

The University of Hong Kong

Final Year Project

Final Group Report

Building an Easy-to-use Ride-sharing App for HK

Supervisor: Dr. Huang Z.Y.

Student Name: Leung Hon Man, Anthony (3035278400)

Lau Chi Ho, Eric (3035326049)

Lau Chun Yin, Elven (3035294715)

Account: FYP18028

April 19, 2019

1

Abstract

In recent years, ride-sharing has been an alternative to public transportation or private car rental

for commuters in countries around the world. It is believed that ride-sharing is a way to alleviate

the traffic congestion and reduce the air pollution caused by vehicles [1]. However, Hong Kong,

as a world-class city which is suffering from traffic congestion, has not exploited the benefits of

ride-sharing. One of the reasons may be that there is no ride-sharing mobile application being

extensively spread in Hong Kong until now.

In an effort to increase the popularity of ride-sharing in Hong Kong, this project aims to design

and implement a fully featured handy ride sharing mobile application and related web services for

people in Hong Kong, which adapting matching algorithms from cutting-edge research. Two

algorithms are implemented and evaluated using some real-world test cases and a virtual grid

world simulator in this project.

This project was conducted in group by three students in the Computer Science Department of The

University of Hong Kong, they are Leung Hon Man (Anthony), Lau Chi Ho (Eric) and Lau Chun

Yin (Elven).

2

Acknowledgments

We would like to express my greatest appreciation to Dr. Huang Z.Y. for his guide on this project,

to Dr. Hubert T.H. Chan for his advices and assessment as a second examiner, to Dr. Joanna C.Y.

Lee for the help in writing the academic report. This project would not have been possible without

their help.

Furthermore, we would like to express my special gratitude to the Computer Science Department

and the University of Hong Kong for offering me the world-class computer science curriculum

and comprehensive learning facilities, which equipped me with a strong academic foundation and

made the completion of the project possible.

3

Table of Contents

Abstract.. 1

Acknowledgments ... 2

List of Figures .. 4

List of Tables .. 4

Abbreviations ... 5

1. Introduction .. 6

1.1 Motivation ... 6

1.2 Concepts and Defin itions .. 6

1.3 Previous Works .. 7

1.4 Objective and Scope .. 8

1.5 Outline .. 9

2. Methodology .. 9

2.1 Problem Defin ition and Algorithms .. 9

2.2 System Design ..16

2.2.1 Overall Arch itecture ..16

2.2.2 Data Flow Diagram..17

2.2.3 Network Communicat ion Method...19

2.2.4 Main Features of the Mobile Applicat ion ..20

2.3 Implementation ...21

2.3.1 Project Structures ...21

2.3.2 Technology Choices ..24

2.3.3 UI/UX of the App...26

2.3.4 User Authentication Process ..27

3 Testing and Results ..29

3.1 Unit and Manual Test ..29

3.2 Integration Test...30

3.3 Evaluation of the Matching Algorithms ...32

4. Limitations and Difficulties ...36

5. Conclusion and Future Works ...37

6. Division of Labor ..38

References ...39

Appendix 1 - project schedule ...40

4

List of Figures

Figure 1 - Shareability Between Trips……………………………….…..….……..…….……...11

Figure 2 - Steps of Dynamic Assignment Algorithms……………………………..……………13

Figure 3 - System Architecture of Ride-sharing Digital Platform ………………..…….……….16

Figure 4 - Data Flow Diagram of the System…………………………….………..…….………18

Figure 5 - Screenshots of the Mobile Application………………………………..……..……….26

Figure 6 - Screenshots of Demo Video on YouTube………………………………...………….27

Figure 7 - Screenshot of Insomnia Test Tool…………………………………....…...………….29

Figure 8 - Integration Test - Case 1……………………………………………...………………30

Figure 9 - Integration Test - Case 2………………………………………………...……………30

Figure 10 - Integration Test - Mobile App Screenshot…………………………..………………31

Figure 11 - Result of the Peak Traffic Time Experiment……………………….……………….34

Figure 12 - Result of the Benchmark Experiment……………………………….………………35

List of Tables

Table 1 - Comparison Between SOAP and REST Communication Method…….……………....19

Table 2 - End-points of the Web Server………………………………………………………….24

Table 3 - List of Programming Languages, Frameworks, and Tools Used in Development…......24

Table 4 - Parameter used in Evaluating Matching Algorithms…………………………………..33

Table 5 - List of Responsibilities of Each Member...38

5

Abbreviations

DBMS Database Management System

DevOps Software Development and Information Technology Operations

FTP File Transfer Protocol

ILP Integer Linear Programming

JWT JSON Web Tokens

REST Representational State Transfer

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

UI User Interface

UX User Experience

6

1. Introduction

1.1 Motivation

Since Hong Kong is one of the densest cities in the world, traffic congestion has been a problem

for commuters for a long time; despite the transportation network in Hong Kong is highly effic ient

and fully exploited, the traffic congestion problem is escalating [2]. However, ride-sharing may be

a solution to the dilemma of Hong Kong's transportation. Studies demonstrate that adapting ride-

sharing can significantly reduce the demand for vehicles, and thus it is a potential solution to traffic

congestion [1, pp. 25-26]. Ride-sharing can reduce the number of empty seats in private vehicles

and thus can alleviate traffic congestion.

