

The University of Hong Kong

2018/19 COMP4801

Final Year Project

Interim Report

Building an Easy-to-use Ride-sharing App for HK

Supervisor Dr. Huang Z.Y.

Members Leung Hon Man, Anthony 3035278400

Lau Chi Ho, Eric 3035326049

Lau Chun Yin, Elven 3035294715

Page 2 of 30

Abstract

In recent years, ride-sharing has been an alternative to public transportation or private

car rental for commuters in countries around the world. It is believed that ride-sharing is

a way to alleviate the traffic congestion and reduce the air pollution caused by vehicles

[1]. However, Hong Kong, as a world-class city which is suffering from traffic

congestion, has not exploited the benefits of ride-sharing. One of the reasons may be

that there is no ride-sharing mobile application being extensively spread in Hong Kong

until now.

In an effort to increase the popularity of ride-sharing in Hong Kong, this project aims to

design and implement a full- featured handy ride sharing mobile application and rela ted

web services adapting matching algorithms from cutting-edge research for people in

Hong Kong.

Page 3 of 30

Contents

List of Figures ... 4

List of Tables... 4

Abbreviations ... 4

1. Introduction .. 5

1.1 Motivation... 5

1.2 Concepts and Definitions ... 5

1.4 Objective and Scope... 7

2. Methodology ... 9

2.1 Design .. 9

2.2 Implementation .. 12

2.3 Testing Approach.. 17

3. Evaluation ... 18

3.1 Current Status and Results ... 18

3.2 Limitations and Difficulties... 23

3.3 Future Works.. 25

4. Conclusion .. 26

References ... 27

Appendix 1 .. 29

Page 4 of 30

List of Figures

Fig.1: System Architecture of ride-sharing digital platform

Fig.2: Table showing the response time of the read and write operation of MongoDB

and Redis in different numbers of elements

Fig.3: The signup workflowFig.4: The login workflow

Fig.5: The path workflow

Fig.6: The place finding bar workflow

Fig.7: The message system frontend

Fig.8: The message system backend

Fig.9: The backend receives rider request

Fig.10: The backend receives driver location update

List of Tables

Table 1 - List of programming languages, frameworks, and tools used in development

Table 2 - Comparison between SOAP and REST communication method

Abbreviations

DBMS Database Management System

DevOps Software Development and Information Technology Operations

JWT JSON Web Tokens

REST Representational State Transfer

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

UI User Interface

UX User Experience

Page 5 of 30

1. Introduction

1.1 Motivation

 Since Hong Kong is one of the densest cities in the world, traffic congestion has been

a problem for commuters for a long time; despite the transportation network in Hong

Kong is highly efficient and fully exploited, the traffic congestion problem is escalating

[1]. However, ride-sharing may be a solution to the dilemma of Hong Kong's

transportation. Studies demonstrate that adapting ride-sharing can significantly reduce

the demand for vehicles, and thus it is a potential solution to traffic congestion [2, pp.

25-26]. Ride-sharing can reduce the number of empty seats in private vehicles and thus

can alleviate traffic congestion.

Ride-sharing has been available in Hong Kong in recent years, but the usage of

ride-sharing is not popular. A survey illustrates that there are only around 33 per cent

non-car owners have ever used ride-sharing services before [3, pp. 40-41]. One possible

reason of this situation is the fact that there is no free-of-charge, full- featured, safe, and

easy-to-use ride-sharing mobile application which can encourage public to attempt the

ride-sharing services for the first time in Hong Kong.

 1.2 Concepts and Definitions

The term ride-sharing can be ambiguous since it is not stated in the laws of Hong Kong

[3]. In this section, the definitions of ride-sharing and related concepts will be clarified.

Page 6 of 30

Ride-sharing (or car-sharing) refers to any means of transportation in which a car

owner (an individual or a company) provides a shared or non-shared ride to another

individual or a small group of people [3]. In this project, only two types of ride-sharing

are concerned, they are car hailing and carpooling.

Car hailing (or ride-hailing) refers to a service that a driver with or without a Taxi

license provides a ride to an individual or a small group of people to their destination

with or without prior appointment [3]. Traditional Taxi service is one of the car hailing

by definition, other examples are UberX and Lyft which use digital the platform to

assign the ride requests to drivers.

