
The University of Hong Kong

FYP18026 Final Year Project

Final Report

Quantum Machine Learning with
Superposition of Causal Order

Author
Gao Ning 3035234521

Supervisor
Prof. G. Chiribella

13 April. 2019



Abstract

Research has shown that quantum computation is capable of improving significantly the
performance of classical machine learning algorithms. On the other hand, classical machine
learning algorithms have been proven useful for understanding quantum resources. In this
report, starting from defining a new measure of incompatibility for projective measurements,
we proceed to tackle a specific quantum learning task: clustering (projective) measurement
devices using a new computational primitive known as quantum switch.
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1 Introduction

Since first introduced by Richard P. Feynman in 1981 in his epochal-making speech [1], tremendous
progress on the study of quantum computation has been made in both theory and physical real-
ization. Along the line of research, many algorithms were proposed and gained public attention,
although they were only of pure theoretical interests in 90s when created. Examples include the
well-known Shor’s algorithm, a quantum algorithm which factorizes a large integer into its prime
factors [2], and the Grovers search algorithm [2] which was later extended to a general scheme called
amplitude amplification [3]. The Shor’s algorithm surprised the public for it not only demonstrated
the potential of quantum computer to provide exponential speedup against their classical coun-
terpart, but it overthrew some most widely used public-key cryptography schemes such as RSA
scheme [2]. The latter one, though offers only quadratic speedup, has been proven extremely use-
ful, since searching problems are often important building blocks of other much more complicated
algorithms [2].

In addition to its astonishing application in cryptography, quantum computation is also considered
advantageous in solving optimization problems. In particular, much efforts have been devoted into
a quantum computation model called adiabatic quantum computation [4]. This model was first
introduced to attack a long-standing problem called 3SAT problem which was the first known to be
NP-complete [5]. Later on. It was then found useful in other tasks such as clustering algorithms,
where researchers artfully transformed the clustering objectives into cost functions to be optimized
[6].

The introduction of Adiabatic quantum computation into unsupervised machine learning is in
fact only a small portion of the wide application of quantum computation techniques in tasks
arising from the study of machine learning [7] [8]. Many classical machine learning algorithms wit-
nessed the construction of their quantum counterparts. In most cases, the quantum versions are
asymptotically much faster, although the quantum algorithms usually come with restraints that
classical versions do not suffer. A typical example is the HHL algorithm which can solve a linear
system of equations exponentially faster than their classical counterparts, under the constraint
that the matrix can be simulated efficiently [9]. Other techniques are also popular in quantizing
classical machine learning algorithms. For instance, combining the power of density operator ex-
ponentiation and phase estimation, one can perform principle component analysis efficiently [10].
When a machine learning task can be formulated as a search problem, Grovers search algorithm
(and its variants) can usually offer speedup (mostly quadratically). Concrete examples are quan-
tum clustering algorithms in which tasks such as searching for minimal are repeated [11].

On the other hand, one can also consider the possibility of utilizing classical machine learning
techniques to accomplish quantum learning tasks. Existing machine learning algorithms provide
general frameworks to understand, to extract and to define certain information of data [12]. This
suggests we may consider making use of machine learning techniques to understand quantum
resources, such as unitary gates and projective measurements. However, a typical clustering al-
gorithm such as K means algorithm usually assumes the accessibility of the difference between
individual data points. This leads to the question: how should we understand and quantify the
difference between quantum resources such as projective measurements? We approach this prob-
lem from the perspective that marks the drastic distinction between classical and quantum world:
incompatibility between measurements. Before diving into the details, we would like to emphasize
that the usefulness of understanding and estimating the incompatibility between projective mea-
surements goes way beyond solving a quantum learning task and we will discuss some of these in
section 2.3.

A worth noting point is that there already exists several well accepted definitions of incompat-
ibility for quantum measurements/devices in general operation theory, such as in [13] [14] [15]. On
one hand, we would like to argue that our own definition fits well into these existing notions, on
the other hand, we would also like to point out that our definition enjoys a very desirable feature
as compared to its counterparts: it is easy to compute both in theory and in practice. That is to
say, with constant time accesses to 2 measurement devices, we can estimate the incompatibility
between such 2 devices (in our definition) to high precision. To achieve so, we assume the existence
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of a new computational primitive called quantum switch [16]. As we shall explain in the following
sections, quantum switch is strongly related to the concept of superposition of causal order which
appears mysteriously in the title of this report.

As an overview, this report is organized in the following fashion: section 2 is devoted to review
the background knowledge used in this report. This includes basic quantum mechanics used in
quantum information theory, the definition and basic properties of a quantum switch, and con-
cepts in theory of incompatibility that are relevant to our project. In section 3 we present our
original definition of incompatibility for projective measurements and the measure of incompati-
bility induced from our definition. We also discuss several important properties of our definition
in this section. In section 4 we will discuss how to estimate the degree of incompatibility between
projective measurements using quantum switch. From there, we will generalize our definition to a
broader class of measurements. In section 5, we deal with an interesting quantum learning task:
clustering a set of projective measurements. Then in section 6 we summarize the findings and
discuss possible directions of future research, this serves as the conclusion of the whole report.

2 Background

2.1 Qubit, Density Operator, Measurement and Quantum Channel

1 In classical computer science, the unit of data is bit, taking values 0 or 1. In quantum information,
bit is replaced by quantum bit (qubit), with two perfectly distinguishable states |0〉, |1〉 ∈ C2. In
fact, a qubit can take all unit vectors α|0〉+β|1〉 ∈ C2 as its value. However, different vectors may
correspond to the same state, in particular, |φ1〉, |φ2〉 ∈ C2 correspond to the same state if they dif-
fer only by a global phase, i.e |φ1〉 = eiγ |φ2〉, for some γ ∈ C. Hence, one may reparametrize a unit
vector |φ〉 = eiγ [cos θ2 |0〉+ sin θ

2e
iψ|1〉], γ ∈ [0, 2π], θ ∈ [0, π], ψ ∈ [0, 2π] and consider only the part

within []. Note that this allows one to identify a qubit with a point on the unit sphere S2 (known
as Bloch Sphere), by the polar coordinate (1, θ, ψ). Note that by such identification, an orthornor-
mal basis would correspond to a pair of antipodal points on BLoch Sphere. In general, we are
allowed to work on qudits in a space Cd, with d perfectly distinguishable states |0〉, · · · , |d−1〉 (the
standard basis). These states represented by unit vectors are said to pure. In general situation, a
state can be mixed, in which situation, they are represented by density operator on the state space.

We can also consider a joint system, just like in classical case where we operate on 101100 . . . .
For two systems A,B with their corresponding state spaces CdA ,CdB , the composite system AB is
associated with the state space CdA⊗CdB ∼= CdAdB . Hence, the composite of states and actions (to
be defined) are all naturally defined under the tensor product. We summarize these in definition 1.
A remark is from now on the space Cd equipped with the standard inner product will be referred
to as “the Hilbert” space Hd. In this report, we are not interested in the topological properties
(the space is complete, etc) nor infinite dimensional Hilbert spaces.

