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Abstract

In this project, we study the spectrum of the hypergraph Laplacian

and submodular transformation Laplacian. Due to the non-linearity of

the hypergraph Laplacian and submodular transformation Laplacian,

we resort to mathematical tools other than linear algebra to identify

and characterize the spectrum of these operators. It was conjectured

that the two operators possess non-trivial eigenvalues (in addition to

the known second least eigenvalue)[1][2]. This project presents proofs

for the conjectures over both operators.

We also consider the natural optimization problem arising from the

study of the spectrum of the hypergraph Laplacian, in particular, the

approximation of the maximum eigenvalue of the hypergraph Laplacian,

whose existense is proved in this project.
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1 Introduction

The spectral theory studies the spectral properties of graphs and their relation
to the combinatorial properties of graph. Central to this rich theory, the
Cheeger’s inequality bounds the expansion or conductance of the graph by the
second least eigenvalue of the Laplacian of the graph[3]. More specifically, for
a graph G = (V,E), its expansion is defined to be:

φG := min
S⊂V

|∂S|
min{vol(S), vol(S̄)}

,

where vol(S) is the sum of the degree of vertices in S and ∂S is the cut of S.
The Cheeger’s inequality[3] is as the following:

λ2
2
≤ φG ≤

√
2λ2

where λ2 is the second least eigenvalue of the normalized Laplacian LG. This
inequality can be utilized in the design of various algorithms.

In this project, we will study a mathematical object that generalizes graph,
namely hypergraphs. An edge e ∈ E can have more than two vertices in the
hypergraph H = (V,E). Hypergraph can be used to model various kinds of
real-life relations and some of its combinatorial properties are both interesting
in practice and in theory. Among these combinatorial properties of hyper-
graphs, expansions and max-cut are closely related to the spectral properties
of hypergraph. Recently, the Cheeger’s inequality was generalized to the case
of hypergraph with the notion of hypergraph Laplacian[1][2]. This hypergraph
Laplacian, denoted by Lω, is defined to be an operator that determines a dif-
fusion process with mediators over hypergraphs. In [1][2], it is shown that this
Laplacian operator Lω possesses a second least eigenvalue λ2 that satisfy an
inequality similar to that of Cheeger’s:

λ2
2
≤ φH ≤

√
2λ2,

where φH is the expansion of hypergraph, whose definition is similar to φG
except that for any S ⊂ V , the cut of S consists of edges that intersects both
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S and V − S. However, unlike graph Laplacians, which are symmetric linear
operators, the hypergraph Laplacians are non-linear and non-smooth, which
makes its spectrum hard to characterize. Hypergraph Laplacian is shown to
have a trivial eigenvalue and a second least eigenvalue[1][2] and in this project,
the conjecture that the hypergraph Laplacian possesses a maximum eigenvalue
is proved. Furthermore, the maximum eigenvalue of the hypergraph Laplacian
is related to the approximation of the hypergraph max cut, the computation
of which is NP-hard. It is thus interesting to consider the approximation of
the maximum eigenvalue and its corresponding eigenvectors. One of the goals
of the project would therefore be studying possible approximation algorithms
of the maximum eigenvalue of the hypergraph Laplacian.

A more generalized notion of Laplacian can be defined with respect to submod-
ular transformations[4]. Hypergraph Laplacians and graph Laplacians can be
viewed as special cases of the submodular transformation Laplacian by consid-
ering different submodular transformations. This more abstract construction
gives rise to some novel Cheeger’s inequalities under the same unifying frame-
work. It is thus interesting to consider the spectral properties of this Laplacian.
In [4], the generalized Laplacian is shown to possess two eigenpairs, similar
to the case of hypergraph Laplacians. One possible research direction along
this line would therefore be the study of other eigenpairs of the generalized
Laplacians. The conjecture is that the generalized Laplacian also possesses
a maximum eigenvalue. Hence a proof for this conjecture is studied in this
project.

For the study of the spectral theory of the hypergraph Laplacian, general-
ized quadratic form plays a central role, both in theory and in practice. The
generalized quadratic form for hypergraph is defined as the following:

Q(f) :=
∑
e∈E

ωe{βe0 max
s,i∈e

(fs − fi)2 +
∑
j∈e

βej [(max
s∈e

fs − fj)2 + (min
i∈e

fi − fj)2]},

where the parameters β and ω will be introduced in later sections. A basic
task that has to be resolved before considering the application of the maximum
eigenvalue of the hypergraph Laplacian is to design algorithms that solves opti-
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mization problems involving the generalized quadratic form. The challenging
issue is the presence of the maximum and minimum operators in the equa-
tion. Generally speaking, one would consider semi-definite programming when
the objective of the optimization problem is a quadratic form, however, even
though in some cases semi-definite programming is indeed applicable to pro-
grams involving the generalized quadratic form (at the cost of the size of the
program), it seems that there are no obvious ways to use semi-definite pro-
gramming for the approximation of the maximum eigenvalue of the hypergraph
Laplacian. In this project, we consider a simple transformation that models
the approximation of the maximum eigenvalue of the hypergraph Laplacian as
an optimization problem with polynomial constraints and objective (that is,
a transformation that eliminates the maximum operators in the generalized
quadratic form) and hence propose to solve the problem using the sum-of-
squares method which will be reviewed in later sections.

The remainder of this final report is as follows. First, the report will give more
explanations on the notion of hypergraph Laplacian, submodular transforma-
tion Laplacian and the related concepts. Then the methodology of manipu-
lating these mathematical concepts will be described, with proofs of several
conjectures about the spectrum of these operators explained. The report will
proceed to discuss the related issues on the computational aspect of the hyper-
graph Laplacian, where some necessary preliminaries on optimization theories
will be reviewed. It will close with a conclusion, with possible directions of
further work emphasized.

2 Problem Definitions and Methodology

2.1 Hypergraph Laplacian

Hypergraph is the generalization of graphs where an edge can have more than
two vertices. In this project we consider edge-weighted graphs H = (V,E, ω)

where ω is a consistent weight function, that is,

ωv =
∑

e∈E:v∈e

ωe,∀v ∈ V.
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We assume that all vertex weights are positive. Given f ∈ RV , fu, u ∈ V is
the coordinate corresponding to u ∈ V . In addition, the space RV is endowed
with the inner product 〈·, ·〉ω defined as:

〈f, f〉ω = 〈f,Wf〉,

where W is the diagonal matrix of the weights of the vertices. This inner
product space is called the density space.

