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Abstract 
 

This report introduces the background of DNA including the history and the basic structure of 

the DNA sequence to give a basic concept of DNA and explain why DNA is important to 

understand organisms. This project will introduce many DNA analysing tools and skills such 

as Linux and string matching algorithms which are commonly used by most of the biologists 

as they are efficient and convenient. The objective of this project is to compare the three 

different genome assemblers which are available for scientists to do genome assembly. The 

goal of this project is to compare the performance of the assemblers given a dataset of paired-

end sequencing E.coli. The performance of them will be analysed by efficiency and accuracy. 

To facilitate the analysis, the time taken for assembling the genome will be recorded and the 

statics of the generated genome will be calculated. By comparing the results, the performance 

of the assemblers can be justified and other biologists can choose the suitable assemblers for 

genome assembly according to the source of dataset. 
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Chapter 1. Introduction 
 

DNA (deoxyribonucleic acid) is the most important material in almost all organisms on 

Earth. It contains only four bases - adenine (A), guanine (G), cytosine (C), and thymine (T) 

and forms a sequence which includes all the information of the organism. DNA is like a 

detailed blueprint of the specific organism which decides all features of every single cell. 

However, these vital messages are hidden inside the very long sequence, approximately 3 

billion bases in human DNA, making it difficult for scientists to understand them. Moreover, 

more than 99 percent of DNA between two different individuals are identical and that 1 

percent of difference it that which differentiates us from each other. Scientists need an 

efficient and convenient tool to analysis and investigate the DNA sequence. 

1.1 Project Background 
  

In 1860s, Johann Friedrich Miescher, a Swiss chemist, identified the first DNA molecule 

when doing a research on white blood cell [2]. However, due to the limitation of technology, 

the structure of DNA could not be solved. Until 1960s, with Rosalind Franklin, Francis Crick, 

James Watson, and Maurice Wilkins contributions, the DNA structure was finally solved, and 

sequencing DNA became a possible but difficult task. In the 21st century, DNA help scientists 

understand many unsolved problems before, like the cause of cancer, the origin of humanity 

or crime solving. It becomes an important field that scientists put many effort to solve the 

mystery inside the DNA sequence. 

However, DNA sequence is impossible to be solved manually because the information stored 

in a cell is about one million A4 paper printed with both sides. The DNA sequence in one 

human cell can be 2 meters long and more than three billion nucleotides need to be mapped 

[1]. Therefore, scientists use computer and software tools to help them analyse DNA 

sequence and this technique is referred to called bioinformatics. Although computers enhance 

the analysis greatly, it is still a difficult task as the information stored in one cell is about 1.5 

Gb large which means handling of big data is one important challenge. This project aims to 

solve the computational problems and reconstruct a complete genome using the appropriate 

tools. 
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1.2 Motivation 
 

Bioinformatics is a combination of Biology and Computer Science to construct and analyse 

DNA sequence. I am interested in this field because of one important project, human genome 

project, which was initiated in 1990 and aims to map all the human genome and understand 

the hidden message between the sequences [3]. This project has made lots of contribution to 

human society and inspired me that how important DNA is. This final year project can 

construct a complete genome of a marine species which can help scientists understand more 

about its nature and assists the development of biological technology. For example, some 

species do not get cancer and if scientists could find out the reason hidden in DNA, cancer 

may be able to be cured in the future. As a result, I choose this topic to be my final year 

project. 

 

1.3 Contribution 
 

This project can make one contribution to the field of bioinformatics. 

- This project aims to compare the performance of different genome assemblers 

available for genome assembly. The scientists can choose suitable assembler 

according to the source of dataset and the specification of the machine. 
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1.4 Objective 
 

The objective of this project is to compare the assembly ability of different genome 

assemblers using a dataset of Paired-end sequencing (2x100 base) of E. coli library. Time for 

assembling, total number of contigs and the N50 contig length will be used to determine the 

ability of the genome assemblers. 

 

1.5 Report Outline 
 

This report is divided into seven chapters. Chapter one provides the background and 

motivation of the project. Chapter two provides the literature review on the biological 

algorithm. Chapter three provides the methodology that will be used when achieving the goal 

of the project. Chapter four provides the introduction of three chosen genome assemblers. 

Chapter five provides the result and comparison of the genome assemblers. Chapter six 

provides the conclusion of the project. Chapter seven provides the reference list. 
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Chapter 2. Literature Review 
 

In this chapter, literature review will be presented to provide a clear understanding of the 

development of biological algorithms which are used by scientists for analysing and 

constructing the genome. These common algorithms will be used in the project to tackle the 

difficulties using a more efficient and effective way. 