Definition 1. Associated to any isolated physical system is a complex vector space with inner
product (a Hilbert space Hd for finite dimensional case or for infinite dimensional case L2[R] a
Lebesgue space) known as state space of the system. The system is completely described by its
density operator, which is a positive operator ρ with trace one, acting on the state space of the
system. If a quantum system is in the state ρi with probability pi, then the density operator for the
system is

∑
i piρi. A pure state is any ρ = |a〉〈a|, where

∥∥|a〉∥∥ = 1, sometimes written as a state
vector |a〉. In case |a〉 ∈ H2, a pure state |a〉 = α|0〉+ β|1〉 is called a qubit.

Now we deal with what actions on a quantum state are allowed. For a reversible process, it is
characterized by a unitary operator on Hd. The rationale is that it must send a unit pure quantum
state to unit pure quantum state (thus its an isometry), and it has to be reversible, so it must be
a unitary operator (if we assume it to be linear). Formally:

Definition 2. The (reversible) evolution of a closed quantum system Hd is described by a unitary

1unless specified, all definitions are taken from [2] and Prof. Giulio Chiribella’s lecture note
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transformation U up to global phases. U acts on the density operator ρ (or the state vector |a〉) of
the system by UρU† (or U |a〉).

However, we are not restricted to reversible actions only, in fact, we can define axiomatically what
are the quantum operations we are interested in and derive suitable representations for them. In
most cases, we are working on “quantum channels”, which captures all the quantum operations
we are studying in this report.

Definition 3. A quantum channel E from the set of density operators of the input space Q1 to
the set of density operators of the output space Q2, satisfies the three axioms:
A1: Tr E(ρ) is the probability that the process represented by E occurs, when the initial state is ρ:

0 ≤ Tr [E(ρ) ≤ 1, (1)

A2: E is convex-linear on the set of density operators, that is, for probabilities pi:

E(
∑
i

piρi) =
∑
i

piE(ρi) (2)

A3: E is a completely positive map. That is E(A) must be positive for all positive A. Further
more, if we introduce an extra system R of arbitrary dimensionality, it must be true that I ⊗ E(A)
is positive for any positive operator A on the combined system RQ1, where I is the identity map
on R.
The map E satisfies axioms A1, A2 and A3 if and only if:

E(ρ) =
∑
i

EiρE
†
i (3)

for some set of operators Ei which map the input Hilbert space to the output space, and
∑
iE
†
iEi ≤

I. {Ei } are called Kraus operators.

Kraus representation of a channel is unique up to unitary transformation, i.e. the maps E1(ρ) =∑
iEiρE

†
i and E2(ρ) =

∑
j FjρF

†
j represent the same channel if and only if there exists a unitary

uij such that Ei =
∑
j uijFj . This can be understood as different physical implementation of the

same channel, one example is the completely depolarizing channel (over Hd): D(ρ) = Tr ρ Id =
1
d2

∑d2

i UiρU
†
i = 1

d2

∑d
j,k |j〉〈k|ρ|k〉〈j| where {Ui } is any set of orthogonal unitaries (e.g. Heisen-

berg Weyl operators) and { | j〉 } is any orthonormal basis.

Although a quantum state can take uncountably infinitely many different value, we cannot extract
an infinite amount of information from it. We can extract information of a state by performing a
measurement. In quantum theory, measurements are described as positive operator valued measure
(POVM).

Definition 4. A POVM (over Hd) is a set of positive operators {Ei } such that
∑
iEi = I. The

index i refers to the measurement outcome that may occur. If the state of the quantum system
is ρ, then the probability of that result i occurs is p(i) = TrEiρ and the state of the system after
measurement is up to the underlying channel (of this measurement).

However, in this report, we are mainly interested in the case where the positive operator Ei
are (orthogonal) projectors, i.e. E∗i = E2

i = Ei. In such special case, the measurement is called
projective measurement. When we are considering projective measurements, in convention, the
state of the system after the measurement (with outcome i occurs) is EiρEi

trEiρ
. Hence by definition

3, this projective measurement can be described by a quantum channel N (ρ) =
∑
iEiρEi. When

Ei are rank one projectors, the measurement is associated with an orthonormal basis { | αi〉 } such
that Ei = |αi〉〈αi|. In this case, with outcome being i, the system is “collapsed” into |αi〉.

2.2 Quantum Switch

Definition 5. (quantum SWITCH)[17]:
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Denote the Kraus operators of the channel N1 as K1
i and the channel N2 as K2

i . The overall
Kraus operators of the resulting channel from the switching is:

Wi,j = K1
jK

2
i ⊗ |0〉〈0|C +K2

iK
1
j ⊗ |1〉〈1|C (4)

Then the action of the quantum SWITCH is given by:

S(N1,N2)(ρ⊗ ρc) =
∑
i,j

Wijρ⊗ ρcW †ij (5)

In words, a switch map S is a super map that transforms two quantum channels N1,N2 into a
channel which is classically controlled that performs either N1N2 or N2N1 conditionally on the
outcome of a measurement of system C [16].

An important property is that such definition is invariant of Kraus representations. This means a
supermap that controls between the orders of the channels to be applied is in fact uniquely defined
as in definition 5. In addition to that, this means the switching of two channels is invariant of
different physical realizations of the channels.

Perhaps the most interesting property of a quantum switch is that when the control system is

in a superposition state |0〉+|1〉√
2

, the two channels are applied in a superposition of orders. This

means one cannot say either one of the channels is applied first: quantum switch exhibit an indef-
inite causal order (sometimes called causally nonseparable)[16] [17].

2.2.1 Properties and Applications of Quantum Switch

Starting from the groundbreaking paper [16] which first presented the notion of the quantum
switch theoretically, many efforts have been devoted into understanding the computational and
informational advantages that the quantum switch can offer. The major property that signals the
deviation of a communication scheme/computation model with indefinite causal structure from
the classical models is summarized as a no go theorem in [16]:

Theorem 1. The quantum switch cannot be computed deterministically by a circuit in which the
two unknown oracles are called a single time in a fixed casual order.

This no go theorem denies the possibility of a perfect implementation of quantum switch in a
quantum computation model with definite causal structure. Hence confirms that quantum switch
is indeed a new computational primitive. One concrete example of quantum switch providing
computational advantage was then discovered in the task of quantum operation discrimination.
Quoting the [18]: “two no-signalling channels that are not perfectly distinguishable in any ordi-
nary quantum circuit can become perfectly distinguishable through the quantum superposition of
circuits with different causal structure”.Other works then identified the advantage indefinite causal
structure can offer in Bell-inequality type games [19]. However, the power of quantum switch also
applies when only unitary transformations are involved. For example, it can be shown that a gen-
eralized n-switch can be used to solve algorithmic problems that involve permutations of orders of
multiplication of unitaries, for instance, applying n unitary gates in an order chosen from Sn as in
[20], and testing certain “commutativity” properties for a set of unitaries as in [21]. In both cases,
“quantum switch” offers significant speedup against “standard” model of quantum computation
and classical computers.