Ride-sharing has been available in Hong Kong in recent years, but the usage of ride-sharing is not

popular. A survey illustrates that there are only around 33 per cent non-car owners have ever used

ride-sharing services before [3, pp. 40-41]. One possible reason of this situation is the fact that

there is no free-of-charge, fully featured, safe, and easy-to-use ride-sharing mobile application

which can encourage public to attempt the ride-sharing services for the first time in Hong Kong.

1.2 Concepts and Definitions

The term ride-sharing can be ambiguous since it is not stated in the laws of Hong Kong [3]. In this

section, the definitions of ride-sharing and related concepts will be clarified.

Ride-sharing (or car-sharing) refers to any means of transportation in which a car owner (an

individual or a company) provides a shared or non-shared ride to another individual or a small

7

group of people [3]. In this project, only two types of ride-sharing are concerned, they are car

hailing and carpooling.

Car hailing (or ride-hailing) refers to a service that a driver with or without a Taxi license provides

a ride to an individual or a small group of people to their destination with or without prior

appointment [3]. Traditional Taxi service is one of the car hailing by definition, other examples

are UberX and Lyft which use digital the platform to assign the ride requests to drivers.

Carpooling refers to a service which is the same as car hailing except that the driver will pick up

new passengers with a similar direction during the ride if the capacity of the car allows.

Ride request (or simply request) refers to the requests that submitted by a mobile application user

(passenger) who want to travel from origin to destination.

Trip (or ride, ongoing ride, matched ride, matched request) refers to the mission of the driver,

appointed by the system after matching a passenger's ride request to the driver, to travel from one

or more origins to one or more destinations.

1.3 Previous Works

Many research related to ride-sharing have been conducted and attempted to provide solutions to

the dynamic matching problem appearing in the online digital platform of ride-sharing. There have

been at least 38 academic papers related to ride-sharing since 2006, and most of the papers

presented matching algorithms which make it possible to assign ride requests to suitable drivers

instantaneously [4]. Two academic papers ([5] and [6]) published in 2018 were studied, but the

content is not directly used in this project. A paper published in 2017 with the title "On-demand

8

high-capacity ride-sharing via dynamic trip-vehicle assignment" is the foundation of the matching

algorithms in this project [7]. And the concept "shareability" used in the algorithm introduced by

[7] is originated by [8] which is also studied.

There are several ride-sharing mobile applications available on the market such as Uber, LYFT,

GRAB, etc. However, it seems the source code and technical details of those applications are not

shared with the public. On the other hand, there are no open-source ride-sharing mobile

applications are observed at this moment.

1.4 Objective and Scope

This project aims to deliver a free-of-charge, full- featured, safe, and easy-to-use ride-sharing

digital platform to people in Hong Kong for the purpose of improving the transportation system.

Only mobile devices are chosen as the medium of this digital platform. Therefore, the deliverab les

consist of two components, a front-end mobile application and back-end web services.

For the front-end mobile application, both Android and iOS platforms are targeted, and both car

hailing and carpooling services will be available. The application will also include features of other

ride-sharing mobile applications, such as users account management (i.e. login, signup, password

reset, etc.), map view for easy locating the driver or passenger, and in-app communications among

users, except the e-payment system.

The back-end web services will have all necessary functionalities (i.e. web server, database, and

matching algorithms) that support the features presenting in the mobile application. In particular,

two matching algorithms for rider-driver pairing will be implemented, analyzed, and evaluated.

9

1.5 Outline

This report will first present the design, implementation details, and testing approach of the ride-

sharing mobile application and the back-end web server in the methodology section. Next, a review

of the difficulties, and limitations of this project will be delivered. Finally, in the conclusion section,

a summary of this report and a future plan will be made.

2. Methodology

In this section, the abstract-level design and implementation details of the ride-sharing digital

platform are introduced.

2.1 Problem Definition and Algorithms

The definition of ride-sharing problem of this project aims to solve is a real-time driver-passenger

matching problem. In every timeframe (let’s say 6 seconds), the web server will receive a number

of vehicles and ride requests which are passed to the matching engine for matching. The matching

will be conducted by the match engine at an interval of I (let's say 60 seconds). The matching

engine will first transform those requests and available vehicles to a set of Requests R =

{𝑟1 , 𝑟2 , … , 𝑟𝑛} (each r is a tuple [o,d,t] where o is the origin of the request, d is the destination of

the request and t is the request time) and a set of vehicles V = {𝑣1, 𝑣2 , … , 𝑣𝑚} (each v is a tuple

[l,p] where l is the location of the vehicle and p is a list of request assigned to v) respectively. Then,

an optimal assignment of V and R will be computed, where V may have already carried a list of

passenger p. The assignment is a set of mapping M between R and V(e.g. M = { 𝑟1, 𝑣2 }) such that

the cost function C is minimized, and a set of constraints Z is satisfied. The input and output format

are shown as following:

10

This project implemented two matching algorithms, an original greedy algorithm and an advanced

algorithm from the academic paper "On-demand high-capacity ride-sharing via dynamic trip-

vehicle assignment"[7] (Dynamic Assignment for short). Two algorithms are evaluated using both

real-world test cases and a grid world simulator.

Algorithm 1: Greedy Algorithm

For the original greedy algorithm, the pseudo code is shown as below:

The constraints set Z includes three constraints, 1. waiting time must be less than certain minutes,

2. the empty seat in the drivers must be greater than zero, and 3. the most important constraint is

that requests must be sharable with the trips the driver carrying.