 

2.1 AN INTRODUCTION TO BIOINFORMATICS ALGORITHMS 
 

This book provides an overview of the bioinformatics algorithms used by the current 

scientists. It provides concepts of computer science and biology as an introduction and make 

a clear explanation of how they are related to the bioinformatics algorithms. 

In Chapter 2, it introduces what is algorithm. In Biology and Computer Science, the 

expression of algorithm is totally different as biologist tends to express in word, but computer 

scientists express it in symbols. The difference between expression may make confusion 

between biologists and computer scientists when they are cooperating with others, so it is 

necessary to have a common standard. Then, the book introduces the basic concepts of 

algorithms such as recursive function and Big O expression, which is about the analysis of 

program’s running time. These concepts are important because these can help create an 

efficient and effective algorithm, which is highly related to the bioinformatics algorithms 

introduced in the following chapters. 

In Chapter 3, the author introduces the basic concept of Molecular Biology which is about 

DNA. These can help scientists create a correct and functioning algorithm because there are 

many variations while constructing genome. Without the basic knowledge, scientists may 

neglect the incorrect implementation of the algorithms and generate an unexpected result, 

which may significantly disturb the analysis of DNA. 

Having the knowledge of Computer Science and Biology, the remaining chapters introduce 

many algorithms that handle different stages when constructing the genome. For example, in 

Chapter 8.10 and 8.11, it introduces how to do protein sequencing making use of greedy 
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algorithm and biological concepts. As a result, scientists can reconstruct the protein sequence 

and identify its structure. 

This book has introduced many useful algorithms with enough concepts and data structure, 

which can help tackle the problems faced in the future work of the project.  
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Chapter 3. Methodology 
 

In order to analysis the DNA sequence more efficiently, scientists use different tools to assist 

their works. This chapter will introduce some commonly used tools and algorithms which are 

commonly used by scientists when doing DNA sequence. These basic techniques will be 

frequently used throughout the project and should be familiarized with. 

 

3.1 Operating system 
 

In this section, the operating system and its functions will be introduced to give an overview 

of the current technology. The system has several advantages when handling the data from 

DNA sequencing and it is commonly used among biologists. Moreover, there are several 

standards for creating files of DNA sequence so that the information can be shared and 

accessed all over the world. 

 

3.1.1 Linux 
 

Linux is commonly used by bioinformaticians to handle and analyse the DNA sequence as it 

provides lots of convenient tools such as command line and file managing system which 

make the process simple because the functions are built in the operating system by default. 

Biologists do not need to construct a new program but use the functions provided. 
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Fig. 3.1: “grep” function provided in the linux system. The matching patterns “ATTC” in 

DNA sequence are highlighted in red color. 

 

For example, the “grep” function can search a certain pattern in a file with one command line 

(Fig. 3.1). It can also perform different behaviours by simply adding extra symbols to the line 

such as “-o”, “-n” which shows the exact wording and line position of the input pattern. The 

features of this function make Linux powerful when the position of a genome pattern need to 

be found within millions of lines. 
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Fig. 3.2: Combining the use of “grep” and “wc -l” to show the total number of lines matching 

the pattern “ATTC”. “-l” means counting the number of lines. 

 

Another example is using the word count function (wc). In Figure 3.2, it shows a combination 

of using “grep” and “wc -l” to show the number of lines matched. With the ability of 

combining different commands, Linux makes things much easier when scientists want to 

analyse the data using one line of commands. See Fig. 3.3 which shows how to calculate the 

total number of base “G” and “C” in a chromosome. 

 

Fig. 3.3: Calculate the total number of GC bases appear in a chromosome. 
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3.1.2 File Format 
 

In Bioinformatic, there are different file formats for different usage. For example, “.fastq” is 

used for storing the base qualities of the DNA sequence (Fig. 3.4). The DNA sequence is 

divided into many small sequences and below the line is the corresponding base qualities 

which is the possibility that the reading of the bases is incorrect due to the malfunctioning of 

the machine. This file can be used as a reference to determine whether the data is reliable or 

not. 

 

Fig. 3.4: A “.fastq” file showing the base qualities of the DNA sequence. The sequence is 

above the “+” symbol and below that is the corresponding base qualities represented by 

ASCII code. 

 

There are many other file formats such as “.BAM” and “.SAM” which store different 

information about the DNA sequence. Searching for the correct file format is the first step of 

analysing DNA sequence. Moreover, when a new DNA sequence is created, it should follow 

the standard of the file format to let other scientists search and access the data easily. 
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3.2 String Matching Algorithm 
 

As mentioned in section 3.1.1, DNA sequencing often uses string matching method to 

analyse the data. However, it is not fast enough for searching the whole DNA sequence 

because the sequence is too long and the running time of the algorithm can be counted in 

hours. Therefore, there is another string matching algorithm created which is called Burrows-

Wheeler Transform (BWT). 

