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1 Introduction

Since first introduced by Richard P. Feynman in 1981 in his epochal-making speech on quantum
computation [1], tremendous progress has already been made in both theory and physical real-
ization. Along the line of research, many algorithms was proposed and gained public attention
although they were only of pure theoretical interests in 90s when created. Examples include the
well-known Shor’s algorithm, a quantum algorithm which factorizes a large integer into its prime
factors [2], and the Grovers search algorithm [2] which was later extended to a general scheme called
amplitude amplification [3]. The Shor’s algorithm surprised the public for it not only demonstrated
the potential of quantum computer to provide exponential speedup against their classical coun-
terpart, but it overthrew some most widely used public-key cryptography schemes such as RSA
scheme [2]. The latter one, though offers only quadratic speedup, has been proven extremely use-
ful, since searching problem are often important building blocks of other much more complicated
algorithms [2].

What followed the advancement of the study of quantum algorithms was the attempt of phys-
ical realization of quantum computer [2]. Leading forces includes giants such as IBM [4], Google
[5] and the competition have become increasingly heated as these giants started to race to an-
nounce their new achievements. The most advanced quantum chip at the moment is Googles new
Bristlecone quantum chip which contains 72 qubits and, according to many scientists, such device
overshadows any existing classical supercomputer [6].

In addition to its astonishing application in cryptography, quantum computation is also considered
advantageous in solving optimization problems. In particular, much efforts have been devoted into
a quantum computation model called adiabatic quantum computation [7]. This model was first
introduced to attack a long-standing problem called 3SAT problem which was the first known to be
NP-complete [8]. Later on. It was then found useful in other tasks such as clustering algorithms [9].

The introduction of Adiabatic quantum computation into unsupervised machine learning is in
fact only a small portion of the wide application of quantum computation techniques in tasks aris-
ing from the study of machine learning [10] [11]. Many classic classical machine learning algorithms
witnessed the construction of their quantum counterpart, where in most cases, the quantum ver-
sions are asymptotically much faster, although the quantum algorithms usually come with restrains
that classical version do not suffer. Typical example is the HHL algorithm which can solve a linear
system of equations exponentially faster than their classical counterparts, under the constrain that
the matrix can be simulated efficiently (for instance, when the matrix is sparse, row computable
and well-conditioned) to ensure that the phase estimation subroutine can be implemented effi-
ciently [12]. When a machine learning task can be formulated as a search problem, Grovers search
algorithm (and its variants) can usually offer speedup (mostly quadratically), concrete examples
are quantum clustering algorithms in which tasks such as searching for minimal are repeated [13].
Other techniques are also popular in quantizing classical machine learning algorithm, for instance,
combining the power of density operator exponentiation and phase estimation, one can perform
principle component analysis efficiently [14].
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On the other hand, one can also consider the possibility of utilizing classical machine learning
techniques to accomplish quantum learning tasks. Existing machine learning algorithms provide
general frameworks to understand, to extract and to define certain information of data [15]. This
suggests we may consider making use of machine learning techniques to understand quantum re-
sources, the first idea of such kind would probably be to cluster a set of quantum states. Given
the well developed clustering algorithm, the core of the task in fact lies in the estimation of the
”difference” between quantum states (we shall elaborate more in section 2). Naturally, one could
expect to conduct the same tasks on other objects, for instance, one could imagine a task such
as, with the access to a set of quantum gates for n times each, cluster the gates in terms of some
predefined notion of discrepancy. This leads to the first possible direction of the project and one
can even go further to generalize such task to other quantum resources such as quantum operations.

As mentioned, one of the central problem in this task is to define sensible and computable no-
tions of differences between 2 quantum resources. The obvious classical counterpart of this task is
to define and compute the differences between 2 data vectors in Rn. This is often considered an
easy task, primarily due to the fact that the metrics and inner products on such spaces (Rn or Cn)
are well studied, and the computations are straightforward because data vectors stored in classical
computers can be accessed repeatedly and directly). However, such computational simplicity does
not sustain in quantum cases, forcing people to consider indirect methods. In the quantum state
case, simple methods such as swap test and others alike exist [16] [9], and offers insight into the
possible solution to the same problem on quantum gates and quantum operations. It is expected,
such task would require a simple but powerful quantum device: quantum switch.