In spectral graph theory, the graph Laplacian can be interpreted as an op-
erator that defines a diffusion process over the graph according to some rules
ensuring that the process is consistent. Inspired by this, [1] [2] proposed to
define a diffusion process over the hypergraph, then the Laplacian Lω can be
defined by:

−Lωf =
df

dt
,

where f is the measure at each vertices of the hypergraph in the diffusion
process, i.e. −Lω is the derivative of the diffusion process with respect to
time. We refer to [1] and [2] for the detailed definitions of the diffusion process
and the proof of well-definedness. In this project, we deal with the diffusion
process with mediator, which, in essence, is a process in which the measure
will go through all vertices over the edge as it flow from the vertex with the
highest measure to the ones with the lowest measure (this is a very rough and
incomplete description, details can be found in [2]). To describe the participa-
tion of the intermediate vertices in the flow of measures, we have the following
definitions. For each edge e ∈ E, let [e] := e ∪ {0}, where 0 corresponds to
the flow from the vertices with the highest measure to the vertices with lowest
measure while the others correspond to the flow through each vertices of the
edge. A set of constants βe is defined over [e] for each e ∈ E, where βej controls
the flow through j ∈ [e]. Naturally, βej ≥ 0,∀j ∈ [e] and

∑
j∈[e] β

e
j = 1,∀e ∈ E.

A useful tool in the study of the spectral theory of hypergraphs is the Rayleigh
quotient:

R(f) :=
〈f, Lωf〉ω
〈f, f〉ω

, for any 0 6= f ∈ RV .
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If Lω is a graph Laplacian operator which is a positive semi-definite linear
operator, then by some easy arguments (for example, by using Lagrange mul-
tipliers), we have that the maximum and the minimum of the Rayleigh quotient
of a graph Laplacian are eigenvalues. In any case, it can be shown that a graph
Laplacian operator has |V | real eigenvalues (possibly with multiplicities). It is
clear that, for graph Laplacian, 〈f, Lωf〉ω is a quadratic form. However, the
situation for hypergraph Laplacians is different. Recall that the generalized
quadratic form is:

Q(f) :=
∑
e∈E

ωe{βe0 max
s,i∈e

(fs − fi)2 +
∑
j∈e

βej [(max
s∈e

fs − fj)2 + (min
i∈e

fi − fj)2]}.

For 0 6= f ∈ QV , the discrepancy ratio is:

D(x) :=
Q(f)∑
u∈V ωuf

2
u

.

As a consequence of the definition of the diffusion process, it is shown that
〈f, Lωf〉ω = Q(f) and hence R(f) = D(f) [1] [2]. This enables us to charac-
terize the eigenvalues of the hypergraph Laplacian via Rayleigh quotient.

2.2 Generalized Laplacian of Submodular Transforma-

tions

In this section we define a model that subsumes both hypergraphs and graphs.
First, we define some basic terminologies. A map f from the power set of V ,
i.e. {0, 1}V , into R, is called a submodular function if

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ),∀S, T ⊂ V.

A map F : {0, 1}V → RE is said to be a submodular transformation if each
of its component function Fe, e ∈ E is submodular [5]. To see that this model
generalizes hypergraphs, we can set each component function Fe, e ∈ E to be
the cut value of e as a subset of V [5].

[5] considers the submodular polyhedron P (F ) and the base polytope B(F ) of
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F :
P (F ) ={x ∈ RV |

∑
v∈S

x(v) ≤ F (S),∀S ∈ V } and

B(F ) ={x ∈ P (F )|
∑
v∈V

x(v) = F (V )}

The lovász extension (or convex closure) fe : RV → R of a submodular function
Fe is a continuous extension of the submodular function:

fe(x) = max
ω∈B(Fe)

〈ω, x〉.

With this, we define
∂fe = argmaxω∈B(Fe)〈ω, x〉.

This definition is consistent with the usual notation that ∂fe is the sub-gradient
of fe. The Lovász extension f of a submodular transformation is defined to be
the product of Lovász extensions of each component functions of F .

With these definitions, we can proceed to define the Laplacian. In [4], the
notion of Laplacian operator LF : RV → 2RV is defined for the submodular
transformation F as the following:

LF (x) := {
∑
e∈E

〈ωe, x〉ωe|ωe ∈ ∂fe(x)}.

We note that this is a set-valued function and it requires a new definition of
eigenpairs of the Laplacian, we defer this to later sections.

Similar to the case with hypergraph Laplacian, the Rayleigh quotient of the
submodular transformation Laplacian is considered. At first sight, it is not
very clear how to define the inner product of a vector x in RV with an element
(a set) in the image of the Laplacian. However, by noting that LF in some
sense projects x into the span of the sum of the sub-gradient ∂fe, e ∈ E, [4]
gives the following definition on the inner product between x and LF (x):

〈x, LF (x)〉 = 〈x, ω〉,∀ω ∈ LF (x).
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This is well-defined because of the following easy fact:

〈x, ω〉 =
∑
e∈E

fe(x)2,∀ω ∈ LF (x).

Then naturally the Rayleigh quotient of submodular transformation Laplacian
is:

RF (x) :=
〈x, LF (x)〉
〈x, x〉

=
‖f(x)‖22
‖x‖22

,∀x 6= 0,

where ‖·‖2 is the 2-norm over RV . Graph Laplacian and hypergraph Laplacian
are special cases of this generalized Laplacian. All graphs and hypergraphs can
be identified with submodular transformations whose Laplacian coincide with
the graph and hypergraph Laplacian respectively in a natural way.

2.3 Least Non-trivial Eigenvalue of the Laplacian Oper-

ators

It is obvious that the hypergraph Laplacian obtains a trivial eigenpair. More
specifically, 1 ∈ RV is an eigenvector of the Laplacian with 0 being its corre-
sponding eigenvalue. It is not as trivial to find other eigenpairs of the Lapla-
cian. In [1][2], it is shown that λ2 := min1⊥f∈RV R(f) is an eigenvalue with
any 1⊥f attaining this value being an eigenvector. The proof of λ2 being an
eigenvalue is inspired by the idea that the diffusion process over hypergraph
tends to mix the measures across the vertices and reduces the discrepancy ratio
(precisely speaking, the diffusion process reduces the discrepancy ratio when
the current state is not an eigenvector).

In more details, [1][2] first showed that the diffusion process is smooth with
respect to the time t of the diffusion process (note that this does not imply
the smoothness of the hypergraph Laplacian over the density space), which
implies the existence of the right-hand derivative of the generalized quadratic
form of the hypergraph. With careful computations, it is shown that

dR(f)

dt
= − 1

‖f‖4ω
(‖f‖2ω‖Lf‖2ω − 〈f, Lf〉ω) ≤ 0
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where the inequality follows from the Cauchy inequality. It follows that as the
diffusion progresses for sufficiently small amount of time, the discrepancy ratio
will reduce the discrepancy ratio if the initial state is not an eigenvector of the
hypergraph Laplacian.