Carpooling refers to a service which is the same as car hailing except that the driver

will pick up new passengers with a similar direction during the ride if the capacity of

the car allows.

1.3 Previous Works

Many research related to ride-sharing have been conducted and attempted to provide

solutions to the dynamic matching problem appearing in the online digital platform of

ride-sharing. There have been at least 38 academic papers related to ride-sharing since

2006, and most of the papers presented matching algorithms which make it possible to

assign ride requests to suitable drivers instantaneously [4]. Two academic papers

published in 2018 were selected for implementing the matching algorithms in this

Page 7 of 30

project ([5] and [6]). After investigating those papers, at least two cutting-edge

matching algorithms from those papers will be implemented, evaluated, and compared

subsequently.

There are several ride-sharing mobile applications available on the market such as Uber,

LYFT, GRAB, etc. However, it seems the source code and technical details of those

applications are not shared with the public. On the other hand, there are no open-source

ride-sharing mobile applications are observed at this moment. However these apps

have been taken as references in the UI design of the mobile application.

1.4 Objective and Scope

This project aims to deliver a free-of-charge, full- featured, safe, and easy-to-use

ride-sharing digital platform to people in Hong Kong for the purpose of improving the

transportation system. Only mobile devices are chosen as the medium of this digital

platform. Therefore, the deliverables consist of two components, a front-end mobile

application and back-end web services.

For the front-end mobile application, both Android and iOS platforms are targeted. The

application will also include features other than ride-sharing function, such as users

account management (i.e. login, signup, password reset, etc.), map view for easy

locating the driver or passenger, and in-app communications between users and drivers,

except the e-payment system.

Page 8 of 30

The back-end web services will have all necessary functionalities (i.e. web server,

database, and matching algorithms) that support the features presenting in the mobile

application.

In addition, at least two matching algorithms for riders-drivers matching will be

implemented, analyzed, and compared.

1.5 Outline

This report will first present the design, implementation details, and testing approach of

the ride-sharing mobile application and the back-end web server in the methodology

section. Next, a review of the progress, difficulties, limitations and future plan of this

project will be delivered in the evaluation section. Finally, in the conclusion section, a

summary of this report will be made.

Page 9 of 30

2. Methodology

In this section, the abstract-level design and implementation details of the ride-sharing

digital platform are introduced.

2.1 Design

This subsection explains the overall architecture of the system, the communication

method for different parties in this system, and the main features of the mobile

applications.

Fig.1: System Architecture of ride-sharing digital platform

Page 10 of 30

The ride-sharing digital platform consists of two major parts as demonstrated in Figure

1, the front-end side and the back-end side. On the front-end side, the mobile

application in each user's mobile device directly interacts with the user to provide

ride-sharing services and communicates with the Node.js server on the back-end side to

deliver users' information or ride requests. On the back-end side, there are four running

services, they are web server, matching engine, and two databases, which provide

different functionalities and communicate with each other within the private network.

The architecture we use in our project is API gateway architecture. The Node.js

Server in the middle of the figure act as an API gateway to encapsulates the internal

structure of the backend. The mobile app only needs to ‘talk’ to the Node.js Server

instead of connecting to the services and sending requests.

The Node.js server also provides user authentication service to ensure security.

This architecture can make the system become more flexible, scalable, and has a

higher performance. In addition, it can reduce the coding work. If there is no API

gateway, extra code for user authentication is needed for each service.

Workflow

The workflow of the ride-sharing service begins with a user initiating a ride request

which indicates the desired departure location and destination. First, the mobile

application will send the request to the web server. Then the web server will add a

record of the ride request to the database before the request are delivered to the

matching engine. When the matching engine has found a suitable driver for this ride

Page 11 of 30

request, it first saves the details of matching in the database, then sends an

acknowledgment of "match found" to the web server. Finally, the web server sends

those matching details to the mobile application, and those details (for example, driver's

current location, expected waiting time, specification and appearance of the car, etc.)

are presented to the user.

 Main Features of the Mobile Application

 In the user perspective, there are in total 6 main features in the mobile application:

1. Account management for users (i.e. sign up, log in, change and reset

password)

2. Profile management (i.e. upload avatar images, edit bio, save favorite

locations)

3. As a rider, finding a driver in real time

4. As a driver, finding riders to initiate a ride

5. As a driver, finding new riders with similar direction during a ride

6. In-app communication between riders and drivers

Page 12 of 30

2.2 Implementation

This subsection provides the details of the current implementation of the design

demonstrated in the last subsection (i.e. section 2.1), including technologies choices

and user authentication process.