11

Figure 1 - Shareability between trips

The concept of whether a request and a driver have shareability or not is proposed by [8]. Trips

are sharable if their best routes are shorter than their sum of individual distance between pickup

and drop-off locations [8, p.13292]. In figure 1, the trips in left side are shareable because their

best shared routes (red line) are shorter than the sum of their individual lengths (dark arrows). In

contrast, for the trips in right, there does not exist a shared route (not a concatenated routes of

individual trip) that is shorter than the sum of the individual lengths of trips, so those trips are not

shareable. [7] introduced a variant that decides the shareability between a ride request and a vehicle,

which also consider the current location of the vehicle when calculating the best shared route and

individual route.

12

Algorithm 2: Dynamic Assignment Algorithm

The three terms are used in this subsection, they are delay, waiting distance, and matched route.

It is better to use the following case to illustrate them.

In this case, there are two requests (R1 and R2) and one empty vehicle V1. V1 has a position of

(0,0). R1 is a request from 0,0 to 5,0 and R2 is a request from 1,1 to 4,1.

The matched route (trip) is the orange line on the graph. Its route is 0,0->0,1->1,1->4,1->4,0-

>5,0 and has a distance of 7 units.

Delay is the sum of delay distance of the requests in a trip. Delay distance means the distance in

the matched route that the passengers experienced in the ride minus the distance of the best route

to serve the requests alone. In the case above, R1 will experience 7-5= 2 units distance delay but

R2 doesn’t experience any delay since R2 gets on the car at 1,1 and gets off the car at 3,1 which is

the same as the best route to serve the R2 alone. The sum of delay is 2+0=2.

Waiting distance means the waiting distance each request experienced in a trip. In the case above,

R1 didn’t experience any delay as V1 have the same position with the origin of R1 but R2

experience 2 units delay distance as matched route is 0,0->0,1->1,1 and need to go 2 units distance

to the origin of R2. In the algorithm, we only need to consider whether the largest waiting distance

of a request in the trip violated the constraint or not because if the request which has the largest

waiting distance in a trip does not violate the waiting distance constraint, other does not too.

V1(0,0)

R2 (1,1->4,1)

 R1(0,0->5,0)

13

Below are the set of constraints Z we will consider in the algorithm:

1. For each request R, the maximum waiting distance cannot be larger than Ω, which is a constant

2. For each request R, the maximum delay distance cannot be larger than ∆, which is a constant

3. For each vehicle, the maximum passengers cannot exceed the capacity of the car.

4. Rides will only be matched if they are shareable. Where the term shareability is same as that

described in Algorithm 1.

The cost function C computes the sum of delay (𝛿𝑟) of the trips (both previous requests but still

on the car and new assigned requests are considered) and sum of constant 𝑐𝑘𝑜 for the unassigned

request. Formally,

C(∑) = ∑ ∑ 𝛿𝑟𝑟∈𝑃𝑣∈𝑉 + ∑ 𝛿𝑟𝑟∈𝑅𝑜𝑘
+ ∑ 𝑐𝑘𝑜𝑟∈𝑅𝑘𝑜

.

Where 𝑅𝑜𝑘 denote set of newly assigned requests 𝑅𝑘𝑜 denote set of unassigned requests.

Algorithm Steps:

Figure 2 - Steps of Dynamic Assignment algorithms (capture from [7]). V1 is carrying a passenger to a destination

and V2 is an empty car. Also, there are four different request 1,2,3,4.

The algorithm will receive a number of requests R and vehicle status V as an input (fig. 2A). The

matching algorithm is divided into four parts – pairwise request-vehicle shareability graph (RV-

14

graph) (fig. 2B), feasible trip of vehicles serving requests graph (RTV-graph) (fig. 2C), solving

ILP for assign the best trips (fig. 2D), and rebalance the remaining idle vehicles and unassigned

requests (fig. 2E) [7].

In this project, we will set our constrain Z. The delay distance is set to 1km and maximum capacity

of 2 requests in order to enhance user experience and increase the performance.

First, RV graph has two types of edge (Step B). The first type of edge is a vehicle connects to a

request. A vehicle will connect to a request if the vehicle can serve the request while does not

violate the constraints Z (Waiting time, delay, capacity, shareability). Note that a vehicle can be

empty or already have passengers in the car. The second type of edge is a request connects to a

request. Two requests are connected if they are shareable by a virtual car start from either request.

The use of this step is to reduce the trips generated in the next step.

The output from the RV graph (2 types of edge) will be passed to the next step, which is forming

RTV graph (Graph of candidate trips and pick-ups) (Step C). This step is to select all possible trips

that satisfied the constraints Z. In order to reduce the possible cases for finding possible trips, two

rules will be applied:

⚫ Request will be added to a vehicle to make a new trip if the request vehicle pair is in the RV

graph

⚫ Request should form pairs with one of the requests in the same vehicle which can be found

in the RV graph.

After all trips are generated, the trips will be checked incrementally to find the best route of the

trips and the corresponding delay will be calculated and will be checked if it satisfied the

constraints Z or not. The trips that satisfied the constraints Z will be append to the possible trip list

(RTV-graph) with the delay to be the output. Note that a vehicle and a request can be in mult ip le

trips. In order to save computation power, trips will only be checked if all the sub-trips in the trips

are checked and satisfied the constraints (i.e.: in the possible trip list). For example, a trip t =

15

{𝑣1 , 𝑟1, 𝑟2 } will only be checked if (𝑣1, 𝑟1) and (𝑣1, 𝑟2) are both in the possible trip list (RTV-

graph).