This brings out second part of the project title: superposition of causal order. However, to con-
cretely elaborate on the relation between the quantum device quantum switch and indefinite causal
order, we first briefly go through the basic notations in section 2.

2 Definitions and Quantum Algorithms1

2.1 Basic Notions in Quantum Computation

Definition:

Associated to any isolated physical system is a complex vector space with inner product (a Hilbert
space) known as state space of the system. The system is completely described by its density
operator , which is a positive operator ρ with trace one, acting on the state space of the system.
If a quantum system is in the state ρi with probability pi, then the density operator for the system
is

∑
i piρi

Definition:

A quantum operation E from the set of density operator of the input space Q1 to the set of
density operators of the output space Q2, satisfies the three axioms:
A1: E(ρ) is the probability that the process represented by E occurs, when the initial state is ρ:

0 ≤ tr[E(ρ)] ≤ 1,

A2: E is convex-linear on the set of density operators, that is, for probabilities pi:

E(
∑
i piρi) =

∑
i piE(ρi)

A3: E is a completely positive map. That is E(A) must be positive for all positive A. Further
more, if we introduce an extra system R of arbitrary dimensionality, it must be true that I

⊗
E(A)

1unless specified, all definitions are taken from [2]
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is positive for any positive operator A on the combined system RQ1, where I is the identity map
on R.
The map E satisfies axioms A1, A2 and A3 if and only if:

E(ρ) =
∑
iEiρE

†
i

for some set of operators Ei which map the input Hilbert space to the output space, and
∑
iE

†
iEi ≤

I.

Note that, if one consider only the evolution of a closed quantum system, the general repre-
sentation of the quantum operation reduces to a unitary transformation, U , acting on the density
operators ρ or state vector |ψ〉 of the system, by UρU† or U |ψ〉. This is useful when we are working
on the circuit model of quantum computation.

Definition (quantum SWITCH ) [17]:

Denote the Kraus operators of the channel ℵ1 as K1
i and the channel ℵ2 as K2

i . The overall
Kraus operators of the resulting channel from the switching is:

Wi,j = K1
jK

2
i

⊗
|0〉〈0|C +K2

iK
1
j

⊗
|1〉〈1|C

Then the action of the quantum SWITCH is given by:

S(ℵ1,ℵ2)(ρ⊗ ρc) =
∑
i,jWijρ⊗ ρcW †

ij

Note that the system C works as a control qubit, that determines the order in which ℵ1 and ℵ2
are applied. In addition to that, observe that the quantum switch are interesting only when the
Kraus operators of ℵ1 and ℵ2 are non-commutative, for otherwise, ℵ1 and ℵ2 will be applied in a
definite order whatever the control qubit is.

2.2 Brief Introduction to Important Quantum Algorithms

we present here several useful (certainly not exhaustive) quantum algorithms that might be useful
in the project. In particular, we first introduce 2 classical methods for estimating the ”difference”
between quantum states, and hopefully we can generalize such notions in the future. Following
that, we introduce briefly the Grover’s search algorithm. This algorithm together with other classi-
cal quantum algorithm such as quantum Fourier transform, phase estimation and density operator
exponentiation, may serve as building blocks for more complicated algorithms.

2.2.1 Swap Test and Euclidean Distance Estimation

Using a swap gate S, one can estimate the ”overlapping” between two pure states in terms of
the standard inner product 〈·, ·〉 on the state space (the Hilbert space Cn). Swap gate does the
following: S|ψ〉|φ〉 = |φ〉|ψ〉 where |ψ〉, |φ〉 are arbitrary state vectors in the state space. Swap
test does the following: first adjoin an ancillary system C in the state |0〉, apply Hadamard gate
to the system C, then apply controlled swap on |ψ〉, |φ〉, controlled on system C. Then measure
the system C on Fourier basis. The probability distribution of the result encodes the desired
information.
Before the final measurement on the Fourier basis, the state of the system is given by:

1√
2
(|0〉C |ψ〉|φ〉+ |1〉C |φ〉|ψ〉)

Measuring the control system on the Fourier basis, the probability of getting output + is thus:
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1
2 (1 + |〈φ|ψ〉|2)

Repeatedly doing the swap test, one can obtain an estimate of the probability up to any desired
precision, and thus able to estimate the overlapping between the two states.