In the area of quantum information theory, it was first observed in [17] that self-switching a
completely depolarising channel allows the transmission of classical information, which is very
astonishing and counter intuitive since two completely depolarising channels can never transmit
any classical (and quantum) information however used in definite causal orders. More research
followed this line to study the activation of classical channel capacity, [22] for example has started
a discussion on the true cause of the activation.

Although it remains an open question of the true power of indefinite causal orders in classical
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communication tasks. Results in [23], [24] have confirmed that a quantum switch can offer unique
advantages in quantum communication tasks against independent superposition of channels. In
particular the recent article [24] proved that indefinite causal order enables perfect error correction
for zero (quantum) capacity channels, where in contrast superposition of independent channels can
never achieve so.

Our results are partially motivated by these findings. But to fully understand our work, we give
a brief review of several existing definitions of “incompatibility” for measurements and devices in
general.

2.3 Incompatibility

The idea of incompatibility dates back to the age of Heisenberg and Bohr, manifested through
the famous Heisenberg’s uncertainty principle [25] and the notion of complementarity [26]. These
notions were the early attempts to mark the distinct feature of quantum physic: there exists quan-
tum measurements that cannot be implemented simultaneously. For example the position and
momentum observables are incompatible.

Similar to entanglement, incompatibility is a valuable resource allowed in quantum world but not
classical world. [27] shows that only incompatible measurements enable violations of the famous
Bell Inequality. Quantum public key distribution protocols such as BB84 involves incompatible
qubit projective measurements. Hence the incompatibility is intriguing to study even by itself.

In recent years, many different ways to compare quantum observables were introduced, in a much
more general framework in many cases. We briefly review two of such measure, and list the essen-
tial features for further comparison. Since we are only interested in quantum measurements, we
will not study the following concepts in their most general forms.

2.3.1 Joint Measurability

Definition 6. [13] Given n POVMs Mk with positive operators {Mk
xk
}
xk∈Ωk

where Ωk are the

sets of measurement outcomes (for each POVM Mk respectively). POVMs Mk are said to be
jointly measurable if there exists a “joint observable” M (POVM) that has the set of measurement
outcome Ω1 × Ω2 × · · · × Ωn and output a list of outcome (x1, x2, · · · , xn) at each measurement
rounds. In addition, M must satisfies Mk

xk
=
∑
l 6=k
∑
xl
Mx1,x2,··· ,xk,··· ,xn . As a convention, Mk

is called a marginal of M , M is called the joint observable of M1, · · · ,Mn.

To test if two arbitrary observables (POVMs) are compatible is in general a difficult problem,
but the task is much simpler in the case of projective measurements and there is an equivalent
condition:

Proposition 1. If measurements Mk as in definition 6 are projective measurements, then M1, · · · ,Mn

are jointly measurable if and only if Mk
xk

and M j
xj commutes for all k, j, xk, xj, i.e. the observables

commute.

A proof is given in [13]. When given n commutative observables Mk (having the same outcome
space Ω), we can define the joint observable M to be Mx1,x2,··· ,xn = Jn(M1

x1
,M2

x2
, · · · ,Mn

xn) =
1
n!

∑
σ∈SnM

σ(1)
xσ(1)M

σ(2)
xσ(2) · · ·M

σ(n)
xσ(n)

, where Sn is the nth symmetric group, Jn() is the generalized
Jordan product, and x1, x2, · · · , xn ∈ Ω. Note that this is a joint observable if and only if all

Mx1,x2,··· ,xn are positive. One can easily show that M
σ(1)
xσ(1)M

σ(2)
xσ(2) · · ·M

σ(n)
xσ(n)

is positive because the
individual observabals commute. Hence M is indeed the joint observable. Then using a necessary
condition proven in [28], it is also possible to show that commutativity is necessary for joint mea-
surability.

Indeed, such property matches the traditional understanding which equates compatibility with
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commutativity for projective measurements. Operationally this can be understood as commuta-
tive projective measurements do not disturb each other. Such intuition will be made clear after
we review another defintion of the measure of incompatibility for projective measurements.

Definition 7. The degree of compatibility between two measurements M1,M2 is defined to be the
greatest number 0 ≤ λ ≤ 1 such that the λM1 + (1 − λ)D1 and λM2 + (1 − λ)D2 are jointly
compatible for some trivial devices D1, D2.

In reality, the degree of compatibility between an arbitrary pair of quantum measurement is difficult
to compute. There exists no known analytic formula that can be used to compute the degree.
It is also not known, in such definition, what pairs of quantum measurements are maximally
incompatible in a finite dimensional Hilbert space Hd. There does exists several useful lower
bounds (tight in infinite dimensional Hilbert space L2(R)) as analysed in [29].

2.3.2 Measure of Incompatibility by Probability Distribution

Since joint measurability cannot give us much intuition on how should maximally incompatible
projective measurements be like in finite dimensional Hilbert spaces, it makes sense to change a
perspective and consider to study the incompatibility by comparing probability distributions. The
follwoing definition is taken from [15].

Definition 8. Given a measure of distance D(·, ·) on the space of discrete probability distributions,
two projective measurements N1,N2 on d dimensional Hilbert space Hd with rank one projectors
{Pi } , {Qj } respectively, and an arbitrary density operator ρ; we define the probability distribu-
tions: PrN1

ρ (i) = TrPiρ, PrN2→N1
ρ (i) = TrPi(

∑
j QjρQj) (first do measurement N2 then do

measurement N1). The “measure of incompatibility of N2 with N1” (relative to D(·, ·)) is
defined to be Q(N2 → N1) := supρD(PrN2→N1

ρ , P rN1
ρ ). The degree of incompatibility between

N1 and N2 is then defined as the average: Q(N1,N2) := Q(N2→N1)+Q(N1→N2)
4

Assume D(·, ·) to be the sup distance, it is shown in [15], Q(N1,N2) vanishes if and only if the two
measurements commutes. In words this means if the two observable commutes, a measurement on
N2 does not disturb the outcome of measurement N1 and vice versa. It can also be shown that if the
measurements are on mutually unbiased bases then the their degree of incompatibility Q(N1,N2)
is maximized. Mutually unbiased basis means for {Pi = | αi〉〈αi| } and {Qj = | βj〉〈βj | }, the or-
thonormal bases { | αi〉 } , { | βj〉 } satisfies |〈αi|βj〉|2 = 1

d ,∀i, j. In other words, measuring |βj〉
on the basis { | αi〉 } generates completely random result (a uniform distribution). In fact, such
projective measurements can be used in quantum key distribution protocols [30].

These known results form the basic intuitions in our definition of the measure of incompatibility for
projective measurements. In particular, we expect our measure vanishes when the measurements
commutes and go to maximal when the measurements are on mutually unbiased basis.

3 A New Measure of Incompatibility for Projective Mea-
surement

In this section, we present the definition directly and prove several easy mathematical properties to
illustrate why this is a good definition. Note in this section we mainly focus on rank one projective
measurement.