It should be pointed out that the submodular transformation Laplacian LF

is a set-valued operator. Therefore the definition of the spectrum of LF should
be stated as the following[4]:

(λ, x) is an eigenpair of the LF if and only if λx ∈ LF (x).

It is immediate that (0,1) is a trivial eigenpair of LF . However, it is not entirely
obvious how to generalize the concept of diffusion process over hypergraph to
submodular transformations on which the proof of the existence of a non-trivial
eigenpair of LF should be based. Nevertheless, [4] defined a diffusion process
similar to the case of hypergraph, by defining the time evolution of any vector
x ∈ RV as:

dx

dt
∈ −LF (x),

whose well-definedness requires justifications. Essentially, [4] showed that for
any initial state x, there exists some choices Lt such that dx

dt
= −Ltx is well-

defined for any time t ≥ 0. With this diffusion process defined, by generalizing
the proof that hypergraph Laplacian possesses a non-trivial eigenpair, it can
be shown that LF possesses a non-trivial eigenpair as well.

It was conjectured that λ∗ = maxf 6=0∈RV R(f) is the maximum eigenvalue of
the hypergraph Laplacian, with any x ∈ RV attaining λ∗ being an eigenvector.
A similar conjecture can be made for the submodular transformation Lapla-
cian. However, if one tries to generalize the proof strategy based on diffusion
process, s/he will have to resolve the problem of reversibility of the diffusion
process. The intuition is that, given f ∗ reaching the maximum for Rayleigh
quotient, if we were to replicate the arguments used for the least non-trivial
eigenvalue, we would be relying on the diffusion process to find vector giv-
ing higher value of the discrepancy ratio for the sake of contradiction. In the
original argument we proved that if a state in the diffusion process is not an
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eigenvector of the Laplacian then after a sufficiently small amount of time the
diffusion process will reach at a state obtaining a smaller discrepancy ratio,
therefore, one would naturally expect for state that is not an eigenvector, by
reversing the diffusion process for a sufficiently small amount of time, we will
reach at a state giving larger discrepancy ratio. In other words, in the frame-
work of the diffusion process, we would hope that, given some non-eigenvector
states, we can find a state just before the given state in the diffusion process
having larger discrepancy ratio. However, there are problems in this intuitive
argument. We cannot show that any given state is reachable by the diffusion
process in the sense that it is possible that starting with any state other than
the given state, the diffusion process cannot reach this given state. Hence the
diffusion process argument does not work for the maximum eigenvalue. It does
not seem possible to bypass this problem in the framework of diffusion process.
Therefore, in the next subsection, we will study a new proof strategy for both
of the Laplacian operators.

2.4 Sketch Proof of the Existence of Maximum Eigen-

value

I will first illustrate the main frame of the proof using the hypergraph Lapla-
cian and then move on to the more complicated case of submodular trans-
formation Laplacian which requires some results from linear programming on
ε−perturbation [6]. This subsection will close with a brief comparison between
the proposed proof and the proof based on diffusion process.

2.4.1 Maximum Eigenvalue of Hypergraph Laplacian

For the case of hypergraph, consider any 0 6= f ∈ RV and any 0 6= v ∈ RV

which defines the trajectory: ε 7→ f + εv. The basic idea will be considering
the change in the value of the Rayleigh quotient along this trajectory. To this
end, for any functional T over RV , we define the left-hand derivative ∂−v T (f)

of the function T (f + εv) with respect to ε at 0 as the following:

∂−v T (f) = lim
ε→0−

T (f ∗ + εv)− T (f ∗)

ε

12



Of course, for some particular T , for example the Rayleigh quotient, the ex-
istence of the limit requires justification. Taking for granted the existence of
the limit for the moment, let’s consider the consequence of this definition. If
for some 0 6= v ∈ RV , ∂−v T (f) > 0, then there exists ε < 0 with |ε| sufficiently
small such that R(f + εv) > R(f), that is, we can find a state giving larger
discrepancy ratio than R(f) along the trajectory ε 7→ εv. Recall that diffu-
sion process gives us a direction df

dt
= Lωf along which the discrepancy ratio

decreases strictly for non-eigenvectors. Therefore, it makes sense to compute
∂−v R(f) for v = −Lωf

Let λ∗ = max06=f∈RV R(f) and f ∗ be any vector that attains the maximum
Rayleigh quotient. Previous discussions show that to prove that (λ∗, f ∗) is an
eigenpair, we might proceed to compute ∂−Lωf

R(f) (and hence give a justifica-
tion for the existence of this limit). To do this, we first consider ∂−−Lω

Q(f),
the left-hand derivative of Q(f ∗ + εv) with respect to ε at 0, where Q is the
generalized quadratic form of hypergraph. We give the following definitions
and identity to aid the computation.

For any e ∈ E,:

cIe := ωe[β
e
0(max

s∈e
fs −min

i∈e
fi) +

∑
j∈e

βej (fj −min
i∈e

fi)],

cSe := ωe[β
e
0(max

s∈e
fs −min

i∈e
fi) +

∑
j∈e

βej (max
s∈e

fs − f ∗j )],

Se := argmaxs∈efs,

Ie := argmini∈efi

and for each j ∈ e

cj :=
∑

e∈E:j∈e

βejωe(max
s∈e

fs + min
i∈e

fi − 2fj),

and write r := df
dt
. Certainly as one can see, these definitions are originated

from the definition of the diffusion process (which will not be discussed in de-
tails here), however, they are presented here only for the sake of computation.
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Then we give the following identity:

∑
e∈E

cSe max
s∈Se

rs −
∑
e∈E

cIe min
i∈Ie

ri −
∑
j∈V

cjrj = −‖r‖2ω.

This is identity is proved by considering the maximal densest subset recursively.

With these definitions and identity, we can proceed to show that for any
0 6= v, ∂−v Q(f) exists. In particular, we have for ε < 0:

Q(f + εv) =
∑
e∈E

ωe{βe0[max
s∈e

fs + ε min
s′∈Se

vs′ − (min
i∈e

fi + εmax
j′∈Ie

vi′)]
2+∑

j∈e

βej [(max
s∈e

fs + ε min
s′∈Se

vs′ − fj − εvj)2 + (fj + εvj −min
i∈e

fi − εmax
i′∈Ie

vi′)
2]}

therefore for ε < 0 and |ε| sufficiently small,

Q(f + εv)−Q(f) =
∑
e∈E

ωe{2βe0εmax
s,i∈e

(fs − fi)(min
s′∈Se

vs′ −max
i′∈Ie

vi′)+

βe0ε
2(min
s′∈Se

vs′ −max
i′∈Ie

vi′)
2 +

∑
j∈e

βej [2ε(max
s∈e

fs − fj)(min
s′∈Se

vs′ − vj)+

ε2(min
s′∈Se

vs′ − vj)2 + 2ε(fj −min
i∈e

fi)(vj −max
i′∈Ie

vi′) + ε2(vj −max
i′∈Ie

vi′)
2]}.