A similar procedure can be used to estimate the Euclidean distance between |ψ〉, |φ〉 [9]:

One assumes the existence of a quantum Random Access Memory [18], and two data vec-
tors are stored in quantum form |ψ〉, |φ〉 in the qRAM, by querying the qRAM, one obtains
1√
2
(|ψ〉|0〉C + |φ〉|0〉C). Then repeatedly measuring the control system C on Fourier basis, we can

obtain an estimate of the Euclidean distance, since simple calculations shows that the probability
of obtaining output − is:

1
2 ||ψ〉 − |φ〉|

2

Generalizing these methods to extract information between a broader class of quantum resources
will be one of the focus of this final year project.

2.2.2 Grover’s Search and Search Based Quantum Clustering Algorithms [2]

Grover’s search algorithm assumes the existence of an Oracle C, we simply assume that the oracle
add a phase −1f(x) to the index register |x〉, where f(x) is 0 when x is a hit, 1 otherwise.
Write |ψ〉 = 1

N
1
2

∑
i |i〉, where we assume N = 2n is the size of the search space. In addition, let

the size of target space to be M < N
2 . Then an Grover iteration is defined as:

G = (2|ψ〉〈ψ| − I)O

Starting with |ψ〉, repeatedly apply the Grover Iteration G for R = dπ4
√

N
M e = O(N) times, then

measure on the computational basis, obtaining resulting state |xa〉. Then xa, with high probability,
is in the target space.

The importance of this algorithm in this project is that a big class of clustering algorithms have
a subroutine on searching for minimal or maximal, where by making use of Grover’s search algo-
rithm, one can obtain at least a quadratic speedup in expectation against the classical counterpart
[13]. We shall also study these algorithms in better depth in this project.

3 Objective

Summing up the working directions mentioned in section 2. The objective of this final year project
is to explore how a quantum learning machine can take advantage of a new quantum resource,
namely the ability to query different processes in a indefinite order.

In better details, the contemporary goal of this project is to solve the following problem: Given
accesses to a set of black boxed quantum resources, which can be unitary gates or certain quantum
operations, making use of the device quantum switch, define and extract certain notion of differ-
ences between individual quantum resources.Then, with the aid of such notion of difference, cluster
the black boxed quantum resources into clusters where in each cluster, the quantum resources are
similar to each others.

One could imagine scenarios such as, someone, say, Alice, has accesses to other laboratories’
quantum measurement devices where she can only send quantum states to be measured but can-
not examine the detailed constructions of these devices. In this case, these measurement can be
seen as block boxed quantum resources, then the question to ask is can we cluster/classify these
quantum measurements?
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Note that, this is not necessarily the only focus of the final year project. Upon completion of
this task, the student may explore other areas in quantum computation and information, given the
permission of the supervisor.

4 Methodology and Schedule

The objective will be studied mainly theoretically, i.e. mathematical arguments shall be the main
form of research. This includes concrete mathematical definitions, mathematical properties of the
definitions and proofs of correctness. However, actual implementation of the algorithms proposed
are also feasible. This could be achieved by applying for an access to IBM’s 5 qubit quantum
computer [4].

A precise schedule is not applicable in this case, primarily because the project is not software
engineering oriented. A tentative plan is the following:

October - November: Literature review and study on necessary knowledge.

November - January: Study on the task defined in section 3.

January - March: Implementation of codes and submission to IBM Q.

March - April: Preparation of final deliverable.

April - May: Preparation of presentation.
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