Definition 9. Consider two (rank one) projective measurements N1 and N2 on Hd, with POVM
elements {Pi = | αi〉〈αj | } and {Qj = | βj〉〈βj | } respectively, where { | αi〉 } and { | βj〉 } are or-
thonormal. The degree of incompatibility between N1 and N2 is defined to be (davg(N1,N2))2 =

2− 2
d

∑d
i,j TrPiQjPiQj. N1 and N2 are said to be compatible if davg(N1,N2) = 0

10



3.1 Basic Properties

In this subsection, we prove several important properties of our definition. These properties show
that our definition fits well into existing results. In this way, we hope to convince the reader that
our definition is sensible. We also show in this subsection, our definition of incompatibility in fact
defines a metric in strict mathematical sense on rank one projective measurements. A significant
consequence is that we can use davg(·, ·) to do a quantum learning task, we discuss this in section 4.

Consider the change of coordinate matrix Aij = 〈αi|β〉 between the two orthonormal basis. As a
computational aid, observe that:

TrPiQjPiQj = Tr |αi〉〈αi|βj〉〈βj |αi〉〈αi|βj〉〈βj |
= 〈αi|βj〉〈βj |αi〉〈αi|βj〉〈βj |αi〉 = |Aij |4

(6)

This allows davg(N1,N1) to be written in a more compact form:

(davg(N1,N1))2 = 2− 2

d
‖A‖44 (7)

Where ‖A‖4 is the 4-norm of A.
The following proposition shows that our definition reflects conventional ideas of incompatibility
between projective measurements discussed in section 2.3.

Proposition 2. 1) Two (rank one) projective measurements N1,N2 are compatible with respect
to definition 9 if and only if they are on the same basis, i.e, the two observables commute or in
other words, they are compatible in the sense of joint measurability.
2) Two (rank one) projective measurements N1,N2 are maximally incompatible with respect to
definition 9 if and only if they are mutually unbiased, i.e. |〈αi, βj〉|2 = 1

d ,∀i, j.

Proof.
To facilitate the proof, we define a new matrix on A, by letting B ∈ LinRd, a real linear operator,
to be such that Bjk = |Ajk|2. Observe that ‖A‖44 =‖B‖22 where ‖B‖2 is the 2-norm of B.
Note that the change of coordinate matrix A between two orthonormal bases is unitary, making B
double stochastic and positive in each entry. In particular this makes the maximum of ‖A‖44 easy
to compute:∑
j B

2
ij ≤ (

∑
j Bij)

2 = 1,∀i = 1, ..., d, then‖B‖22 ≤ d with equality holds if and only if for each row
of the matrix B there is only one none-zero entry, which is equal to 1. Equivalently, A is almost a
permutation matrix except that each none zero entry in A can have a global phase. This proves (1).

To see (2), we first note that ‖A‖44 = ‖B‖22 has an obvious lower bound: The 2-norm of B has
a lower bound which is its spectral radius, and noting that B is double stochastic and symmetric,
we conclude ‖B‖22 ≤ 1. This lower bound is reached, only when Bij = 1

d , which can be shown by
applying the Lagrange multiplier method on the minimization problem. However, Bij = 1

d exactly
means |〈αi|βj〉|2 = 1

d , i.e the two bases are mutually unbiased. One example is when |αj〉 is Fourier
transformed of |βk〉:

|αj〉 =
1√
d

d∑
k=0

e
2πijk
d |βk〉, i2 = −1,∀j ∈ { 1, ..., d } (8)

This makes |〈αj |βk〉|2 = ( 1√
d
e

2πijk
d )2 = 1

d .

Proposition 2 shows that davg we defined has nice mathematical properties to serve as a mea-
sure of incompatibility between measurements. But what it actually means deserves some more
explanations. Now note that the measurements N1,N2 have a conventional implementation, their
underlying channels can be described as N1(ρ) =

∑
i PiρPi and N2(ρ) =

∑
j PjρPj respectively,

so we may rewrite: ∑
i,j

TrPiQjPiQj =
∑
i

TrPiN2(Pi)

where TrPiN2(Pi) is exactly the probability of measurement N1 produces outcome i when its
measuring the output state of a measurement N2 on Pi. In this sense, each individual terms

11



TrPiN2(Pi) quantifies how much the measurement N1’s element Pi is disturbed by a measure-
ment on N2. Summing over all the TrPiN2(Pi), our definition davg can be seen as quantifying
the averaged mutual disturbance between two measurement bases. So instead of measuring the
probability distribution’s mutual disturbance such as in definition 8, our definition reveals directly
the complementarity between each measurement elements of the two measurements.

In the following subsection, we prove another interesting property of davg(·, ·), that is, it satis-
fies triangle inequality.

3.2 A Metric

If we assume that davg(·, ·) is indeed a metric for now, we can see there’s an interesting connection
between davg(·, ·) and the Bures distance between two densitoy operators ρ1, ρ2, defined as [31]:

DB(ρ1, ρ2)2 = 2(1−
√
F (ρ1, ρ2)), F (ρ1, ρ2) = [Tr(

√√
ρ1ρ2
√
ρ1)]2 (9)

Here F (ρ1, ρ2) is the fidelity between ρ1, ρ2. Note that the equation (9) and definition 9 admit a very
similar form, it suggests us to consider defining a fidelity for (rank one) projective measurements:

Definition 10.

F̂ (N1,N2) = (
1

d
(
∑
i,j

TrPiQjPiQj))
2 (10)

We may now in the report refer to F̂ (N1,N2) as a fidelity.

Theorem 2. davg(N1,N2) is a metric between N1,N2, on the space of all rank one projective
measurements over the Hilbert space Hd.

Proof.
Note that in proposition 2, we’ve already shown that davg vanishes if and only the projective
measurements are on the same basis up to global phases and it’s obviously non-negetive. The only
non-trivial part to prove is actually the triangle inequality. To prove this, we associate to each
projective measurements a density operator (Choi operator):

τN = (N ⊗ Id)(|ψ〉〈ψ| ⊗ |ψ〉〈ψ|)

Where |ψ〉 is a maximally entangled state chosen according to the measurement basis concerned.
In particular, we define for N1, τN1 = (N1⊗Id)(

∑
i,j |αi〉〈αj | ⊗ |αi〉〈αj |) =

∑
i |αi〉〈αi| ⊗ |αi〉〈αi|,

and for N2, τN2
= (N2 ⊗ Id)(

∑
i,j |βi〉〈βj | ⊗ |βi〉〈βj |)

=
∑
j |βj〉〈βj | ⊗ |βj〉〈βj |.