It follows that:

limε→0−
Q(f+εv)−Q(f)

ε

= limε→0−
∑

e∈E ωe{2βe0 maxs,i∈e(fs−fi)(mins′∈Se vs′−maxi′∈Ie vi′)+β
e
0ε(mins′∈Se vs′−

maxi′∈Ie vi′)
2 +

∑
j∈e β

e
j [2(maxs∈e fs − fj)(mins′∈Se vs′ − vj) + ε(mins′∈Se vs′ −

vj)
2 + 2(fj −mini∈e fi)(vj −maxi′∈Ie vi′) + ε(vj −maxi′∈Ie vi′)

2]}

= 2(
∑

e∈E ωe{βe0 maxs,i∈e(fs−fi)(mins′∈Se vs′−maxi′∈Ie vi′)+
∑

j∈e β
e
j [(maxs∈e fs−

fj)(mins′∈Se vs′ − vj) + (fj −mini∈e fi)(vj −maxi′∈Ie vi′)]})

= 2(
∑

e∈E{ωe[βe0 maxs,i∈e(fs−fi)+
∑

j∈e β
e
j (maxs∈e fs−fj)] mins′∈Se vs′−ωe[βe0 maxs,i∈e(fs−

fi) +
∑

j∈e β
e
j (fj −mini∈e fi)] maxi′∈Ie vi′ −

∑
j∈e ωeβ

e
j (maxs∈e fs + mini∈e fi −

2fj)})
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= 2(
∑

e∈E{ωe[βe0 maxs,i∈e(fs−fi)+
∑

j∈e β
e
j (maxs∈e fs−fj)] mins′∈Se vs′−ωe[βe0 maxs,i∈e(fs−

fi) +
∑

j∈e β
e
j (fj − mini∈e fi)] maxi′∈Ie vi′} −

∑
j∈V
∑

e∈E:j∈e β
e
jωe(maxs∈e fs +

mini∈e fi − 2fj)vj)

= 2(
∑

e∈E c
S
e mins′∈Se vs′ −

∑
e∈E c

I
e maxi′∈Ie vi′ −

∑
j∈V cjvj)

Hence the existence of ∂−v Q(f) for any v ∈ RV . Since both cSe and cIe are
greater or equal to zero, we have that:

∂−v Q(f) ≤ 2(
∑
e∈E

cSe max
s∈Se

vs −
∑
e∈E

cIe min
i∈Ie

vi −
∑
j∈V

cjvj)

Now we proceed to compute ∂−−Lω
R(f). We first note a standard result:

∂−v 〈f, f〉ω = 2〈f, v〉,∀f, v ∈ RV

On the other hand, we have:

∂−−Lωf
Q(f) ≤ 2(

∑
e∈E

cSe rS(e)−
∑
e∈E

cIerI(e)−
∑
j∈V

cjrj),

where r := −Lωf . It follows that

∂−−Lωf
Q(f) ≤ −2‖r‖2ω.

Therefore,

∂−−Lωf
R(f) =

1

‖f‖4ω
(‖f‖2ω∂−−Lωf

Q(f)− 2〈f, Lωf〉ω〈f,−Lωf〉ω)

≤ 1

‖f‖4ω
(‖f‖2ω(−2‖Lωf‖2ω)− 2〈f, Lωf〉ω〈f,−Lωf〉ω)

= − 2

‖f‖4ω
(‖f‖2ω‖Lωf‖2ω − 〈f, Lωf〉2ω) ≤ 0
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where the last inequality follows from the Cauchy Inequality, with the equal-
ity holds if and only if Lωf ∈ span(f). Therefore, if Lω 6∈ span(f), then
∂−−Lωf

(f) < 0.

What remains is to formalize the arguments provided at the start of this sec-
tion. To complete the argument, assume that Lω 6∈ span(f ∗), then for the
sake of contradiction, it suffices to show that there exists ε < 0 such that
R(f + ε(−Lωf)) > R(f). Assume that for all ε < 0, R(f + ε(−Lωf))) ≤ R(f),
then ∂−−Lωf

R(f) = limε→0−
R(f+ε(−Lωf))−R(f)

ε
≥ 0, a contradiction. Hence we

have that (λ∗, f ∗) is an eigenpair of Lω.

It should be pointed out that in this section ∂−v R(f) is computed explicitly
by the definition of left-hand side derivative, that is, an explicit formula of
Q(f + εv) for ε < 0 is found. In the following section, we will proceed to study
the maximum eigenvalue of submodular transformation Laplacian. However,
computing the derivatives for Rayleigh quotient of submodular transforma-
tion Laplacian seems to be infeasible. This problem is solved with the ε-
perturbation method in linear programming [6] (to eliminate confusion with
notations, please note that in the following subsection for submodular trans-
formation, ε and f will not carry the same meaning as in the discussion for
hypergraph).

2.4.2 Maximum Eigenvalue of Submodular Transformation Lapla-

cian

Recall the definition of f as the Lovász extension of a submodular transforma-
tion F and LF as the Laplacian of the submodular transformation F . Also,
recall that for any x ∈ RV , RF (x) =

‖f(x)‖22
‖x‖22

. We note briefly in the preceding
subsection that the main difficulty for the discussion of submodular transfor-
mation is that ‖f(x)‖22 is difficult to handle. Precisely speaking, it is not very
clear how to compute the following expression explicitly for δ ∈ R, with |δ|
sufficiently small and any v ∈ RV :

‖f(x+ δv)‖22 − ‖f(x)‖22 =
∑
e∈E

fe(x+ δv)2 − fe(x)2.
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This subsection will therefore focus on fe(x+ δv)2− fe(x)2 for some e ∈ E. A
natural guess is that there exists some operators Lx such that for any δ ∈ R,
with |δ| sufficiently small and any v ∈ RV , fe(x)2 = 〈x, Lxx〉 and fe(x+δv)2 =

〈x + δv, Lx(x + δv)〉. To this end, I rewrite the definition of fe(x) as a linear
program such that fe(x) equals to:

Maximize ωTx

s.t. 1S
Tω ≤ Fe(S), ∀S ⊂ V

1V
Tω = Fe(V )

Suppose we order all elements except for ∅ and V in the power set of V and
mark them as S1, S2, · · · , S2|V |−2, then equivalently, fe(x) can be defined by
the dual problem of the above linear program as Pe(x):

Minimize F T
e y

s.t. Ay = x

y ≥ 0

where
A =

(
1S1 · · · 1S

2|V|−2
1V −1V

)
∈ Z|V |×2|V |

is of full row rank and

Fe =
(
Fe(S1) · · · Fe(S2|V |−2) Fe(V ) −Fe(V )

)T
∈ R2|V | .