Technology choices

 Mobile Application Web Server Database DevOps

Programming

Language

JavaScript JavaScript N/A N/A

Frameworks

(or libraries)

React Native,

NativeBase

Node.js,

Express.js

N/A N/A

Tools Expo N/A MongoDB,

Redis database

Google Cloud,

Git, GitHub

Table 1 - List of programming languages, frameworks, and tools used in development

There are many tools and technologies available for implementing the design described

in the previous subsection, yet, not all of them are suitable for this project. Thus,

choices have been made carefully to ensure the development process will run smoothly,

and no compatibility conflict among software libraries will occur. The selected

programming languages, frameworks, and tools for this project are shown in table 2.

Page 13 of 30

For the web server, JavaScript is used as the programming language with Node.js

runtime environment. JavaScript is a popular choice for building web servers for

mobile applications, because it has better performance, lower learning curve, more

support on the Internet, compared to other choices like Python and Java.

For the database, MongoDB and redis database are chosen to be the DBMSs for the

platform. MongoDB is used to store the data that will not change frequently such as

the users’ information. Redis is used to store dynamic data such as the locations of the

riders and drivers.

This project uses two databases because each has their own advantage. Redis is a

database that stores data in the memory, and it can provide a much faster response

time compared to MongoDB so it is good for storing dynamic data (Fig.2) [7].

However, Redis is not good for storing complex and large data. Redis use memory to

store the data which has a much more expensive cost than storing the data in hard disk.

As a result, large and complex data should be better to be stored in a harddisk-based

database and MongoDB is a good candidate as it provides a fair response time.

Page 14 of 30

Fig.2: Table showing the response time of the read and write operation of MongoDB

and Redis in different numbers of elements

In addition, compared to other available DBMSs such as PostgreSQL, MySQL, Oracle

NoSQL Database, etc., MongoDB is much more suitable for this project since it is easy

to learn, flexible, stable, and free-to-use.

For the mobile application, JavaScript will be the programming language with React

Native and NativeBase framework. Using JavaScript for mobile application

development is beneficial. Not only the development skill set can be aligned with the

web server development to reduce the learning cost, but also that it is supported for both

Android and iOS mobile platform development, and thus only one code base needs to

be written.

Since the development of matching engine can only be done after fully understood the

matching algorithms mentioned in section 1.3, there is no implementation detail for the

matching engine yet, attributed to the academic papers regarding the matching

algorithms are not fully explored.

Page 15 of 30

User authentication process

The user authentication process in software requires special attention, because this

process involved users' sensitive information which are their passwords. For this

project, users' privacy and server-side security will be well handled by adopting

industry standard for implementing user authentication feature.

When a user signs up in the mobile application, his or her email and password are sent

to the web server via SSL and there is no third party can obtain those data. After the

web server received those data, instead of storing the password into database in plain

text, the web server keeps the hashed value, which is calculated by the password

received and a random value, into database to ensure nobody can derive the original

password from the database record.

When the user logins in the mobile application, the email and password entered will

again be sent to the web server and used to generate another hashed value. By

comparing the freshly generated hashed value and the hashed value in database, the

identity of the user can be confirmed. Upon successful login, a JWT token will be

generated and sent back to user. JWT is an encrypted string that is used for

Token-based Authentication in which a user only needs to log in for once to get a JWT

and mobile application can present it to the web server for each request [8]. The

authentication method using JWT is suitable for mobile application because it only

requires the user to log in once, easy to implement, and are reasonably safe [8].

Page 16 of 30

In summary, the web server adopts a modern user authentication approach which

makes use of SSL, hashing, and JWT to protect the passwords of users.

Network Communication method

The communication method for the mobile application, web server, matching engine,

and database will be REST. REST is the most common communication style of web

services in which one computer uses a stateless network protocol like HTTP to send

data to another computer. Another popular communication method is SOAP, which is

more complicated and uses not only HTTP but also SMTP and FTP. The differences

between REST and SOAP are shown in Table 1. It is illustrated that REST is much

easier to implement, has better performance, involves fewer technologies and thus has

lower learning overhead [9].