The key observation is that davg(N1,N2) corresponds to the induced metric of 〈·, ·〉 (the Hilbert

Schmidt inner product) on B(Cd ⊗ Cd) up to a constant factor
√

1
d :

〈τN1
, τN2

〉F = Tr τ †N1
τN2

= Tr
1

d

∑
i

Pi ⊗ Pi
1

d

∑
j

Qj ⊗Qj

=
1

d2

∑
i,j

Tr |αi〉〈αi|βj〉〈βj | ⊗ |αi〉〈αi|βj〉〈βj |

=
1

d2

∑
i,j

〈αi|βj〉〈βj |αi〉〈αi|βj〉〈βj |αi〉

=
1

d2

∑
i,j

TrPiQjPiQj

=
1

d

√
F̂ (N1,N2)

(11)
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‖τN1
− τN2

‖2F = 〈τN1
− τN2

, τN1
− τN2

〉F
= 〈τN1

, τN1
〉F + 〈τN2

, τN2
〉F − 2〈τN1

, τN2
〉

=
2

d
− 2

d2

∑
i,j

TrPiQjPiQj = 2(1−
√
F̂ (N1,N2))

=
1

d
davg(N1,N2)2

(12)

Equation (21) shows that davg(N1,N2) is precisely ‖τN1
− τN2

‖F up to a constant factor. Then
the correctness of davg(·, ·) as a metric is an immediate consequence of ‖·, ·‖F being a metric. For
instance, triangle inequality follows from davg(N1,N3) =‖τN1

− τ
3
‖ ≤‖τN1

− τ
2
‖+]‖τN2

− τ
3
‖ =

davg(N1,N2) + davg(N2,N3)

Note that davg(N1,N2) is defined so by dropping a constant factor
√

1
d compared to ‖τN1 , τN2‖,

due to the fact that the dimension d can be exponentially large in terms of the number of subsys-
tems involved. When d increases exponentially as the number of systems increases, we do not want
the value of the incompatibility also drops exponentially, which would possibly be a big obstacle
for estimating teh degree of incompatibility between measurement devices.

In additional to the correctness of the metric, we can gain some more insights from the preceding
proof.

Remark 1. Equation (11) further confirms the intuition that F̂ shares similar properties with the
definition of fidelity between density operators. Note that by Uhlmann’s theorem [2] 2:

Theorem 3. Suppose ρ and σ are states of a quantum system Q. Introduce a second quantum
system R which is a copy of Q. Then√

F (ρ, σ) = max|ψ〉,|φ〉|〈ψ|φ〉|, (13)

where the maximization is over all purifications |ψ〉 of ρ and |φ〉 of σ into RQ.

This suggests that a fidelity between density operators can be defined from inner product between
purifications. Very similarly, the square root of F̂ also admits a form (up to a constant factor 1

d)
of inner product between Choi-Jamiolkowski representations of projective measurements.

Now we conclude the discussion of basic mathematical properties of our measure of incompatibility
between projective measurement by doing a comparison with the existing definitions.

The most obvious distinction is perhaps the degree of incompatibility is easy to compute in terms
of our definition and automatically assumes an analytic form. While in both definition 7 and
definition 8, no known analytic form exists and one need to solve a usually difficult maximization
problem to obtain the degree of incompatibility (in fact, in the case of joint measurability, to solve
the degree of incompatibility between a known pair of observables might itself be an open problem
in the community). In terms of how should projective measurements be considered compatible, our
definition, definition 6,7, and definition 8 give the same requirement: commutativity of observable.
In terms of how projective measurements should be considered maximally incompatible (in a finite
dimensional Hilbert Space), our definition and definition 8 both requires measurements to be on
mutually unbiased bases (which has clear physical meanings), but such question still cannot be
answered under definition 6, 7. The most significant advantage of our definition we have shown
is that davg(·, ·) defines a metric. This opens up a lot of possibilities, for instance, we might con-
sider using this degree of incompatibility to do learning tasks, we will address this issue in section 5.

But before that, in section 4, we show an amazing result which makes our definition also use-
ful in practice: given 2 unknown (projective) measurement devices, we can estimate their degree
of incompatibility in constant time using a quantum switch.

2Note that in Nielsen & Chuang’s book, fidelity is defined as the square root of the fidelity that is adapted in
this note
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4 Efficient Estimation of davg Using a Quantum Switch and
Generalizations

Suppose that we are given two measurement devices A and B that does measurements N1 and N2

(as in definition 9), is it possible to test how incompatible the two measurements are? Of course
one may follow the definition 9, to do so you need to know {Pi } , {Qj } first and you can, by doing
a quantum operation tomography whose time complexity (number of calls to N1, and N2) scales
as O(d4), where d is the dimension of Hd (the Hilbert space the measurements are acting on) and
we know that d increases exponentially as the number of subsystems [2]. To compute the degree
of incompatibility in terms of definition 7 or definition 8 is even more difficult, because having
information of {Pi } , {Qj } (the full descriptions of the measurements) does not necessarily means
the degree can be calculated as we have discussed at the end of section 3.

However, it turns out that we do not need to know anything about the implementations of the
measurement devices. Using a quantum switch, we can estimate davg(N1,N2) in a constant time.

4.1 Protocol to Estimate davg(N1,N2)

1. Input the state I
d ⊗ |+〉〈+|c to the quantum switch S(N1,N2) (N1,N2 are the two projective

measurements as in definition 9), the state after the evolution is then (discarding all measurement
results):

S(N1,N2)(
I

d
⊗ |+〉〈+|c) =

∑
i,j

(PiQj ⊗ |0〉〈0|c +QjPi ⊗ |1〉〈1|c)
I

d
⊗ |+〉〈+|c(QjPi ⊗ |0〉〈0|c + PiQj ⊗ |1〉〈1|c)

=
1

2d
(
∑
i,j

PiQjQjPi ⊗ |0〉〈0|c +QjPiPiQj ⊗ |1〉〈1|c + PiQjPiQj ⊗ |0〉〈1|c +QjPiQjPi ⊗ |1〉〈0|c)

=
1

2d
(I ⊗ Ic +

∑
i,j

PiQjPiQj ⊗ |0〉〈1|c +QjPiQjPi ⊗ |1〉〈0|c)

(14)
2. Then we measure the control system C on Fourier basis { | +〉, |−〉 }. The probability of getting
an outcome “-” is:

p(−) =
1

2d
Tr 〈−|c(I ⊗ Ic +

∑
i,j

PiQjPiQj ⊗ |0〉〈1|c +QjPiQjPi ⊗ |1〉〈0|c)|−〉c

=
1

2
− 1

4d
(
∑
i,j

TrPiQjPiQj + TrQjPiQjPi)

=
1

2
− 1

2d
(
∑
i,j

TrPiQjPiQj)

(15)

Observe that:
4p(−) = davg(N1,N2)2 (16)

(16) means to estimate davg(N1,N2), it suffices to estimate p(−) instead. However, p(−) is just
the probability of getting an outcome “-” for a qubit measurement (which is of dimension 2). So
each time we repeat the process, we will obtain an outcome either + or − in a constant time
(only relevant to the time needed to do measurements N1,N1). Then by repeating the process, we
can obtain arbitrarily accurate estimate of p(−) which will lead to arbitrarily accurate estimate of
davg(N1,N2). This means to estimate davg(N1,N2), the number of accesses to the measurement
devices A,B is constant of the dimension d, inverse polynomial of the accuracy we need.

Such result shows that our definition can be very useful in practice. For instance, imagine you
want to set up a circuit to do quantum key distribution. To do so, whether using a BB84 protocol
or the protocol proposed in [32] (where eavesdropper cannot alter the data because Bell inequality
is used to detect any such disturbance), you will need do measurements that are incompatible.
Hence if you are equipped with a quantum switch, you are then able to pick out a desirable pair
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Figure 1: Circuit for qubit measurements

Figure 2: Simulation: 40000 shots

of measurement devices very quickly even if you do not know the really implementations of these
devices.