After this step is the assignment step. There are two methods running in parallels. The first method

is greedy assignment in respect to the delay and it may not output the optimal solution. The second

method is using ILP (integer linear programming) and it will output the optimal solution. In the

ILP method, a binary variable 𝐸𝑖 ,𝑗 ∈ {0,1} is introduced. If 𝐸𝑖,𝑗 = 1, it means vehicle j is assigned

to trip i. We need to find the values of all 𝐸𝑖 ,𝑗 such that the cost function will return a minimum

value and also satisfy each request and vehicle can only be assigned once only. The reason why 2

methods are running in parallels is because sometimes the ILP assignment will take a long time to

compute the optimal assignment and exceed the time limit. In this case, we need to combine the

partial result of ILP with the result of the greedy assignment to return a suboptimal result. However,

the paper didn’t mention how to combine the result and our ILP library (Pulp) doesn’t support

partial solution, we only run the ILP to give the optimal solution in the testing part. Note that we

have also implemented the greedy assignment.

At last, the propose of rebalance (Step E) is to balance the number of idle vehicles fleet because

there may occur non-random requests. For example, there will be many requests with similar route

and the idle vehicles are far away from the requests’ origin. In this case, the requests are not

satisfied the constrain. Therefore, we will try to match those idle vehicles 𝑉𝑖𝑑𝑙𝑒 and unassigned

requests 𝑅𝑘𝑜 in this step. This step will check for idle vehicles 𝑉𝑖𝑑𝑙𝑒 and unassigned requests 𝑅𝑘𝑜

and compute the minimum number of sum of waiting distance ∑ 𝛿𝑣,𝑟
𝑤 𝑦𝑣,𝑟𝑣∈𝑉𝑖𝑑𝑙𝑒 ,𝑟∈𝑅𝑘𝑜

=

 min(𝑉𝑖𝑑𝑙𝑒 , 𝑅𝑘𝑜) where 𝑦𝑣,𝑟 ∈ {0, 1}. This rebalancing will stop until there are no unassigned rides

or idle vehicles However, in our project, this step will not be run because our testing location is

randomly generated, and the request can match with vehicle without rebalancing.

16

2.2 System Design

This subsection explains the overall architecture of the system, data flow diagram among all the

parties, the network communication method used in this system, and the main features of the

mobile applications.

2.2.1 Overall Architecture

Figure 3 - System Architecture of Ride-sharing Digital Platform

The ride-sharing digital platform consists of two major parts as demonstrated in Figure 3, the front-

end side and the back-end side.

17

On the front-end side, the mobile application in each user's mobile device directly interacts with

the user to provide ride-sharing services and communicates with the web server on the back-end

side to deliver users' information or ride requests.

On the back-end side, there are four running services, web server, matching engine, database, and

cache storage which provide different functionalities and communicate with each other within the

private network. This architecture, also known as the 3-tier architecture, is a common approach in

IT industry. It separates the responsibilities into three categories, presentation layer, application

layer, and data layer, with the benefits that the system are more flexible, scalable, and higher

performance [9]. Mapping the architecture of this project to the 3-tier architecture, the mobile

application is in the presentation layer, and the web server and matching engine are classified as

application layer while the cache storage and database are in the data layer.

There are two reasons to separate matching engine from web server. First, matching is performed

at specified intervals, for example, every 30 seconds, and it is not triggered by external event,

therefore, the nature of matching engine is different from that of web server, they should not be in

the same program (or process). Second, it is a good practice to decouple the matching engine from

the system (which means no other components in the system knows its existence) if there are more

than one version of matching algorithms. Because different matching algorithms may require

different information from database and different implementation of the matching engine,

separating matching engine from the system make the switch of matching algorithms easier and

do not require restart of web server. To support the communications between web server and

matching engine, the cache storage is used as a global, atomic, in-RAM storage which allow high

speed read/write operations to two data structures, list and hash table.

2.2.2 Data Flow Diagram

18

Figure 4 shows the ways different parties communications with each other in and outside the

system and describe the input and output of each parties. Note that the cache storage is divided

into 3 sub-parts, ongoing ride set which stores the details of all matched rides, online driver set

which stores the online drivers' locations, and Ride Request Queue that stores the requests waiting

to be matched.

The users only send request to the web server when they want to have a ride, while the drivers

update their location to the web server at pre-defiled time interval. Match engine is trigger regularly

and it will read all the information it needs to perform matching, and it will send the match results

to web server when the matching is done. When web server received the match results, it does not

notify the end-users directly, but redirects the result to push notifications services providers (APNS

for iOS, Google Cloud Messaging for Android). The push notifications services providers will

send notification to users. At the same time, when passengers inquire all the driver locations or

drivers inquire all the pending ride requests, the web server is able to provide the timely

information after received the match results from matching engine.

Figure 4 - Data Flow Diagram of the System

19

2.2.3 Network Communication Method

The communication method for the mobile application, web server, matching engine, and database

will be REST. REST is the most common communication style of web services in which one

computer uses a stateless network protocol like HTTP to send data to another computer. Another

popular communication method is SOAP, which is more complicated and uses not only HTTP but

also SMTP and FTP. The differences between REST and SOAP are shown in Table 1. It is

illustrated that REST is much easier to implement, has better performance, involves fewer

technologies and thus has lower learning overhead [10]. Therefore, REST is chosen as the only

communication style for this project.

