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1 Introduction
The spectral theory studies the spectral properties of graphs and their relation to the combinatorics
properties of graph. Central to this rich theory, the Cheeger’s inequality bounds the expansion or
conductance of the graph by the second least eigenvalue of the Laplacian of the graph[1]. More
specifically, for a graph G = (V,E), its expansion is defined to be:

φG := minS⊂V
|∂S|

min{vol(S),vol(S̄)} ,

where vol(S) is the sum of the degree of vertices in S and ∂S is the cut of S. The Cheeger’s
inequality[1] is as the following:

λ2

2 ≤ φG ≤
√
2λ2,

where λ2 is the second least eigenvalue of the normalized Laplacian LG. This inequality can be
utilized in the design of various algorithms.

Recently, the Cheeger’s inequality was generalized to the case of hypergraph with notions of hy-
pergraph expansion and hypergraph Laplacian[2][3]. This hypergraph Laplacian, denoted by Lω,
is defined to be an operator that determines a diffusion process with mediators over hypergraphs.
In [2][3], it is shown that this Laplacian operator Lω possesses a second least eigenvalue λ2 that
satisfy an inequality similar to that of Cheeger’s:

λ2

2 ≤ φH ≤
√
2λ2,

where φH is the expansion of hypergraph. This result shows that the spectral properties of hyper-
graph Laplacian can indeed be linked to combinatorics properties of hypergraph. However, unlike
graph Laplacians, which are symmetric linear operators, the hypergraph Laplacians are non-linear
and non-smooth, which makes its spectrum hard to characterize. Hypergraph Laplacian is shown
to have a trivial eigenvalue and a second least eigenvalue[2][3] and in this project the conjecture
that the hypergraph Laplacian possesses a maximum eigenvalue is proved. Furthermore, the max-
imum eigenvalue of the hypergraph Laplacian is related to the approximation of the hypergraph
max cut, the computation of which is NP-hard. It is thus interesting to consider the approximation
of the maximum eigenvalue and its corresponding eigenvectors. One of the goals of the project
would therefore be studying possible approximation algorithms of the maximum eigenvalue of the
hypergraph Laplacian.

A more generalized notion of Laplacian can be defined with respect to submodular transformations[4].
Hypergraph Laplacians and graph Laplacians can be viewed as special cases of the generalized
Laplacian by considering different submodular transformations corresponding to hypergraphs or
graphs. This more abstract construction gives rise to some novel Cheeger’s inequalities under the
same unifying framework. It is thus interesting to consider the spectral properties of this Lapla-
cian. In [4], the generalized Laplacian is shown to possess two eigenpairs, similar to the case of
hypergraph Laplacians. One possible research direction along this line would therefore be the study
of other eigenpairs of the generalized Laplacians. The conjecture is that the generalized Laplacian
also possesses a maximum eigenvalue. Hence a proof for this conjecture shall be studied in this
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project.

One particular obstacle of the application of spectral theory of hypergraphs is the size of the
edge set of hypergraphs. For a hypergraph with n vertices, the number of the edges of the hyper-
graph can be of the order O(2n), which can cause the evaluation of the hypergraph Laplacian and
the induced quadratic form intractable. In [5], a spectral sparsifier of hypergraphs is proposed,
with a theoretical guarantee that the number of edges of the sparsified hypergraph is of the order
O(n3logn/ε2) with high probability, where ε is the error of the quadratic form of the sparsified
hypergraph. It might be interesting to see if it is possible to further reduce the number of the edges
in the sparsified hypergraph. Application-wise speaking, as this sparsifier makes the computations
involving the quadratic form of the Laplacian of dense hypergraphs feasible, experiments could be
carried out to test how this sparsifier might improve the performances of algorithms that involves
hypergraph Laplacian, for example semi-supervised learning on hypergraphs[6].

The remainder of this project plan is as follows. First, I will give more explanations on the notions
of hypergraph Laplacian, the induced quadratic form and other related notions. Then I will define
the problems to be studied and consider how the study of them can benefit the applications of the
spectral theory of hypergraphs. The project plan will close with a discussion on the methodology
and a project schedule.

2 Problem Definitions and Goals
In this project we consider edge-weighted graphs H = (V,E, ω) where ω is a consistent weight
function. We assume that all vertex weights are positive. Given f ∈ RV , fu, u ∈ V is the
coordinate corresponding to u ∈ V . In addition, the space RV is endowed with the inner product
〈·, ·〉ω defined as 〈f, f〉ω = 〈f,Wf〉 where W is the diagonal matrix of the weights of the vertices.
This inner product space is called the density space.