As we have discussed in section 2.2.1, we cannot implement a quantum switch dterministically
by a circuit in which two unknown oracles (in our case, measurements) are called a single time in
a fixed causal order. But we are not denied from the possibility of implementing the procedure
probabilistically. Figure 1 shows a quantum circuit that implements the protocol for qubit mea-
surements on Fourier basis and computational basis (d = 2). In this circuit, the Quantum switch
is successfully implemented when classical registers read out c1c2 = 00 [16][33]. Figure 2 shows the
result of running this circuit for 40000 shots (in a simulator), note that only the first 2 columns
are valid statistic. Simulation says that the degree of incompatibility is almost 1 which is exactly
the theoretical value.

However, the implication of this procedure goes beyond what we have discussed. It suggests that
for any quantum measurements N1,N2, given that we know what its underlying quantum channel
is, we can apply the procedures (1) (2), then define the the degree of incompatibility between the
two measurements as 2

√
p(−). The most obvious generalization is then to consider the case where

the projectors are of rank higher than 1. Using the quantum channel we mentioned in the last
paragraph of section 2.1, we have the following result:

4.2 Generalizations

Definition 11. Consider two projective measurements N1 and N2 on Hd, with POVM elements
{Pi }k1i=1 and {Qj }k2j=1 respectively, where Pi, Qj are orthogonal projectors. The degree of incom-

patibility between N1 and N2 is defined to be (davg(N1,N2))2 = 2 − 2
d

∑k1
i=1

∑k2
j=1 TrPiQjPiQj.

N1 and N2 are said to be compatible if davg(N1,N2) = 0

We are not assuming the projectors Pi, Qj to be of rank one anymore, the consequence is then the
proof of proposition 2 does not apply. However, it turns out that the proposition 2 still holds, in
this way, our definition is now fully fitted into the conventional ideas. We summarize this also as
a proposition.

Proposition 3. 1) Two projective measurements N1,N2 are compatible with respect to definition
11 if and only if they commute or in other words, they are compatible in the sense of joint mea-
surability.
2) Two projective measurements N1,N2 are maximally incompatible with respect to definition 11
if and only if all the projectors are of rank one and onto mutually unbiased basis, i.e. Pi =
|αi〉〈αi|, Qj = |βj〉〈βj | and |〈αi, βj〉|2 = 1

d ,∀i, j.

Before diving into the proof, we first state a lemma here. A proof of this lemma can be found in
[34] Corollary 7.62:

Lemma 1. Let A,B be n by n Hermitian matrices: If A and B are positive semidefinite, then AB
is diagonalizable and has non-negative eigenvalues.
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Proof.
For (1) We first prove that TrPiQjPiQj ≥ 0:
Note that P 2

i = Pi we have TrPiQjPiQj = TrPiPiQjPiQj = Tr (PiQj)Pi(QjPi). Note that
(PiQj)Pi(QjPi) is a postivie semi-definite operator since for any |x〉 ∈ Hd, 〈x|(PiQj)Pi(QjPi)|x〉 =
(〈x|PiQj)Pi(QjPi|x〉) ≥ 0 (by definition the orthogonal projector Pi is positive semi-definite).

Recall the standard inner product on the space of linear operators: 〈A,B〉 = TrB†A. Note
that TrPiQjPiQj is essentially the inner prodcut between PiQj and QjPi, and noting the non-
negativity of TrPiQjPiQj we may then apply the Cauchy Schwartz Inequality:

k1∑
i=1

k2∑
j=1

TrPiQjPiQj =

k1∑
i=1

k2∑
j=1

|TrPiQjPiQj | =
k1∑
i=1

k2∑
j=1

|〈PiQj , QjPi〉|

≤
k1∑
i=1

k2∑
j=1

∥∥PiQj∥∥∥∥QjPi∥∥ =

k1∑
i=1

k2∑
j=1

√
TrPiQjQjPi

√
QjPiPiQj

=

k1∑
i=1

k2∑
j=1

√
TrPiQj

√
TrQjPi =

k1∑
i=1

k2∑
j=1

TrPiQj

= Tr

k1∑
i=1

k2∑
j=1

PiQj = Tr I = d

(17)

Where the second inequality follows from the Cauchy Schwartz inequality.
Note that for the equality to hold, we must have PiQj = αQjPi for some α ∈ C. Note that

in this case 0 ≤ TrPiQjPiQj = 〈PiQj , QjPi〉 = 〈PiQj , αPiQj〉 = α
∥∥PiQj∥∥2

. Thus α ≥ 0. On
the other hand TrPiQj = TrQjPi, so we must have α = 1 or TrPiQj = 0. In the latter case,

TrPiQj =
∥∥PiQj∥∥2

= 0 means PiQj = 0 = QjPi. So in either cases, Pi, Qj must be commutative.

A remark here is that in the case of rank one projectors, commutativity is equivalent to say
that the bases coincides and thus equivalent to say that the two measurements are the same. But
in non rank one case, we obviously do not have such property. So we cannot expect for a metric.

For (2), we first consider only
∑
j TrPiQjPiQj , fixing i. Consider the matrix PiQj , assume Pi

is of rank ri, then PiQj is certainly of rank less then ri. Since Pi, Qj are orthogonal projectors,
they are automatically Hermitian and positive semi-definite, so by lemma 1, we can diagonalize
PiQj = X∆X−1, where ∆ is a diagonal matrix with non-negative entries, of which at most ri
are non-zero. Let λj1, · · ·λjri be such eigenvalues (not necessarily all non-zero). Considering all
possible j = 1, · · · k2:

ri = TrPi =

k2∑
j=1

TrPiQj =

k2∑
j

ri∑
s=1

λjs (18)

Now if we consider TrPiQjPiQj = Tr (PiQj)
2, it is immediately obvious that TrPiQjPiQj =∑ri

s=1 λ
2
js. Now from equation (18) and the constraint that all λjs ≥ 0, it is easy to show, using

Lagrange multiplier method, we have:

k2∑
j

TrPiQjPiQj ≥
k2∑
j

ri∑
s=1

(
ri
k2ri

)2 =
ri
k2

(19)

So this means we have the lower bound:

k1∑
i=1

k2∑
j=1

TrPiQjPiQj ≥
k1∑
i=1

ri
k2

=
d

k2
. (20)

Similarly, if we go from Qj , then we would obtain another lower bound d
k1

and thus we have:

k1∑
i=1

k2∑
j=1

TrPiQjPiQj ≥ max(
d

k1
,
d

k2
). (21)
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So from here, (2) can be easily seen.

In principle, we can also prove the triangle inequality, by associating to the measurement N1

for instance
∑
i Pi ⊗ Pi. But we are in general not interested in this case since for non rank one

projective measurements, we cannot obtain a metric anyway.