Table 1 - Comparison Between SOAP and REST Communication Method [10]

20

2.2.4 Main Features of the Mobile Application

In the user perspective, there are in total 10 main features in the mobile application:

1. Account management for users (i.e. sign up, log in, change and reset password)

2. Profile management (i.e. upload avatar images, edit nickname, car plate, contact no., etc.)

3. Passengers can see all the driver locations on the map view

4. Passengers can find a driver in real time

5. Drivers can see all the ride requests on the map view

6. Drivers can find riders to initiate a ride

7. Drivers can continually match new riders with similar direction during a ride

8. Notification to users when match found

9. Match History

10. Providing contact method to matched passengers or drivers

21

2.3 Implementation

This subsection provides the details of the current implementation of the design demonstrated in

the last subsection (i.e. section 2.1), including project structures, technologies choices, UI of the

mobile application and user authentication process.

2.3.1 Project Structures

The source code is divided into two Git repositories, "Ridesharing-App-For-HK" for the code

related to the mobile application development and "Ridesharing-App-For-HK-Back-End" for the

code related to web server, database schema, matching engine/algorithms, and scripts for

integration test. Those repositories is resided in GitHub for collaboration and easy access to

development history, the link is https://github.com/eric19960304/Ridesharing-App-For-HK and

https://github.com/eric19960304/Ridesharing-App-For-HK-Back-End respectively.

The project structure for "Ridesharing-App-For-HK" is as following:

• README.md

o some important information about the repository

• assets

o for storing the images materials

• App.js

o project entry point

• config.js

o for configuring the web server url

• src/boot

o scripts here is executed when the app is first opened

• src/helpers

https://github.com/eric19960304/Ridesharing-App-For-HK
https://github.com/eric19960304/Ridesharing-App-For-HK-Back-End

22

o storing utility modules that can be used at various other modules

• src/screens

o storing pages' layout and logic

• src/theme

o storing the code for styling

• … (can ignore)

The project structure for " Ridesharing-App-For-HK-Back-End" is as following:

• README.md

o some important information about the repository

• images

o for storing the images materials

• app.js

o project entry point

• config.js

o for configuring various parameters of the web server

• src/controllers

o storing end-point logic

• src/db

o storing database clients

• src/helpers

o storing utility modules that can be used at various other modules

• src/models

o storing database schema

• src/middlewares

o storing reusable components that can be used in controllers

• /matchEngine

o code for matching algorithms, matching engine, and simulator

• /testing

o code for integration test

23

• … (can ignore)

The list of end-point of the web server is shown in table 2:

End-point HTTP

Method

Remark

/auth/login POST

/auth/signup POST

/auth/signup/activate/:token GET A temporary account activation link is

sent to user's email after login (:token is

random generated UUID4 string)

/auth/reset-password/request POST

/auth/reset-password/:token GET A temporary link for user to fill in reset

password form in their web browser

/auth/reset-password/:token POST Same link as previous but to receive the

reset password form data submitted by

users.

/api/secret/google-map-api-key POST For mobile app to get google API key to

use map services, it will be expensive if

there are many users.

/api/driver/update POST For drivers to update their location and get

all the pending/matched request origin

and destination.

/api/driver/get-all-drivers-location POST For passengers to get all/matched the

driver location.

/api/rider/real-time-ride-request POST

/api/user/edit-profile POST

/api/user/edit-profile-with-password POST

/api/user/push-token POST For push notification to work.

/api/user/unread-messages-count POST For users to get how many unread system

messages.

24

/notify-match-result/real-time-ride POST For internal used only. When matching

engine found mapping, it will send the

result to this end-point.

 Table 2 - End-points of the Web Server

The mobile application is on development stage and requires some work to make it available in

Apple App Store and Android Play Store. The instructions to run the mobile app, web server,

matching engine, simulator, and testing are written in README.md file in root directory for each

repository.

2.3.2 Technology Choices

 Mobile Application Web Server Database DevOps

Programming

Language

JavaScript JavaScript NoSQL N/A

Frameworks

(or libraries)

React Native,

NativeBase

Node.js, Express.js MongoDB N/A

Tools Expo Nodejs Development

Server

Robo 3T

(DB browser)

Google Cloud, Git,

GitHub

Table 3 - List of programming languages, frameworks, and tools used in development

There are many tools and technologies available for implementing the design described in the

previous subsection, yet, not all of them are suitable for this project. Thus, choices have been made

carefully to ensure the development process will run smoothly, and no compatibility conflict

among software libraries will occur. The selected programming languages, frameworks, and tools

for this project are shown in table 3.

25

For the web server, JavaScript is used as the programming language with Node.js runtime

environment. JavaScript is a popular choice for building web servers for mobile applications,

because it has better performance, lower learning curve, more support on the Internet, compared

to other choices like Python and Java.

For the database, MongoDB is chosen to be the DBMS. Compared to other available DBMSs such

as PostgreSQL, MySQL, Oracle NoSQL Database, etc., MongoDB is much more suitable for this

project since it is easy to learn, flexible, stable, and free-to-use.

For the mobile application, JavaScript will be the programming language with React Native and

NativeBase framework. Using JavaScript for mobile application development is beneficial. Not

only the development skill set can be aligned with the web server development to reduce the

learning cost, but also that it is supported for both Android and iOS mobile platform development,

and thus only one code base needs to be written.