Table 2 - Comparison between SOAP and REST communication method [9]

For the app to app communications such as drivers chat with riders, we have used

another communication method called socket.io. Socket.io support real-time

communication which gives a less overhead compared to HTTP connection.

Page 17 of 30

2.3 Testing Approach

This subsection describes the test tools and testing methods used in software testing for

this project.

Currently, no formal testing has been conducted for any code base and only exploration

tests have been made casually. To ensure the quality and correctness of the whole

system, unit test, integration, and user acceptance test will be conducted for the mobile

application, the web server, and the matching engine in the immediate future. In the unit

test, each feature will be tested, and the purpose is to guarantee a particular feature has

been completed and is bug-free. On the other hand, for the integration test, a story

which is a workflow consists of multiple features, will be tested to ensure those features

can work together. Lastly, the user acceptance test will be conducted with potential

users to evaluate the user experiences by collecting comments from the users and

investigating the reasons of dissatisfaction of the users.

Regarding the testing tools, the mobile application will be tested manually using Expo,

which is a mobile application build tool for React Native framework. In contrast, we

will use a tool called Insomnia to test the web server and matching engine. Insomnia

provide a graphical interface for the users to manually sending requests to the server

with different parameters so we don’t need to make test scripts for the server testing.

To conclude, three kinds of testing will be conducted for the mobile application, the

web server, and the matching engine, they are unit test, integration test, and user

acceptance test. Also, the test tools used will be Expo and Insomnia.

Page 18 of 30

3. Evaluation

In this section, the current progress is reported, the limitations and difficulties and the

future plan are discussed.

3.1 Current Status and Results

In estimation, more than 80% of the features have been completed for the mobile

application and the web server. On the other hand, no progress has been made for the

matching engine yet, as we have planned to work on the algorithm part at the second

semester.

For the App, a login and register system, a map view and a message system have been

made.

Fig.3: The signup workflow

Figure 3 shows the signup process of the user. The user first presses the signup button

Page 19 of 30

on the first page and then fills in the information on the signup page. A welcome page

will be shown if all the inputs are correct (no blank fields and the passwords inputted

are the same).

Fig.4: The login workflow

Figure 4 shows the login process of the user. The user first presses the login button

and enters the login information. If the login is successful, a successful message and

the username of the user will be displayed in the welcome page.

Fig.5: The path workflow

Page 20 of 30

Figure 5 shows the map view of the app. When the user taps the screen, a pin will be

dropped and a path will be displayed if there are two pins. The user can reset the pins

dropped by pressing the reset button.

Fig.6: The place finding bar workflow

Figure 6 also shows the map view of the app. When the user taps the search bar and

Page 21 of 30

enter the start point, a pin will be dropped to the place and a path will be displayed the

user enter the end point also. The user can reset the pins dropped by pressing the reset

button.

Fig.7: The message system frontend Fig.8: The message system backend

Figure 7 shows the message page of the user. The message function is using

socket.io to set up. When the user sends out the message, the server will receive the

message and save to database. In figure 8, “message3” is newly sent to the server.

Also, the message that saved before will be reloaded after the user navigates to the

message page such as “message1” and “message2”. The message function will

introduce more features after setting up the matching engine. For example, after

matching the driver and the passengers, the server automatically send the message to

the user to notify him.

Page 22 of 30

Apart from the functions of the app, a backend server with Mongodb and Redis

database has been set up and hosted on Google cloud.

Other than the functions mentioned above (user management function and

message system), receive riders requests and update driver locations function have

been done also.

Fig.9: The backend receives rider request

Fig.10: The backend receives driver location update

Figure 9 and 10 shows that after receiving the rider request and driver location

Page 23 of 30

update, it will return a JSON object that will be used by matching engine later.

The overall progress of this project is slightly slower than expected, attributed to

the underestimation of the learning overhead of mobile application development. In the

original schedule, by this time, we are starting to read the papers suggested by our

supervisor. According to the current status, a new schedule has been generated and

shown in appendix 1.

3.2 Limitations and Difficulties

Below are the challenges that we encountered in the first three months of

development.

Testing of IOS platform

Another problem encountered is only one of the team members has an IOS device.

This may bring problems in the testing phase as the compatibility of other IOS

devices is unknown. Also, the testing of IOS app can only be done by one person. It

may slow down the development speed.