One could also ask, how to define the degree of incompatibility between non-projective POVMs?
In principle, we can also use the procedure in section 4.1 and the p(−) to define a degree. However,
the problem is in general, a POVM is not associated with a quantum channel, i.e, there could be
infinitely many distinct implementations of the same POVM. Hence, when defining the degree of
two POVMs, we must first declare what instruments that implement the POVMs are we assuming.
However, if the POVM elements are restricted to be of rank one, then we can uniquely identify
the underlying channels and explicitly define the degree of incompatibility. We give an example:

Consider a POVM M1 with rank one POVM elements on H2: { 2
3 | φi〉〈φi| }

3

i=1
, where |φ1〉 =

|0〉+|1〉√
2
, |φ2〉 = |0〉+e

2πi
3 |1〉√
2

, |φ3〉 = |0〉+e
−2πi

3 |1〉√
2

. Then what is the degree of incompatibility between

this POVM and itself? To define the degree of incompatibility, we associate to the POVM a quan-
tum channel which implements this POVM. Since all POVM elements are of rank 1, we can write
down the Kraus representation of the unique quantum channel that implements this POVM. In

fact, the Kraus operators are simply {
√

2
3 | φi〉〈φi| }

3

i=0
. So following the procedure in section 4.1,

after some calculations, we would observe that p(−) = 1
2−

1
4×

3
2 = 1

8 and thus davg(M1,M1) =
√

2
2 .

Note that this value is not 0! On one hand, it is not surprising, since indeed a POVM would dis-
turb itself by repeated measurements, i.e the probability distribution generated by doing a POVM
measurement twice can be different from the one generated by doing the POVM only once. On
the other hand, if you look at it from a Joint device perspective, then clearly, a POVM should be
compatible with itself, the joint measurement can simply be: do POVM once, copy the classical
output, output the same 2 values. In such a way, to define and make sense of the definition of
degree of incompatibility between general POVMs is trickier.

5 A Quantum Learning Task; Clustering Projective Mea-
surement

What has been understood is that the degree of incompatibility between projective measurements
defined by us is easy to compute/estimate in both theory and practice. It satisfies much of our
intuitions for such a measure. It is also a metric (for rank one projective measurements). So it is
natural to ask, cam we use this quantity to do quantum learning tasks? One obvious task is then to
cluster a set of unknown (rank one) projective measurements using the degree of incompatibility as
the metric, and classical clustering algorithms. To answer this question, we have done the following
experiments.

5.1 Clustering Fourier Basis, Computational Basis and GBS Basis

Here we try to cluster a list of (rank one) projective measurements over Hd which are chosen
uniformly at random from computational basis, Fourier basis and generalized bell states.
The Fourier basis of dimension d = 2t is defined as:

|j〉 =
1√
d

=

d−1∑
k=0

e
2πijk
d |k〉 (22)

A generalized bell state in a bipartite composite system A ⊗ B of dimension d =
√
d ∗
√
d is

obtained by applying the Heisenberg-Weyl operators on the maximally entangled bipartite state
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Figure 3: Fourier and Computational Measurements with Perturbation

|φ〉AB = 1
4√
d

∑√d−1
j=0 |j〉A|j〉B . Obtaining the basis { | Φm,n〉AB } as:

|Φm,n〉AB =
1
4
√
d

√
d−1∑
k=0

e
i2πmk√

d |k〉A|k 	 n〉B (23)

The degree of incompatibility between projective measurements were pre-computed using defini-
tion 9 and presented to a clustering algorithm in the form of a distance matrix (of the randomly
selected list of bases). For efficiency, the dimension of the systems were restricted to 4, 16 and
64 (corresponding to 2, 4 and 6 qubit systems) and the length of the list was restricted to 100.
Summing up, the knowledge known to the clustering algorithm are the number of clusters (3 in
this experiment) and the distance between projective measurements in the list.

The performance of the clustering algorithm was measured using “Adjusted Mutual Information”
[35],where a score of 0 indicates a random clustering, 1 indicates a perfect match. In particular,
we performed the list generation and clustering for 50 times and reported the time that a perfect
match was obtained.
We chose to use the k-medoids algorithm, which is a variant of the standard k-means algorithm [36].

Experimental results showed that in all settings (dimension 4, 16, 64), the clustering algorithm al-
ways achieved a perfect labelling, i.e, the projective measurements were always correctly clustered.
However, this was only true when we applied a cautious initial seeding process, where the initial
medoids were selected in a k-means ++ style [37]. Note that a random initial seeding process
could not achieve the same performance as the k-means ++ style initial seeding. This suggests
that clustering projective measurements is highly sensitive to initial seeding.

5.2 Clustering with Perturbations

It is also interesting to know how the clustering algorithm reacts to perturbations. Suppose that
we know the black boxed qubit projective measurements are either on Fourier basis { | +〉, |−〉 }
or on Computational basis { | 0〉, |1〉 }. However, implementations of the measurement devices are
not perfect and the bases are perturbed by a small factor. This can be visualized on the Bloch
Sphere: note that qubit projective measurements are antipodal points on Bloch Sphere. By saying
the projective measurements are perturbed, we mean that their representation on Bloch Sphere
are perturbed by a small factor, see figure 3. Restricting that the perturbations are relatively
small, for instance 22.5◦ off on Bloch Sphere as in figure 3, we did an experiment similar to the
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previous one: generate a sequence of projective measurements on qubit, each one of them being
either Fourier mesurements or Computational measurements, but randomly perturbed as in figure
3. Then construct the distance matrix, cluster the sequence of measurements into 2 clusters using
k medoids algorithms with k means ++ style initial seeding.
We repeated the procedure for 50 times and in each time the clustering were always perfect. This
result together with the previous one suggest that our definition of degree of incompatibility be-
tween projective measurements is a very useful metric in the task of clustering (rank one) projective
measurements when the projective measurements are themselves well separated and the number
of clusters is known, even in the presence of perturbation.

However, one would expect to extract some more general notions of similarity among the block
boxed projective measurements. For instance: distinguish product measurements and entangled
measurements. We deal with this in the following section.

5.3 Clustering Product Measurements and Entangled Measurements

Another interesting question to ask is if this clustering process is capable of distinguish product and
entangled measurements? Consider the task where we are asked to cluster a set of projective mea-
surements, each of which is either a product measurements (all basis elements in product states)
or an entangled measurements (all basis elements in entangled states), into 2 clusters; product
measurements being in one cluster and entangled measurements being in the other one.

It is clear that a product measurement and a entangled measurement always have non zero degree
of incompatibility from proposition 2. This suggests that we might indeed cluster a set of product
measurements and entangled measurements, although one should not expect a perfect clustering.

One can implement this idea in the following way:

Firstly, measurements are all assumed to be on 2 qubit systems A ⊗ B (of dimension 4) and
generated at random: for product basis: first generate 2 bases at random for A and B, i.e.
{ | α0〉A, |α1〉A } and { | β0〉B , |β1〉B }, then the basis for A⊗B is:

{ | α0〉A|β0〉B , |α1〉A|β0〉B , |α0〉A|β1〉B , |α1〉A|β1〉B };

Similarly for entangled basis, first generate at random { | α0〉′A, |α1〉′A } and { | β0〉′B , |β1〉′B }, then
the basis of A⊗B is put into:

{ (|α0〉′A|β0〉′B+|α1〉′A|β1〉′B)√
2

,
(|α0〉′A|β0〉′B−|α1〉′A|β1〉′B)√

2
,

(|α0〉′A|β1〉′B+|α1〉′A|β0〉′B)√
2

,
(|α0〉′A|β1〉′B−|α1〉′A|β0〉′B)√

2
}

Then following this scheme we generate at random a sequence of 100 product and entangled
measurements. Calculate the distance matrix as before, use a k means ++ style initial seeding,
set the number of clusters to be two and then apply the k medoids algorithm. Then measure the
performance of each individual clustering process using “Adjusted Mutual Information”. Finally,
repeat the process for 50 time and report the average score.