Since the development of matching engine can only be done after fully understood the matching

algorithms mentioned in section 1.3, there is no implementation detail for the matching engine yet,

attributed to the academic papers regarding the matching algorithms are not fully explored.

26

2.3.3 UI/UX of the App

Figure 5 - Screenshots of the Mobile Application

27

Figure 5 displayed some screenshot of the UI of mobile application, including initial welcome

page, find ride page (submit requests, notification of getting matched), system messaging, and edit

profile page.

Figure 6 - Screenshots of Demo Video on YouTube

However, it is difficult and inefficient to explain the flow of using the mobile application in this

report. Instead, a 10-min video (as shown in figure 6) demonstrating how to run and how to use

the mobile application is made and uploaded on YouTube at the link: https://youtu.be/lWX9K4Xj9gU.

2.3.4 User Authentication Process

The user authentication process in software requires special attention, because this process

involved users' sensitive information which are their passwords. For this project, users' privacy

https://youtu.be/lWX9K4Xj9gU

28

and server-side security will be well handled by adopting industry standard for implementing user

authentication feature.

When a user signs up in the mobile application, his or her email and password are sent to the web

server via SSL and there is no third party can obtain those data. After the web server received those

data, instead of storing the password into database in plain text, the web server keeps the hashed

value, which is calculated by the password received and a random value, into database to ensure

nobody can derive the original password from the database record.

When the user logins in the mobile application, the email and password entered will again be sent

to the web server and used to generate another hashed value. By comparing the freshly generated

hashed value and the hashed value in database, the identity of the user can be confirmed. Upon

successful login, a JWT token will be generated and sent back to user. JWT is an encrypted string

that is used for Token-based Authentication in which a user only needs to log in for once to get a

JWT and mobile application can present it to the web server for each request [11]. The

authentication method using JWT is suitable for mobile application because it only requires the

user to log in once, easy to implement, and are reasonably safe [11].

29

3 Testing and Results

3.1 Unit and Manual Test

Both unit test and manual test have been conducted for the project. The mobile application is tested

manually using Expo, which is a mobile application build tool for React Native framework. Each

end point of the web server mentioned in 2.3.1 is tested using a RESTful call test tools called

Insomnia (figure), which can easily make GET and POST HTTP/HTTPS requests to web servers.

For the matching engine, each module is tested individually using simple test cases in if __name__

== "__main__": block.

Figure 7 - Screenshot of Insomnia Test Tool

30

3.2 Integration Test

Two cases shown in figure 8 and 9 are created for testing whether the system can work as whole,

the test script is located at Ridesharing-App-For-HK-Back-End/test/caseStudy.py.

Figure 8 - Integration test - case 1

Figure 9 - Integration test - case 2

31

For both cases, D1, D2, D3… represents driver 1, driver 2, driver 3, etc. And R1, R2, R3, …

represents request 1, request 2, request 3, … etc. We used the same constraints sets Z for both

algorithms to solve the two cases and observed the following results.

For case 1, the optimal solution is (R1, D1) and (R2, D2) which means assigning request 1 to driver

1, request 2 to driver 2. Both the Greedy and the Dynamic Assignment algorithms give the optimal

assignment.

For case 2, D2 has matched with R2, and the passenger of R2 has already get in D2's car. Although

R3 is closest to D2, but R3's destination is completely opposite to R2's destination where D2 must

go to. Therefore, the optimal assignment should be (R1, D2) and (R3, D1). In this case, the

Dynamic Assignment algorithm gives the optimal assignment while the Greedy algorithm give the

mappings (R1, D1) due to its greediness.

Figure 10 - Integration test - Mobile App Screenshots

32

Furthermore, the integration test can also be reflected in the mobile application as shown in

figure 10.

In short, the system success work as a whole and it can be observed that the Dynamic

Assignment algorithm give better solution than the Greedy algorithm in case 2.

3.3 Evaluation of the Matching Algorithms

To decide which algorithms to use in the system, evaluation of the performance on the two

algorithms is needed, but computational efficiency is not the focus of this evaluation because the

code of the two algorithms is not optimized yet. In order to evaluate the Greedy and Dynamic

Assignment algorithms, a way to accurately estimate the travel distance from one location to

another and travel distances from multiple sources to multiple destinations. Google Maps API will

be the only reliable option for this, however, the pricing of Google Maps Distance Matrix (gives

distances from multiple sources to multiple destinations) is not affordable for students.

Therefore, a grid world simulator is built to simulate the peak traffic time in Hong Kong. In the

grid world, the common setting is that all vehicles can only move in four directions, east, south,

west and north and move exactly s units of space every time unit, where s is the speed of the

vehicles. The moved distance is calculated by the formula distance(x1, y1, x2, y2) = |x1-x2| + |y1-

y2| where (x1, y1) and (x2, y2) are the coordinates of two locations. Vehicles will move at random

if there is not matched request (trip), and when there is matched request, a best route will be

calculated and being followed. Others common parameters used in this experiment is shown in

table 4.