Then naturally, we have transformed the discussion on fe(x) and fe(x + δv)

into the discussion on the sensitivity analysis of the linear program (Pe(x)).

Suppose that B is an optimal basis of (Pe(x)), then the goal is to justify
that B is also an optimal basis of (Pe(x+δv)) for |δ| sufficiently small. At first
sight, this is rather trivial due to the principle of sensitivity analysis. However,
one will run into problems because of the possible degeneracy of (Pe(x)) and
will notice that B might not be optimal for (Pe(x+ δv)), no matter how small
|δ| is. Then the main difficulty here is to avoid degeneracy in the discussion.

Here we state a result on degeneracy avoidance in linear programming us-
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ing ε − perturbation method by [6]. However, the theorem we state here is
slightly more general. The difference is that in [6] the studied linear program
is of integer coefficients. The reason for such restriction is that [6] attempts
to show that degeneracy can be avoided in polynomial time for any linear
program with integer coefficients. However, since the discussion here is only
theoretical, we can relax this restriction. The proofs for the following results
in our settings are almost identical to those in [6] and only some simple alter-
nations to their arguments are needed, therefore we omit the proofs here.

Consider the linear programming problem (P ):

Maximize cTx

s.t. Ax = b

x ≥ 0

where A ∈ Zm×n, b ∈ Rm and c ∈ Rn. Assume that A is of full row rank. Let
M be the maximum absolute value of any entry of A.

Consider the linear programming problem (P (ε)), for some 0 ≤ ε ∈ R:

Maximize cTx

s.t. Ax = b+ ε

x ≥ −εK1

or equivalently:
Maximize cTx

s.t. Ax = b+ εK1 + ε

x ≥ 0

where ε = (ε, ε2, · · · , εm)T and K = (m!)2M2m−1.

With these, we can state the result from [6]. We note that [6] requires that
A ∈ Zm×n, b ∈ Zm and c ∈ Zn, while we only need A ∈ Zm×n. The conse-
quence is that [6] can give an explicit and polynomial-computable bound on ε
in the following theorem while we can only have it as “sufficiently small”.

Theorem. For any sufficiently small ε > 0, (P (ε)) is non-degenerate and
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have the same status in terms of feasibility and boundedness with (P ). Every
optimal basis of (P (ε)) is an optimal basis of (P ).

Because of this theorem, we have (Pe(x, ε)) as the following:

Minimize F T
e y

s.t. Ay = x+ εK1V + ε

y ≥ 0

where K = (2|V |!)2. (Pe(x+ δv, ε)) is:

Minimize F T
e y

s.t. Ay = x+ εK1V + ε + δv

y ≥ 0

By the preceding theorem, there exists sufficiently small ε > 0 such that the
linear programs (Pe(x, ε)) and (Pe(x+δv, ε)) defined above, are non-degenerate
and have the same status in terms of feasibility and boundedness with (Pe(x))

and (Pe(x+δv)) respectively and every optimal basis of (Pe(x, ε)) is an optimal
basis of (Pe(x)) and every optimal basis of (Pe(x + δv, ε)) is an optimal basis
of (Pe(x + δv)). Suppose Be,x is an optimal basis for (Pe(x, ε)) and hence an
optimal basis for (Pe(x)), we have that fe(x) = 〈Fe, B−1e,x(x)〉.

Now, consider a situation of sensitivity analysis in which the optimal basis
Be,x is obtained for the linear program (Pe(x, ε)). Then we change the RHS
of the constraints of the linear program (Pe(x, ε)) from (x + εK1V + ε) into
(x+εK1V+ε+δv). In a simplex-type algorithm, such a change does not affect
the optimality of the basis Be,x, hence the only concern is the feasibility of the
basis Be,x. According to the preceding theorem, the linear program (Pe(x, ε))

is non-degenerate, that is, B−1(x + εK1V + ε) > 0. Then clearly for δ with
|δ| sufficiently small, we have that B−1(x + εK1V + ε + δv) > 0. Therefore
Bx,ε is a feasible basis for the linear program (Pe(x+ δv, ε)). Hence Bx,ε is an
optimal basis for the linear program (Pe(x+δv, ε)). By the preceding theorem,
Be,x is therefore an optimal basis for the linear program (Pe(x + δv)). Then
fe(x) = 〈Fe, B−1e,xx〉 and fe(x+ δv) = 〈Fe, B−1e,x(x+ δv)〉. Let ωe,x = B−Te,x Fe, we
have that fe(x) = 〈ωe,x, x〉 and fe(x+ δv) = 〈ωe,x, x+ δv〉.
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Let Wx ∈ RV×E be the matrix whose columns are ωe,x as defined above. Let
Lx = WxW

T
x ∈ RV×V . Then for each x ∈ RV , RF (x) =

∑
e∈E fe(x)

2

‖x‖2 = 〈x,Lxx〉
‖x‖2 and

for δ with |δ| sufficiently small and any v ∈ RV , RF (x+ δv) =
∑

e∈E fe(x+δv)
2

‖x+δv‖2 =
〈x+δv,Lx(x+δv)〉
‖x+δv‖2 . Therefore, if we are only interested in the value of RF , we can

just consider Lx(x) instead of LF (x). Note that Lx is symmetric.

Consider L∗F : RV → RV , defined by L∗F (x) = Lx(x) and Q∗F (x) = 〈x, L∗F (x)〉.
The following facts are easy to prove:

Fact 1. For any x, v ∈ RV , limδ→0
Q∗F (x+δv)−Q∗F (x)

δ
= 2‖Lxx‖2.

Fact 2. For any x ∈ RV ,
d(Q∗F (x+δL∗F (x)))

dδ
|δ=0 = 2‖L∗Fx‖2. If we let R∗F (x) =

Q∗F (x)

‖x‖2 , then dR∗F (x+δL∗F x)

dδ
|δ=0 ≥ 0, with the equality holds if and only if L∗F (x) =

λx, for some λ ∈ R.

Fact 2 is a consequence of fact 1. These facts enables us to prove the existence
of the maximum eigenvalue of the submodular transformation Laplacian. Con-
sider λ∗ = max06=x∈RV R∗F (x). Note that ∀a ∈ R, L∗F (ax) = aL∗F (x). Then λ∗

is well defined, i.e. there exists 0 6= x∗ ∈ RV that attains λ∗. Just as in the
case of hypergraph Laplacian, fact 2 implies that x∗ is an eigenvector of L∗F ,
with λ∗ being the eigenvalue. Therefore, (λ∗, x∗) is an eigenpair of LF .