2.1 Generalized Quadratic Form and Rayleigh Quotient
In[3], the notion of diffusion operator with mediator is defined. For each edge e ∈ E, let [e] = e∪{0},
where 0 does not correspond to any vertex. A set of constants βe is defined over [e] with βej
corresponding to all j ∈ [e]. Then the following associated generalized quadratic form is considered:

Q(f) :=
∑
e∈E ωe{βe0 maxs,i∈e(fs − fi)2 +

∑
j∈e β

e
j [(maxs∈e fs − fj)2 + (mini∈e fi − fj)2]}.

Also, for f 6= 0 ∈ RV , Q(f)∑
u∈V ωuf2

u
is defined to be its discrepancy ratio.

As in[3], a diffusion process (with mediator) can be defined according a set of rules. Then by
considering the differentiation of the density of the measure over the vertices in the diffusion pro-
cess, the Laplacian Lω can be defined by Lωf = df

dt , where t is the time of the diffusion process.
The detailed explanation of the diffusion process with mediator and the proof of its existence can
be found in [2] and [3]. It is also shown that the Rayleigh Quotient of the hypergraph Laplacian
Lω, defined as R(f) = 〈f,Lωf〉ω

〈f,f〉ω for any 0 6= f ∈ RV , coincides with the descrepancy ratio of f .

2.2 Eigenpairs of the Hypergraph Laplacian
It is obvious that the hypergraph Laplacian obtains a trivial eigenpair. More specifically, 1 ∈ RV
is an eigenvector of the Laplacian with 0 being its corresponding eigenvalue. It is not as trivial
to find other eigenpairs of the Laplacian. In [2][3], it is shown that λ2 := min1⊥f∈RV R(f) is an
eigenvalue with any 1⊥f attaining this value being an eigenvector.

It was left as an open question whether there are other eigenpairs for the hypergraph Laplacian
or not. It is now known that the maximum of the Rayleigh quotient, i.e. λ∗ = max1⊥f∈RV R(f),
is the maximum eigenvalue of the hypergraph Laplacian, with any 1⊥f attaining this value being
an eigenvector. This eigenpair is closely related to the max-cut of hypergraphs, the computation
of which is NP-hard. Hence knowing the maximum eigenvalue and its corresponding eigevector
might be useful for the approximation of the max cut, which requires an approximation algorithm
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for the maximum of the Rayleigh quotient of hypergraphs. Therefore, one of the objectives of
this project will be on the approximation of this eigenpair. In [2], a semi-definite programming
(SDP) relaxation and a rounding algorithm is proposed for the approximation of the procedural
minimizer of the discrepancy ration of hypergraphs. The first two eigenpairs of the hypergraph
Laplacian are in fact the first two procedural minimizers of the discrepancy ratio. One possible
idea for the approximation of the maximum eigenvalue of the hypergraph Laplacian might be for-
mulating a similar SDP relaxation and rounding algorithm. However, it is not known if a similar
SDP relaxation is possible since the two approximation problems are subtly different. This project
will investigate into this idea and perhaps explore various techniques on solving SDP.

2.3 Spectral Sparsifier of Hypergraph
The size of the edge size of hypergraphs can be of order 2n. This might cause the evaluation of
the hypergraph Laplacian and Rayleigh Quotient (or the genralized quadratic form) intractable.
It is therefore important to consider the spectral sparisifier of hypergraph. A subgraph H ′ of the
hypergraph H is an ε-spectral sparsifier of H if:

(1− ε)QH′(f) ≤ QH(f) ≤ (1 + ε)QH′(f)

for every f ∈ RV . A randomized algorithm is proposed in [5] that can generate a sparsifier with
O(n3logn/ε2) edges with high probability for any hypergraph, which makes the computation of
various problems that involves the quadratic form of hypergraphs feasible. Some possible direc-
tions along this line of thought might be conducting some experiments to quantify emperically the
benefits that the hypergraph sparsifier can bring to different computational models. It might be
interesting to study the computational models that arises in natural scenarios where the quadratic
form of dense hypergraphs are needed.

One particular example of the possible application of the sparsifier might be the semi-supervised
learning on hypergraphs[6], which in principle can be accelerated by spectral sparsifiers[5]. In [6],
a learning task on (directed) hypergraph is considered. Labels x∗(u) are given for some vertices
u ∈ L ⊂ V and the task is to predict the labels of vertices in V \L. This problem is then transformed
into an optimization problem with the generalized quadratic form as the objective. A subgradient
method is proposed to solve this optimization problem[6]. Since clearly this optimization problem
involves the generalized quadratic form, applying the spectral sparsifier of hypergraph in this case
should be able to speed up the computations significantly, especially when the hypergraph model
is dense[5]. Then an experimental work of this project will be on finding dense hypergraph models
in the scenario of semi-supervised learning and experiment the spectral sparsifier with it.