33

Parameters / Variable Simulator value Approximate to real world value

Time unit 1 6 seconds

Grid World Width x Height 5000 x 1000 5 km x 1 km

Vehicle's Speed 82 50 km/h

Car's Capacity 2 2

Max. Delay Distance* 1000 1km

Max. Waiting Distance* 1000 1km

Interval to run the matching 10 60 seconds

Drivers' initial location Random N/A

Requests' lp and lf Random N/A

Table 4 - Parameter used in Evaluating Matching Algorithms

(*: Those two are constraints parameters. Max. Waiting Distance means the maximum distance

between request's start location and driver current location, which is used for both Greedy and

Dynamic Assignment algorithms. Max. Delay Distance is the maximum distance that a request

could incur by affecting others ongoing rides on a driver)

There are two experiments conducted, one is to simulate the peak traffic time, another is to

benchmark the two algorithms with various driver-request ratios.

For simulating the peak traffic time, the number of drivers is fixed at 100 during the whole process.

From t=1 to t=200, 5 requests are generated at every time units. Therefore, there are 1000 requests

generated in total. Matching is conducted at an interval of 10 time units. Match rate, share rate,

accumulated unhandled requests, and delay (waiting time and total delay) were chosen as the

metrics to compare the Greedy and Dynamic Assignment algorithms. The definitions of those

metrics are shown as following:

Match rate = # of requests that is matched / # of total requests at a time frame

Share rate = # of trips that shares the car with another trip / # of total trip at a time frame

34

Waiting time = pickup time of a request - time a request gets matched

Total delay = arrival time of a request - time a request gets matched

(Note: for unhandled requests, their waiting time will also be counted into total delay and waiting

time)

Figure 11 - Result of the Peak Traffic Time Experiment

Figure 11 is the result of the peak traffic time experiment, it shows that the average total delays a

passenger experienced using the Dynamic Assignment algorithm is less, and the total delay (which

included waiting time) is actually dominated by waiting time. The matching rate and share rate of

35

Dynamic Assignment are generally higher than Greedy, while the Dynamic Assignment has less

accumulated unhandled requests.

Figure 12 - Result of the Benchmark Experiment

For the benchmark experiment, both the number of driver and requests are fixed at the beginning,

and there is only one matching at t=0, all the unhandled requests will be left alone, but their waiting

time will be counted into total delay. Moreover, 3 simulations with 1:2, 1:4, and 1:6 driver-

request ratios were conducted. The actual number of drivers and requests were 50:100, 25:100,

and 16:100 respectively. The result shown in figure 12 illustrates more shortage of drivers it is,

better the Dynamic Algorithm performs.

In conclude, the Dynamic Assignment algorithm has better performance (except in computationa l

time) compared to the Greedy algorithm.

36

4. Limitations and Difficulties

In this project, the biggest difficulties encountered are regarding to understanding the academic

papers and selecting proper parameters and setting to run the grid world simulation. First, it is

difficult for the team members to understand the academic papers related to matching algorithms

for the ride-sharing system since those papers consist of a number of advanced mathematics topics

in linear algebra, calculus, and number theory which are not taught in any undergraduate courses

in HKU. To be able to implement the matching algorithms in those papers, self-study of those

unfamiliar topics is needed to fill the knowledge gap. Secondly, it is chaotic and time consuming

to develop and run the simulator since there are too many options and parameter choices and the

execution of simulation take very long time. Moreover, attributed to the insufficient experiences

in software development of the team members, it was often the case that a great amount of time

had been wasted on learning some frameworks, for example, Redux and Firebase, but it was

realized at the end that those frameworks may not suitable for this project.

Regarding the limitations encountered, one frustrating fact is the pricing of Google Map API

services, it charges a lot of money (5 US dollars per 1000 travel distance inquiries). However,

there is no suitable alternative can be found to replace Google Map API services that can provide

accurate travel distance for Hong Kong (for example MapQuest). Therefore, some features are not

production-ready, for example, the matching engine cannot serve too much requests due to budget

constraint.

To sum up, the project has difficulties in matching algorithms and testing related aspects.

37

5. Conclusion and Future Works

This project presents a free-of-charge, full- featured, safe, and easy-to-use ride-sharing digita l

platform for smartphone users with the mission of reducing the traffic congestion by utilizing the

capacity of private cars in Hong Kong.

In methodology section, the abstract level design of the whole system and the details of

implementation were explained. In section 3, the testing approach and results were reported.

Furthermore, limitations and difficulties encountered were discussed in section 4.

The future works could be making the mobile application production ready and publish to iOS's

App Store and Android's Play Store. The UI/UX of the mobile application and the time efficiency

of the matching algorithm could also be improved in the future.

38

6. Division of Labor

In this project, group members cooperated using several project managements, team collaboration,

and version control tools, such as Trello, Skype, GitHub, Google Drive, and WhatsApp. To

minimize the workload of maintaining progress and contributions documentations, only a list of

responsibilities is made to keep track of the contribution of each member. Table 5 lists the works

that mainly done by each member.

Leung Hon Man's work Lau Chi Ho's work Lau Chun Yin's work

App's Search Page Alarm

Message

App's Login & Reset

Password Pages

App's Search Ride Page:

Driver Location Icon

App's Signup Page App's Push Notification App's Search Ride Page:

Ride Request Path

App's Google Distance

Matrix API Adapter

App's Go Drive Page App's Message Page

App's Edit Profile Page Web Server End-points Web Server: System

Messaging (Socket.io)

Dynamic Matching

Algorithm: RTV-graph

Integration Test Dynamic Matching

Algorithm: RV-graph

Dynamic Matching

Algorithm: Assignment

Problem ILP

Greedy Algorithm & help

with ILP implementation

Dynamic Matching

Algorithm: Rebalance

 Grid World Simulator

Table 5 - List of Responsibilities of Each Member

39

References

[1] Stefansdotter, A., Danielsson, C., Nielsen, C. K., & Sunesen, E. R. (2015). Economic benefits of peer-to peer

transport services [Online]. Available:

https://www.copenhageneconomics.com/dyn/resources/Publication/publicationPDF/0/320/1441009386/econom

ics-benefits-of-peer-to-peer-transport-services.pdf. [Accessed Oct. 16, 2018].