In conclusion, submodular transformation Laplacian does possess a maximum
eigenpair.

2.4.3 Comparison with the Diffusion Process Argument

In this subsection, I will focus on the case of hypergraph Laplacian and adopt
the notations for it. As mentioned in the above subsections, the main difficulty
of applying the diffusion process argument to the maximum eigenvalues of the
hypergraph Laplacian is the reversibility of the diffusion process. Intuitively
speaking, if 0 6= f ∈ RV is not an eigenvector of the hypergraph Laplacian,
then reversing the diffusion process will give a state that has larger discrepancy
ratio (value of the Rayleigh quotient). Such argument could lead to a proof
that (λ∗, f ∗) is an eigenpair of hypergraph Laplacian, if the diffusion process is
indeed (locally) reversible. However, it is possible that f ∗ can only be an initial
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state of the diffusion process, which disputes the reversibility of the diffusion.

In comparison, the argument presented in this project bypasses the diffusion
process and study the hypergraph Laplacian solely as an operator over RV .
However, one might notice that the study of ∂−−Lωf

R(f) is essentially "simu-
lating" the reverse of diffusion process. Such an argument gives more freedom
in the manipulation of L than the diffusion process argument since we are not
confined to the time evolution of the diffusion process, instead we can now
look at the "evolution" in any direction.

2.5 Complexity Overhead

It has already been established that the Laplacians do possess a maximum
eigenvalue. However, to really make these results useful, it is necessary to deal
with the computational issue arising around the spectrum of the Laplacians.
In this section, two major computational issues about the spectral properties
of the Laplacians will be discussed. The first is on the computation of the
generalized quadratic form, which is center to all the computational problems
on the spectral properties. The second is about the approximation of the
maximum eigenvalue of the the Laplacian. For simplicity, this section will
only consider hypergraph Laplacians.

2.5.1 Spectral Sparsifier of Hypergraph

The size of the edge set of hypergraphs can be of order 2n. Therefore, in the
worst-case analysis, the evaluation of the hypergraph Laplacian and Rayleigh
quotient (or the generalized quadratic form) is computationally intractable.
It is therefore important to consider the approximation of the generalized
quadratic form of a hypergraph with the generalized quadratic form of an-
other hypergraph with a polynomial-sized edge set. Formally, a subgraph H ′

of the hypergraph H is an ε-spectral sparsifier of H if:

(1− ε)QH′(f) ≤ QH(f) ≤ (1 + ε)QH′(f)

for every f ∈ RV . To make the sparsifier useful, it is important that the size
of the edge set of H ′ is small. A randomized algorithm is proposed in [5] that
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can generate a sparsifier with O(n3logn/ε2) edges with high probability for any
hypergraph, which makes the computation of various problems that involves
the quadratic form of hypergraphs feasible. This algorithm is a simple (the
analysis of the algorithm is certainly not simple) sampling algorithm that sam-
ples each edge of H with a probability. This sparsifier is of order O(n3logn/ε2)

[5]. However, a hypergraph with edges that contains no more than 3 vertices
has no more than O(n3) edges, which means that the proposed sparsifier will
not sparsify this hypergraph at all. Hence it would be interesting to consider
sparsifiers that might give better theoretical guarantees. In any case, it was
established that the Rayleigh quotient of the hypergraph Laplacian is at least
computable in polynomial time.

2.5.2 Approximation of the Maximum Eigenvalue

The eigenpair (λ∗, f ∗) is closely related to the max-cut of hypergraphs, the
computation of which is NP-hard. Hence knowing the maximum eigenvalue
and its corresponding eigenvector might be useful for the approximation of
the max cut, which requires an approximation algorithm for the maximum of
the Rayleigh quotient of hypergraphs. Therefore, one of the objectives of this
project is on the approximation of this eigenpair. For simplicity, in this section,
we only consider the case where the diffusion process has no mediators, i.e.

βe0 = 1 and βej = 0,∀j ∈ e, ∀e ∈ E.

In [1], a semi-definite programming (SDP) relaxation and a rounding algo-
rithm is proposed for the approximation of the procedural minimizers of the
discrepancy ratio of hypergraphs, where the procedural minimizers are defined
recursively as the following:

Given {fi}i∈[k−1], for some k ≥ 2, a set of orthonormal vectors, define:

γk = min{D(f) : 0 6= f⊥ω{fi : i ∈ [k − 1]}}, and

fk to be the vector orthogonal to {fi}[k−1] that attains γk.
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Given orthogonal vectors f1, · · · , fk−1, the semi-definite program proposed in
[1] is:

Minimize
∑

e∈E ωe maxu,v∈e‖gu − gv‖2

s.t.
∑

v∈V ωv|gv‖2 = 1

∑
v∈V ωvfi(v)gv = 0, ∀i ∈ [k − 1].

To obtain the fk using vectors gv, v ∈ V , it suffices to run a Gaussian round-
ing algorithm. From a purely theoretical perspective, if we are working with
graphs, instead of hypergraphs, then this procedure can be applied to calculate
all the eigenpairs of the graph Laplacian, which obviously includes the max-
imum eigenpair. However, the situation for hypergraph Laplacian is tricky,
perhaps due to the fact that hypergraph Laplacian is only piece-wise linear.
The first two eigenpairs of the hypergraph Laplacian are in fact the first two
procedural minimizers of the discrepancy ratio. However, [1] gives a hyper-
graph whose procedural minimizer does not produce a unique γ3. Therefore,
we cannot use the procedural minimizers to compute the maximum eigenpair
of the hypergraph Laplacian.

One possible idea for the approximation of the maximum eigenvalue of the
hypergraph Laplacian might be formulating a similar SDP relaxation and
rounding algorithm. However, even though semi-definite program can resolve
maximum operators in minimization problems, maximum operators in maxi-
mization problem will cause problem. We do not know if there is any simple
solution for this issue within the framework of semi-definite programming.
For this reason, we have to consider some other optimization framework. In
particular, in this project, we consider the Sum-of-Squares method. First,
we will review some of the very basic definitions and properties in Sum-of-
Squares method. For a more complete introduction to Sum-of-Squares method,
please refer to [7]. The definitions and theorems regarding the Sum-of-Squares
method, without further explanations, are all cited from [7].

Theorem. Let P1, · · · , Pm ∈ R[x], then the system of polynomial equations
E = {P1 = 0, · · · , Pm = 0} has no solution over Rn if and only if, ∃Q1, · · · , Qm ∈
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R[x] and S ∈ R[x] a sum of squares of polynomial s.t.