A possible solution is to use IOS simulator for the testing. The simulator can be run in

the Mac Computers and it can simulate different device with different IOS versions

Page 24 of 30

and hence the compatibility of other IOS devices can be tested.

Testing of backend

After the implementation of the login and register system of the backend, we didn’t

find a built-in way to test the backend. We can only use the python to make test

scripts to send requests to the server to see the result if we want to test our new code.

It is time consuming as we need to make scripts for the testing and this will slow

down the development.

We have already found a solution, which is using an application called Insomnia.

Insomnia allows us to send requests directly to the backend without additional

implementation and changing of code. The time used for testing the backend is

reduced.

Page 25 of 30

3.3 Future Works

The UI of the ride matching

We have finished the backend code for the ride matching but we haven’t finished the

front end yet. The works are creating a button to start a ride, serve rides and end rides.

Fare calculation

Apart from the ride matching UI, fare calculation is also an important part of the

project. We have decided the calculation of the fare is based on the distance traveled

and the tunnel fee. The waiting time will not be considered for simplicity. The fare

calculation will be implemented after the completion of the ride matching UI.

Ride matching algorithm part

The ride matching algorithm is the most important part of the project. They are the

study of academic papers and the implementation and comparison of the algorithms.

Rules to compare algorithm

We only have a rough idea of what is a good matching algorithm for now. Clear rules

need to be made to find which matching algorithm we implemented has the best

performance.

Page 26 of 30

4. Conclusion

This project presents a free-of-charge, full- featured, safe, and easy-to-use ride-sharing

digital platform for smartphone users with the mission of reducing the traffic

congestion by utilizing the capacity of private cars in Hong Kong.

In methodology section, the abstract level design of the whole system, the details of

implementation of the current development works, and the testing approach were

explained. Furthermore, the current progress and the limitations and difficulties

encountered were discussed in the evaluation section.

The future plan of this project is to finish the app and the backend (except the matching

engine) as soon as possible. After the whole digital platform is bug-free, we will focus

on the algorithm implementation and analysis.

Page 27 of 30

References

[1] Hong Kong Transport Advisory Committee. (2014). Report on Study of Road Traffic

Congestion in Hong Kong [Online]. Available:

http://www.thb.gov.hk/eng/boards/transport/land/Full_Eng_C_cover.pdf. [Accessed

Oct. 16, 2018].

[2] Stefansdotter, A., Danielsson, C., Nielsen, C. K., & Sunesen, E. R. (2015). Economic

benefits of peer-to peer transport services [Online]. Available:

https://www.copenhageneconomics.com/dyn/resources/Publication/publicationPDF/0

/320/1441009386/economics-benefits-of-peer-to-peer-transport-services.pdf.

[Accessed Oct. 16, 2018].

 [3] A. Belz, E. Healey, and K. Hudgins. (2016). Car Sharing: A Feasibility Study in

Hong Kong [Online]. Available:

https://web.wpi.edu/Pubs/E-project/Available/E-project-030716-041007/unrestricted/

Car_Sharing-_A_Feasibility_Study_in_Hong_Kong.pdf. [Accessed Oct. 17, 2018].

[4] Federal Highway Administration. (2015). Initial Stage Reference Search: Real-time

ridesharing [Online]. Available:

https://www.fhwa.dot.gov/publications/research/ear/15069/15069.pdf. [Accessed Oct.

17, 2018].

[5] C. Dutta, and C. Sholley. (2018). Online Matching in a Ride-Sharing Platform

[Online]. Available: https://arxiv.org/pdf/1806.10327.pdf. [Accessed Oct. 17, 2018].

[6] Z. Y. Huang, N. Kang, Z. H. G. Tang, X. W. Wu, Y. H. Zhang, and X. Zhu. (2018).