[2] Hong Kong Transport Advisory Committee. (2014). Report on Study of Road Traffic Congestion in Hong Kong

[Online]. Available: http://www.thb.gov.hk/eng/boards/transport/land/Full_Eng_C_cover.pdf. [Accessed Oct.

16, 2018].

[3] A. Belz, E. Healey, and K. Hudgins. (2016). Car Sharing: A Feasibility Study in Hong Kong [Online].

Available: https://web.wpi.edu/Pubs/E-project/Available/E-project-030716-041007/unrestricted/Car_Sharing-

_A_Feasibility_Study_in_Hong_Kong.pdf. [Accessed Oct. 17, 2018].

[4] Federal Highway Administration. (2015). Initial Stage Reference Search: Real-time ridesharing [Online].

Available: https://www.fhwa.dot.gov/publications/research/ear/15069/15069.pdf. [Accessed Oct. 17, 2018].

[5] C. Dutta, and C. Sholley. (2018). Online Matching in a Ride-Sharing Platform [Online]. Available:

https://arxiv.org/pdf/1806.10327.pdf. [Accessed Oct. 17, 2018].

[6] Z. Y. Huang, N. Kang, Z. H. G. Tang, X. W. Wu, Y. H. Zhang, and X. Zhu. (2018). How to Match when All

Vertices Arrive Online [Online]. Available: https://arxiv.org/pdf/1802.03905.pdf. [Accessed Oct. 13, 2018].

[7] J. Alonso-Mora et al. (2017). On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment

[Online]. Available: https://www.pnas.org/content/114/3/462. [Accessed Oct. 20, 2018].

[8] Santi P, et al. (2014) Quantifying the benefits of vehicle pooling with shareability networks [Online]. Available:

https://www.pnas.org/content/111/37/13290. [Accessed Jan. 13, 2019].

[9] 3-Tier Architecture: A Complete Overview. (n.d.). Jinfonet Software [Online]. Available:

https://www.jinfonet.com/resources/bi-defined/3-tier-architecture-complete-overview/. [Accessed Oct. 20,

2018].

[10] Main differences between SOAP and RESTful web services in java. (2017). Stack Overflow. [Online].

Available: https://stackoverflow.com/questions/2131965/main-differences-between-soap-and-restful-web-

services-in-java. [Accessed Oct. 21, 2018].

[11] K. Lathiya. (2018, Feb 22). Node Js JWT Authentication Tutorial From Scratch [Online]. Available:

https://appdividend.com/2018/02/07/node-js-jwt-authentication-tutorial-scratch/. [Accessed Oct. 22, 2018].

https://www.copenhageneconomics.com/dyn/resources/Publication/publicationPDF/0/320/1441009386/economics-benefits-of-peer-to-peer-transport-services.pdf
https://www.copenhageneconomics.com/dyn/resources/Publication/publicationPDF/0/320/1441009386/economics-benefits-of-peer-to-peer-transport-services.pdf
http://www.thb.gov.hk/eng/boards/transport/land/Full_Eng_C_cover.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030716-041007/unrestricted/Car_Sharing-_A_Feasibility_Study_in_Hong_Kong.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030716-041007/unrestricted/Car_Sharing-_A_Feasibility_Study_in_Hong_Kong.pdf
https://www.fhwa.dot.gov/publications/research/ear/15069/15069.pdf
https://arxiv.org/pdf/1806.10327.pdf
https://arxiv.org/pdf/1802.03905.pdf
https://www.pnas.org/content/114/3/462
https://www.pnas.org/content/111/37/13290
https://www.jinfonet.com/resources/bi-defined/3-tier-architecture-complete-overview/
https://stackoverflow.com/questions/2131965/main-differences-between-soap-and-restful-web-services-in-java
https://stackoverflow.com/questions/2131965/main-differences-between-soap-and-restful-web-services-in-java
https://appdividend.com/2018/02/07/node-js-jwt-authentication-tutorial-scratch/

40

Appendix 1 - project schedule

Deadline Tasks

Inception

30/09/2019 Research on ride-sharing related papers ✓

30/09/2019 Research on programming languages / frameworks / technologies

available for building the ride-sharing system

✓

30/09/2019 FYP Website ✓

30/09/2019 Detailed project plan ✓

Elaboration

31/12/2019 Study of Mobile App Development Framework ✓

31/12/2019 Web server's login, register, reset password features ✓

31/12/2019 Database setup ✓

31/12/2019 Mobile Application's login, register, reset password features ✓

31/12/2019 Matching engine with a simplified algorithm ✓

31/12/2019 Detailed interim report ✓

Construction

14/04/2019 Matching engine with cutting-edge algorithms ✓

14/04/2019 Mobile Application with full features ✓

14/04/2019 Web server with full features ✓

14/04/2019 Testing and performance evaluation of the system ✓

14/04/2019 Final report ✓

(Note: finished tasks are marked with ✓ symbol)