Another possible direction might be improving the sparsifier proposed by [5]. Note that the current
sparsifier is of order O(n3logn/ε2). However, a hypergraph with edges that contains no more than
3 vertices has no more than O(n3) edges, which means that the proposed sparsifier will not sparsify
this hypergraph at all. Hence it would be interesting to consider sparsifiers that might give better
theoretical guarantees.

2.4 Generalized Laplacian and Its Eigenpairs
The notion of Laplacican can be further generalized for submodular transformations, which is the
product of submodular functions over the power set of some set V , or equivalently {0, 1}V [4]. That
is to say, a function F : {0, 1}V → RE is said to be a submodular transformation if each of its
component function is submodular. A set function Fe : {0, 1}V → R is a submodular function if
Fe(S)+Fe(T ) ≥ Fe(S ∩T )+Fe(S ∪T ),∀S, T ⊂ V . For each submodular Fe, there exists a Lovász
extension fe : [0, 1]V → R which is defined to be the convex closure of the submodular function
Fe. More specifically, [4] considers the submodular polyhedron P (F ) and the base polytope B(F )
of F :

P (F ) = {x ∈ RV |
∑
v∈S x(v) ≤ F (S),∀S ∈ V } and B(F ) = {x ∈ P (F )|

∑
v∈V x(v) = F (V )}.

With P (F ) and B(F ), the Lovász extension of fe : RV → R of a submodular function Fe :
{0, 1}V → R is:

fe(x) = maxω∈B(Fe)〈ω, x〉.
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Note that ∂fe = argmaxω∈B(Fe)〈ω, x〉.

In [4], the notion of Laplacian operator LF : RV → 2R
V

is defined for the submodular trans-
formation F as follows:

LF (x) := {
∑
e∈E〈ωe, x〉|ωe ∈ ∂fe(x)},

where ∂f(x) is the subgradient of fe at x. The Lovász extension of f of a submodular function
is defined to be the product of Lovász extensions of each component functions of F . Then [4]
shows that the Rayleigh quotient RF : RV → R of the generalized Laplacian LF for submodular
transformation F is:

RF (x) :=
〈x,LF (x)〉
〈x,x〉 =

‖f(x)‖22
‖x‖22

, for x 6= 0,

where ‖·‖2 is the 2-norm over RV . Graph Laplacian and hypergraph Laplacian are special cases of
this generalized Laplacian. Like the case of hypergraph Laplacian, it is known that LF admitts two
eigenpairs, one of them being trivial, and the other being the minimizer of the Rayleigh quotient
subject to the condition that x 6= 0 and x⊥1[4]. It is not yet known if there exist other eigenpairs
of the generalized Laplacian. Therefore, I will attempt to generalize the proof for the existence
of the maximum eigenvalue of the hypergraph Laplacian to the case of generalized Laplacian. If
such generalization is indeed true, then the study of the approximation algorithm of this possible
eigenpair will be in order. This will provide a unifying framework for the previous works such
that results concerning the second least and maximum eigenvalues of the graph Laplacian and
hypergraph Laplacian can all be derived from that of the generalized Laplacian by considering
different submodular transformations.

3 Methodology
As this point, the project is very theoretical and mathematical in nature. A significant amount
of effort will be put on proving mathematical conjectures. The rest of the project will mostly
be on the study of various approximation algorithms, which will involve theoretical analysis of
the performances. Thus this project will not be implementation-oriented. As such, a significant
amount of time will be spent on literature reviews, instead of programming and testing. I will try
to explore extensively on the mathematical ideas and tools that might be helpful for the project.

4 Project Schedule
Due to the nature of the project, it is not very practical to put down a precise schedule for
the project. Coming up with correct proofs for the problems discussed or finding out efficient
approximation algorithms might take much more or if lucky, less time than expected. Hence a
rough time frame is given as follows:

1. October: Study relevant papers on the problems discussed above. Read extensively on
mathematics that might be useful, including optimization, combinatorics and algebra and so
on. Investigate into possible ideas and solutions to the problems above. Start building up
the final project report.

2. November and December: Focus more on problem solving. If there are theoretical pro-
gresses, validate them. Identify relevant problems that are also of interests and if time allows,
work on them. Add any new findings to the project report.

3. January to March: If there are any progress in the theoretical work, continue investigating
them. If not, some time should be put into experimental work, including the experiments
on possible applications of the spectral sparsifier of graphs. The experiments will involve
gathering of data (as represented in dense hypergraphs) and implementation of the existing
sparsification algorithms. Finish the draft project report.

4. April and Onward: Wrap up the project. Identify the problems solved and problems
unsolved. Identify possible future works. Finalize the project report.
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