How to Match when All Vertices Arrive Online [Online]. Available:

https://arxiv.org/pdf/1802.03905.pdf. [Accessed Oct. 13, 2018].

http://www.thb.gov.hk/eng/boards/transport/land/Full_Eng_C_cover.pdf
http://www.thb.gov.hk/eng/boards/transport/land/Full_Eng_C_cover.pdf
http://www.thb.gov.hk/eng/boards/transport/land/Full_Eng_C_cover.pdf
https://www.copenhageneconomics.com/dyn/resources/Publication/publicationPDF/0/320/1441009386/economics-benefits-of-peer-to-peer-transport-services.pdf
https://www.copenhageneconomics.com/dyn/resources/Publication/publicationPDF/0/320/1441009386/economics-benefits-of-peer-to-peer-transport-services.pdf
https://www.copenhageneconomics.com/dyn/resources/Publication/publicationPDF/0/320/1441009386/economics-benefits-of-peer-to-peer-transport-services.pdf
https://www.copenhageneconomics.com/dyn/resources/Publication/publicationPDF/0/320/1441009386/economics-benefits-of-peer-to-peer-transport-services.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030716-041007/unrestricted/Car_Sharing-_A_Feasibility_Study_in_Hong_Kong.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030716-041007/unrestricted/Car_Sharing-_A_Feasibility_Study_in_Hong_Kong.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030716-041007/unrestricted/Car_Sharing-_A_Feasibility_Study_in_Hong_Kong.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030716-041007/unrestricted/Car_Sharing-_A_Feasibility_Study_in_Hong_Kong.pdf
https://www.fhwa.dot.gov/publications/research/ear/15069/15069.pdf
https://www.fhwa.dot.gov/publications/research/ear/15069/15069.pdf
https://www.fhwa.dot.gov/publications/research/ear/15069/15069.pdf
https://arxiv.org/pdf/1806.10327.pdf
https://arxiv.org/pdf/1806.10327.pdf
https://arxiv.org/pdf/1802.03905.pdf
https://arxiv.org/pdf/1802.03905.pdf
https://arxiv.org/pdf/1802.03905.pdf

Page 28 of 30

[7] Tarek Salah. (2013, Nov 18). Redis vs. MongoDB Performance [Online]. Available:

https://badrit.com/blog/2013/11/18/redis-vs-mongodb-performance#.W8_Jd2gzaUl

[Accessed Oct.24,2018]

[8] K. Lathiya. (2018, Feb 22). Node Js JWT Authentication Tutorial From Scratch

[Online]. Available:

https://appdividend.com/2018/02/07/node-js-jwt-authentication-tutorial-scratch/.

[Accessed Oct. 22, 2018].

[9] Main differences between SOAP and RESTful web services in java. (2017). Stack

Overflow. [Online]. Available:

https://stackoverflow.com/questions/2131965/main-differences-between-soap-and-res

tful-web-services-in-java. [Accessed Oct. 21, 2018].

28

https://badrit.com/blog/2013/11/18/redis-vs-mongodb-performance#.W8_Jd2gzaUl
https://appdividend.com/2018/02/07/node-js-jwt-authentication-tutorial-scratch/
https://appdividend.com/2018/02/07/node-js-jwt-authentication-tutorial-scratch/
https://appdividend.com/2018/02/07/node-js-jwt-authentication-tutorial-scratch/
https://stackoverflow.com/questions/2131965/main-differences-between-soap-and-restful-web-services-in-java
https://stackoverflow.com/questions/2131965/main-differences-between-soap-and-restful-web-services-in-java
https://stackoverflow.com/questions/2131965/main-differences-between-soap-and-restful-web-services-in-java
https://stackoverflow.com/questions/2131965/main-differences-between-soap-and-restful-web-services-in-java

Page 29 of 30

Appendix 1

Updated Project Schedule

Deadline Tasks

Inception

30/09/2018 Research on ride-sharing related papers ✓

30/09/2018 Research on programming languages / frameworks /

technologies available for building the ride-sharing system

✓

30/09/2018 FYP Website ✓

30/09/2018 Detailed project plan ✓

Elaboration

31/12/2018 Study of Mobile App Development Framework ✓

31/12/2018 Web server's login, register, reset password features ✓

31/12/2018 Database setup ✓

7/1/2019 Mobile Application's login, register, reset password features ✓

31/12/2019 Matching engine with a simplified algorithm ✓

31/12/2019 Detailed interim report ✓

Construction

Page 30 of 30

14/04/2019 Matching engine with cutting-edge algorithms

14/04/2019 Mobile Application with full features

14/04/2019 Web server with full features

14/04/2019 Testing and performance evaluation of the system

14/04/2019 Final report

(Note: finished tasks are marked with ✓ symbol)

