VR puzzle game from scratch. Following with the medology mentions to

develop a game, this paper also states our progress mainly the preparation work have to be done

before starting the implementation of the game and also the final results of the establishment of

the game, which includes the documentation of GDD, hardware testing and technical studies,

feature implementation and machine learning related works. We have also addressed with our

mitigation method to the difficulties encountered to clarify our development decision.

For the future work, we will focusing on the implementation of the full game by the means of

including all sorts of system things. We will also try more of the function given in the

ML-Agents toolkit to explore more possibilities to integrate machine learning into game

environment.

28

References

1. Laver, K. E., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2015). Virtual reality

for stroke rehabilitation. Cochrane database of systematic reviews, (2).

2. Mujber, T. S., Szecsi, T., & Hashmi, M. S. (2004). Virtual reality applications in

manufacturing process simulation. Journal of materials processing technology, 155,

1834-1838.

3. Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9),

25-32.

4. Lucas Matney. (2016, Nov 3). Inside Intels race to build a new reality. [Online].

Available: https://techcrunch.com/2016/11/03/inside-intels-race-to-build-a-new-reality-2/

[Accessed: Jan 16, 2019]

5. HTC Corporation (2018). Vive virtual reality system. [Online]. Available:

https://www.vive.com/us/product/vive-virtual-reality-system/ [Accessed: Jan 16, 2019]

6. SAMSUNG ELECTRONICS CO., LTD. (2018). Samsung gear vr with controller.

[Online]. Available: https://www.samsung.com/global/galaxy/gear-vr/ [Accessed: Jan 17,

2019]

7. Sony Interactive Entertainment Inc.(2018) PlayStation vr. [Online]. Available:

https://asia.playstation.com/en-hk/psvr/ [Accessed: Jan 19, 2019]

8. Google. (2018) Emoji Scavenger Hunt. [Online] Available:

https://emojiscavengerhunt.withgoogle.com/ [Accessed: Sep 21 ,2018]

9. Alessia Nigretti (2017, Dec 11). Using Machine Learning Agents Toolkit in a real game:

a beginner’s guide. [Online]. Available:

https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-game-a-be

ginners-guide/ [Accessed: Oct 13, 2018]

10. VALVE Corporation. (2018) VR: Vacate the Room. [Online]. Available:

https://store.steampowered.com/app/494810/VR_Vacate_the_Room/ [Accessed: Jan 17,

2019]

29

https://techcrunch.com/2016/11/03/inside-intels-race-to-build-a-new-reality-2/
https://www.vive.com/us/product/vive-virtual-reality-system/
https://www.samsung.com/global/galaxy/gear-vr/
https://asia.playstation.com/en-hk/psvr/
https://emojiscavengerhunt.withgoogle.com/
https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-game-a-beginners-guide/
https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-game-a-beginners-guide/
https://store.steampowered.com/app/494810/VR_Vacate_the_Room/

11. Smith, A. M., Andersen, E., Mateas, M., & Popović, Z. (2012, May). A case study of

expressively constrainable level design automation tools for a puzzle game. In

Proceedings of the International Conference on the Foundations of Digital Games(pp.

156-163). ACM.

12. FIGHT4DREAM LIMITED. (2016) FIGHT4DREAM. [Online]. Available:

https://fight4dream.com/ [Accessed: Jan 20, 2019]

13. Rouse, R., & Illustrator-Ogden, S. (2000). Game design theory and practice. Wordware

Publishing Inc..

14. Indraprastha, A., & Shinozaki, M. (2009). The investigation on using Unity3D game

engine in urban design study. Journal of ICT Research and Applications, 3(1), 1-18.

15. Hejlsberg, A., Wiltamuth, S., & Golde, P. (2006). The C# programming language. Adobe

Press.

16. HTC Corporation. (2018). HTC VIVE Tracker (2018) Developer Guidelines. [Online].

Available:

https://dl.vive.com/Tracker/Guideline/HTC_Vive_Tracker(2018)_Developer+Guidelines

_v1.0.pdf. [Accessed: Jan 20, 2019]

17. Alessia Nigretti. (2017, Dec 8). Introducing ML-Agents Toolkit v0.2: Curriculum

Learning, new environments, and more. [Online]. Available:

https://blogs.unity3d.com/2017/12/08/introducing-ml-agents-v0-2-curriculum-learning-ne

w-environments-and-more/ [Accessed: Oct 13, 2018]

18. Unity-Technologies. (2017). Learning-Environment-Design-Agents. [Online]. Available:

https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environme

nt-Design-Agents.md [Accessed: Jan 23, 2018]

19. Unity-Technologies. (2017). Learning-Environment-Examples. [Online]. Available:

https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environme

nt-Examples.md [Accessed: Jan 23, 2018]

30

https://fight4dream.com/
https://dl.vive.com/Tracker/Guideline/HTC_Vive_Tracker(2018)_Developer+Guidelines_v1.0.pdf
https://dl.vive.com/Tracker/Guideline/HTC_Vive_Tracker(2018)_Developer+Guidelines_v1.0.pdf
https://blogs.unity3d.com/2017/12/08/introducing-ml-agents-v0-2-curriculum-learning-new-environments-and-more/
https://blogs.unity3d.com/2017/12/08/introducing-ml-agents-v0-2-curriculum-learning-new-environments-and-more/
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Design-Agents.md
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Design-Agents.md
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md