−1 = S +
∑

Qi · Pi

This theorem a is corollary of the Positivstellensatz and S,Q1, · · · , Qm is called
a Sum-of-Squares refutation of E . It is a degree-` refutation if max degQiPi ≤
`.

We also have a dual object of the Sum-of-Square refutation.

Define. A degree-d pseudo-distribution µ is a finitely supported function over
Rn s.t. Ẽµ1 = 1 and Ẽµf 2 ≥ 0,∀f ∈ R[x]≤d/2, where

Ẽµ :=
∑

x∈ supp(µ)

f(x)µ(x)

Given E as defined in the preceding theorem, we say µ satisfies E, denoted by
µ |= E, if ∀Pi, ẼµQPi = 0,∀Q ∈ R[x]≤(d−degPi).

The following theorem shows us why a constant degree pseudo-distribution
that satisfies some system of polynomial equations is polynomial-time com-
putable.

Theorem. For a finitely supported functional µ with Ẽµ1 = 1, the following
two statements are equivalent:

1) µ is a degree-d pseudo-distribution.

2) Ẽµ((1, x)⊗d/2)((1, x)⊗d/2)T is positive semi-definite,

where Ẽµ((1, x)⊗d/2)((1, x)⊗d/2)T is called the formal degree-d moment ma-
trix of µ. Also, note that in the condition that a constant degree pseudo-
distribution satisfies a system of polynomial equations, we are safe to only
consider Q ∈ R[x] that are monomials, which implies that this condition im-
poses a polynomial-size set of linear constraints in terms of the formal degree-d
moment matrix of µ. Together with the above theorem, it is easy to see that
the condition that a finitely supported functional is a constant degree pseudo-
distribution that satisfies a set of polynomial equations is equivalent to the
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condition that the formal degree-d moment matrix of µ lies in the intersection
of some linear subspace and the positive semi-definite convex cone in Rd×d.
Therefore, we can use semi-definite programming to find such a constant de-
gree pseudo-distribution.

With these definition, it is very easy to state the degree-` Sum-of-Squares
algorithm. Suppose that we are given P0, · · · , Pm and the objective is to min-
imize (or maximize) P0(x) under the constraints that x satisfies the poly-
nomial equations P1 = · · · = Pm = 0. We simply compute the smallest
(or largest, respectively) φ(`) s.t that there exists degree-` pseudo-distribution
µ |= {P0 = φ(`), P1 = · · · = Pm = 0}.

The final theorem gives the duality between Sum-of-Squares refutations and
pseudo-distributions. Due to the corollary of Positivstellensatz, the follow-
ing theorem implies that by considering pseudo-distributions of some degree
(possibly exponential in the size of the problem or worse), we can accurately
extremize a polynomial over polynomial constraints that are explicitly bounded
(that is, there exists a linear combination of the polynomial constraints that
equals ‖x‖ ≤M for some M > 0).

Theorem. Suppose that E is explicitly bounded. Then one and only one of the
followings holds:

1) there exists a degree-` Sum-of-Squares proof refuting E.

2) there exists a degree-` pseudo-distribution µ |= E.

The above discussion implies that Sum-of-Squares method, at least in theory,
can always verify whether a system of polynomial equations has solution or
not. Although since we want the Sum-of-Square algorithm to run in polyno-
mial time and hence have to require the degree of the Sum-of-Square algorithm
to be a small constant (perhaps 4 or 6), this method at least points a direc-
tion for us along which an approximation algorithm with provable guarantees
(although very difficult) for our optimization problems might be found. To
this end, we will try to formulate the approximation of the maximum eigen-
pair of the hypergraph as a polynomial optimization problem first. Similar to
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the semi-definite programming formulation of the procedural minimizers, the
approximation of the maximum eigenpair can be formulated as the following:

Minimize 2−
∑

e∈E ωe maxu,v∈e(fu − fv)2

s.t.
∑

v∈V ωvf
2
v = 1.

As remarked at the beginning of this subsection, semi-definite programming
can not solve this problem because we are minimizing an objective containing
negative maximization operators. So now the main issue is to eliminate the
maximum operator in the objective. This can be resolved as the following:

Minimize 2−
∑

e∈E ωe
∑

u,v∈e(η
e
u,v)

2(fu − fv)2

s.t.
∑

v∈V ωvf
2
v = 1.

∑
u,v∈e(η

e
u,v)

2 = 1, ∀e ∈ E.

Clearly the above optimization problem consists of only polynomial constraints
and polynomial objective (which is of degree 4). To see that the two optimiza-
tion problems are equivalent, one can note that for any e ∈ E and ηeu,v that sat-
isfies the constraint

∑
u,v∈e(η

e
u,v)

2 = 1, we have that ωe
∑

u,v∈e(η
e
u,v)

2(fu−fv)2 ≤
ωe maxu,v∈e(fu − fv)

2. In addition, we are also safe to put the constraints
ηeu,v ≥ 0,∀e ∈ E, u, v ∈ e in, and use ηeu,v directly in other constraints and
the objective. There exists a slightly more general version of the Sum-of-
Squares method that deals with inequality polynomial constraints. However,
even though doing so would reduce the degree of the objective to 3, we choose
not to do so since this will introduce too many addition constraints.

Now let P = 2 −
∑

e∈E ωe
∑

u,v∈e(η
e
u,v)

2(fu − fv)
2 and P1 =

∑
v∈V ωvf

2
v − 1

and Pe =
∑

u,v∈e(η
e
u,v)

2 − 1 for any e ∈ E. We define

A := {P − γ = 0, P1 = 0, Pe = 0,∀e ∈ E}.

Then for any γ, we can in polynomial time determine that whether or not
there exists a degree-4 pseudo-distribution µ |= A.
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Recall the Sum-of-Square algorithm, then one of the issues would be how to
find the smallest γ such that there exists a degree-4 pseudo-distribution that
satisfies it (we will call this smallest value γ(4)). This might not be a trivial
problem for an arbitrary polynomial optimization problem. If we simply try to
put γ (as a variable) into the semi-definite program that solves the existence of
the pseudo-distribution, then we might notice that the constraints that requires
the pseudo-distribution to satisfy the polynomial system might not be linear in
the variables (formal moment matrix of pseudo-distribution and γ) anymore,
meaning that this is no longer a semi-definite program. However, finding the
smallest γ is relatively easy for our problem. Note that Sn−1 the unit sphere
in Rn is compact. Since the Rayleigh quotient of the hypergraph Laplacian R
is continuous, then the image of the unit sphere under the Rayleigh quotient
R(Sn−1) is compact as well, in particular it is bounded, where its minimum
is 0 and the maximum is less than or equal to 2. In addition, since Sn−1 is
connected, its image R(Sn−1) is connected as well, that means R attains all the
values between the minimum and the maximum over Sn−1. On the other hand,
we note that R(Sn−1) is contained in the image of {P1 = 0, Pe = 0,∀e ∈ E}
under (2 − P0). Also, since 0 ≤ P0(x, η) ≤ R(x),∀x, η, we see that the image
of {P1 = 0, Pe = 0,∀e ∈ E} under 2− P0 is the same as R(Sn−1). As a result,
over {P1 = 0, Pe = 0,∀e ∈ E}, 2 − P0 attains all the values between the min-
imum 0 and maximum (less than or equal to 2). This fact suggests that we
can consider using a binary search between 0 and 2 to search for the smallest
value of γ, i.e. γ(4).