Not surprisingly, the reported score was not as perfect as the first two experiments since product
measurements themselves can still differ a lot (similarly for entangled measurements) in terms of
degree of incompatibility. The average score was 0.33 and this result was stable upon repetition.
This means we are able to distinguish random product measurement and entangled measurements
to some extends and achieve a better performance than random assignments. But it is highly
unlikely to achieve a perfect separation.

5.4 Summary of Experimental Results

Simulation results suggest that the metric defined in definition 9 can be a useful distance measure
in tasks of clustering a set of projective measurements, given that a proper clustering algorithm is
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applied. An implicit assumption here is that the degree of incompatibility can be estimated up to
a high precision in practice, since the only inaccuracy in our simulation is caused by the inaccuracy
of floating point arithmetic in the classical computer.

We would also like to point out that although in our experiments, we only considered compos-
ite systems of no more than 6 qubits due to the limit of the power of our classical simulator, it
is not to be assumed we cannot cluster projective measurements that act on large systems. In
fact, in section 4.1 we have already argued that the degree of incompatibility between projective
measurements can estimated in constant time however large the system is.

6 Conclusion

In conclusion, we have defined a new measure of how incompatible two (projective) quantum
measurements can be. Such idea of incompatibility is a unique feature of quantum physic which
distinguishes the quantum world and the classical world, and admits many applications in quantum
information theory (see section 2.3 and section 4). In section 3 and section 4, we proved several
mathematical properties to justify the meaningfulness of our definition from different perspective.
In this report, we showed that our definition captures the essence of the other well accepted mea-
sure of incompatibility for quantum measurements. In particular, we showed our definition agrees
with others on saying that projective measurements with commutative measurement elements are
compatible. We also explicitly calculated the pair of measurements that are maximally incom-
patible (under our definition) and demonstrated that these measurements are indeed intuitively
maximally incompatible, and we showed that they are very useful in quantum information theory.

What makes our definition stand out from the other existing measures is that using a new com-
putational primitive: quantum switch, we can estimate the degree of incompatibility between two
measurements in constant time of the dimension of the system. In this way, we have related our
work with the idea of superposition of casual order. In terms of the research in quantum switch
and indefinite causal order, our result (especially section 4) provides another example of quantum
computation model with indefinite causal order allowing a better time complexity in computational
tasks. We would also like to point out that the computability both in theory and in practice is
another merit of our definition (see section 4).

In relation to machine learning, we argued in section 5 that the degree of incompatibility between
(rank one) projective measurements being a metric enables us to perform a quantum learning task.
We demonstrated that we can cluster a set of projective measurement devices using this metric
(under minor assumptions) and suitable clustering algorithm. Here, we illustrated how quantum
theory can actively interact with classical results in machine learning.

As a final comment, we would also like to point out some future directions of research. In section
4, we mentioned (and illustrated with an example) that the definition of degree of incompatibility
can be extended general POVMs, give that we know the quantum channel that implements the
measurement. However, the concrete analysis of this generalization still not exists, thus it would be
interesting to study how such generalization would diverge from the known results. On the other
hand, it would also be interesting to further explore the usefulness of our definition in quantum
information and computation theory (one example was discussed in section 4).
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[21] Mateus Araújo, Fabio Costa, and Časlav Brukner. Computational Advantage from Quantum-
Controlled Ordering of Gates. , 113:250402, Dec 2014.

[22] A. A. Abbott, J. Wechs, D. Horsman, M. Mhalla, and C. Branciard. Communication through
coherent control of quantum channels. ArXiv e-prints, October 2018.

21

https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf


[23] S. Salek, D. Ebler, and G. Chiribella. Quantum communication in a superposition of causal
orders. ArXiv e-prints, September 2018.

[24] G. Chiribella, M. Banik, S. Sankar Bhattacharya, T. Guha, M. Alimuddin, A. Roy, S. Saha,
S. Agrawal, and G. Kar. Indefinite causal order enables perfect quantum communication with
zero capacity channel. ArXiv e-prints, October 2018.

[25] Paul Busch, Teiko Heinonen, and Pekka Lahti. Heisenberg’s uncertainty principle. , 452:155–
176, Nov 2007.

[26] P. Busch and P. J. Lahti. The complementarity of quantum observables: Theory and experi-
ments. Nuovo Cimento Rivista Serie, 18:1–27, Apr 1995.

[27] Arthur Fine. Hidden variables, joint probability, and the bell inequalities. Phys. Rev. Lett.,
48:291–295, Feb 1982.

[28] Takayuki Miyadera and Hideki Imai. Heisenberg’s uncertainty principle for simultaneous
measurement of positive-operator-valued measures. Physical Review A, 78:052119, Nov 2008.

[29] Teiko Heinosaari, Jussi Schultz, Alessandro Toigo, and Mario Ziman. Maximally incompatible
quantum observables. arXiv e-prints, page arXiv:1312.3499, Dec 2013.

[30] Nicolas J. Cerf, Mohamed Bourennane, Anders Karlsson, and Nicolas Gisin. Security of
Quantum Key Distribution Using d-Level Systems. , 88:127902, Mar 2002.

[31] Wikipedia contributors. Bures metric — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 10-October-2018].

[32] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett., 67:661–663,
Aug 1991.

[33] Ibm q. https://www.research.ibm.com/ibm-q/. Accessed: 2018-10-20.

[34] R.A. Horn and C.R. Johnson. Matrix Analysis. Matrix Analysis. Cambridge University Press,
2013.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[36] Andrei Novikov. annoviko/pyclustering: pyclustering 0.8.1 release, May 2018.

[37] Wikipedia contributors. K-means++ — Wikipedia, the free encyclopedia, 2017. [Online;
accessed 11-October-2018].

22

https://www.research.ibm.com/ibm-q/

	Introduction
	Background
	Qubit, Density Operator, Measurement and Quantum Channel
	Quantum Switch
	Properties and Applications of Quantum Switch

	Incompatibility
	Joint Measurability
	Measure of Incompatibility by Probability Distribution


	A New Measure of Incompatibility for Projective Measurement
	Basic Properties
	A Metric

	Efficient Estimation of davg Using a Quantum Switch and Generalizations
	Protocol to Estimate davg(N1, N2)
	Generalizations

	A Quantum Learning Task; Clustering Projective Measurement
	Clustering Fourier Basis, Computational Basis and GBS Basis
	Clustering with Perturbations
	Clustering Product Measurements and Entangled Measurements
	Summary of Experimental Results

	Conclusion