Now, what about the approximation quality? Recall that having a degree-
4 pseudo-distribution µ such that µ |= A is equivalent to that there does not
exist a degree-4 Sum-of-Squares refutation for A. If λ∗ = max0 6=x∈RV , then
clearly the polynomial system {P0 = 2 − λ∗, P1 = 0, Pe = 0,∀e ∈ E} can be
satisfied and does not have Sum-of-Squares refutation with any degree, and
in particular it does not have a degree-4 Sum-of-Squares refutation, implying
that there must exists a degree-4 pseudo-distribution that satisfies it. There-
fore, γ(4) should be less than 2 − λ∗. However, the real question is, with the
Sum-of-Square method certifying γ(4), how can one get a vector x ∈ RV such
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that 2 − R(x) gives a good approximation of 2 − λ∗, or, how can one get a
vector x ∈ RV such that 2−R(x) is close to γ(4) which is a value that degree-4
pseudo-distribution deems reachable? The common framework is to make use
of the pseudo-distribution that is computed using the semi-definite program
as the following [7]. Notice that Σ = Ẽµ(x − v)(x − v)T , where v = Ẽµx, the
formal covariance of the pseudo-distribution is also a positive semi-definite ma-
trix. Then the Gaussian distribution computed as (Ẽµx+Σ1/2N ), whereN is a
normal Gaussian distribution, has it that its first two moments matches that of
the pseudo-distribution µ’s (this is the reason why in this section we study the
Sum-of-Square method that uses pseudo-distribution instead of Sum-of-Square
refutation which can be computed using semi-definite program as well). Then
we might be able to sample from this Gaussian distribution and hope that the
sampled vector can give a close approximation of 2−λ∗, or perhaps γ(4). Since
this Gaussian distribution’s first two moments are the same as the pseudo-
distribution, proving an approximation guarantee might amount to proving
that there exists some function f : R→ R such that

Ẽµ(x)(2−R(x)) ≤ f(Ẽµ(x,η)P0(x, η)).

This function, in some ideal cases, could be the map α 7→ c ·α, for some c ≥ 1.
However, this is a difficult task and so far we are still not able to prove it. This
could therefore be our future research direction.

Finally, as is mentioned in the early sections, approximating the maximum
eigenvalue of the hypergraph Laplacian is important because it can be related
to the hypergraph max-cut which is NP-hard to compute. However, since, in
theory, the Sum-of-Square method can be applied to any system of polynomial
equations, we might also consider approximating max-cut directly using the
Sum-of-Square method. In particular, we might consider rewriting the hyper-
graph max-cut as a polynomial optimization problem. This is achieved by
noticing that

∑
e∈E

ωe max
u,v∈e

(fu − fv)2 = ∂S, for f = 1S, S ⊂ V,
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where 1S is the characteristic vector of S. Therefore, the hypergraph max-cut
can be transformed into the maximization of the generalized quadratic form
over the hypercube {0, 1}V . In particular, we have the following optimization
problem:

Maximize
∑

e∈E ωe maxu,v∈e(fu − fv)2

s.t. f 2
v − fv = 0, ∀v ∈ V,

where the constraints requires that either fv = 0 or fv = 1. Similar to the
approximation of the maximum eigenpair of the hypergraph Laplacian, we can
transform the above optimization problem to:

Maximize
∑

e∈E ωe
∑

u,v∈e(η
e
u,v)

2(fu − fv)2

s.t. f 2
v − fv = 0, ∀v ∈ V,

∑
u,v∈e(η

e
u,v)

2 = 1, ∀e ∈ E.

Note that for this optimization problem, we cannot use the binary search
strategy mentioned before since the hypercube is discreet. However, note that
there are no more than n possible values for the hypergraph max-cut, we might
just check all of them. Again we mention that it is very hard to prove any ap-
proximation guarantee for the Sum-of-Square algorithm with this optimization
problem. However, this algorithm might only be interesting for hypergraphs
with edges that are of small sizes. Goemans-Williamson Algorithm [8] is a
0.868 approximation algorithm and when phrased as a Sum-of-Squares algo-
rithm similar to the above, this is still the best guarantee we have. Therefore
we might not expect that the above optimization problem can do much better.
However, for an r-uniform hypergraph (a hypergraph whose edges are of the
same size r), a trivial random bipartition of V can already achieve a (1− 1

2r−1 )

approximation of the max-cut in expectation, hence the above optimization
problem might only be interesting for 3-uniform hypergraphs, perhaps. In
any case, proving some approximation guarantees for the above optimization
problem could also be a direction for future work.
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3 Conclusion

This project studies both the theoretical and computational aspects of the
spectral theory of hypergraphs and submodular transformations. The study
of these theories can connect to various areas of interests, including approxi-
mation schemes and optimization theory.

This report described proofs for the conjectures on the spectrum of the Lapla-
cians defined in the previous sections. The proof touches upon various in-
teresting mathematical theories, including some theoretical results on linear
programming. We also considered some computational issues on the spectral
theories, namely the spectral sparsifier of hypergraph and the approximation
of the maximum eigenvalue of the hypergraph Laplacian. We identified that it
is difficult to reduce the complexity overhead induced by these computational
problems. In particular, a possible useful tool, Sum-of-Square method is stud-
ied and we proposed a degree-4 Sum-of-Squares algorithm for the approxima-
tion of the maximum eigenvalue of the hypergraph Laplacian. However, for
the moment, we are not able to give our algorithm provable approximation
guarantees.

As is clear from the previous section, there are a plenty of room for fu-
ture works. The approximation of the maximum eigenvalue is still an open
problem. Future work might be on proving approximation guarantees for
our Sum-of-Squares algorithms, in particular, on finding c ≥ 1 such that
Ẽµ(x)(2−R(x)) ≤ c · Ẽµ(x,η)P0(x, η).
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