The procedure of BWT of a given sequence (ACTCG) is as follows: 

1. Add a dollar sign ‘$’ to the end of sequence (ACTCG$). 

2. Generate all the combinations by putting the first letter to the back. 

1 ACTCG$ 

2 CTCG$A 

3 TCG$AC 

4 CG$ACT 

5 G$ACTC 

6 $ACTCG 

3. Sort the combinations with alphabetical order and remember the original order of the 

sequence. 

1 $ACTCG 6 

2 ACTCG$ 1 

3 CG$ACT 4 

4 CTCG$A 2 

5 G$ACTC 5 

6 TCG$AC 3 

4. Take the last position of each sequence and get a BWT sequence (G$TACC) and a 

SA sequence (614253) 

With the above result, the range of a string “T” is defined as [6,6] and SA of T is 3. 

Therefore, the position of “T” in the original sequence is 3 which is correct. 
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Let the range of P be [u, v]. Then the range of adding a character x before P (xP) is       

[u’, v’], where 

u’ = #(chars < x in BWT) + #(x in BWT[1, u-1]) + 1 

v’ = #(chars < x in BWT) + #(x in BWT[1, v]) 

Using the above formula, adding a character “C” before “T” 

u’ = number of characters < C in (G$TACC) + number of characters C in [1, (6-1)] + 1 

= 2 + 1 + 1 = 4 

v’ = number of characters < C in (G$TACC) + number of characters C in [1, 6] 

= 2 + 2 = 4 

“CT” = [4, 4] which has SA 2 so that the position of “T” in the original sequence is 2. 

 

This algorithm requires many spaces and running time to prepare all the result of [u’, v’]. 

However, it can run at a constant time after preparation despite how long the matching length 

is. Spending more time on constructing a data base can significantly shorten the running time 

for the procedure of analysing. 
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3.3 Assembly Algorithms 
 

In this section, two main assembly algorithms will be introduced – Overlap – Layout – 

Consensus (OLC) Assembly and De Bruijn Graph Assembly. These algorithms have been 

used by the scientists for many years to construct the genome, which is also the commonest 

method for genome assembly today. 

 

3.3.1 Overlap – Layout – Consensus (OLC) Assembly 
 

The first step of the OLC Assembly is to construct an overlap graph. When readings are 

generated from the sequencing machine, they will be marked as a node in the overlap graph. 

If it has overlapped with other node, a directed edge will be drawn between two nodes. 

 

Fig 3.5: An overlap graph with readings and directed edge. 
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The number of base pairs overlapped will be marked on each directed edge and an overlap 

graph can be constructed. Here is a simple example to explain the algorithm. 

 

Fig. 3.6: A simple overlap graph constructed from short readings. 

With the help of the overlap graph, the original genome can be assembled using the greedy 

shortest common superstring. One of the edge with the longest overlapped length will be 

chosen and the two nodes will be merged into a new string. The in-going edges of the node 

with overlapped prefix and the out-going edges of the node with overlapped suffix will be 

deleted. The steps will be repeated until the superstring is found. 

 

Fig. 3.7: A solution of the greedy shortest common superstring. The result will be 

GTACGTACGAT. 
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However, there are two problems that the shortest greedy common superstring cannot be used 

in real life. The first problem is the greedy solution may not be the optimal solution. Here is 

an example showing that the greedy solution is not the optimal solution. 

 

Fig. 3.8: A figure showing the steps of the greedy algorithm. The red strings are the nodes 

chosen to be merged in each step. The length of the result is 7 base pairs. 

 

Fig. 3.9: A figure showing the other way of solution of the greedy algorithm using the same 

readings. The length of the result is 9 base pairs which has 2 more base pairs than the optimal 

one. 

 

The second problem is that the greedy algorithm cannot solve the problem of repeated 

patterns. It is because the graph cannot tell how many times the pattern should be repeated. 

For example, if there is a sequence “AAAAAAA” and the read length of the machine is 3 
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base pairs, it is impossible to reconstruct the original sequence. However, the overlap graph is 

still useful to construct part of the genome called contig. 

In this OLC Assembly, repeated patterns are not possible to be constructed so that it will not 

be assembled. The overlap graph will be simplified into a more concise and precise graph by 

the layout phase in order to show the contig clearly. In this phase, some useless edges will be 

deleted as it can be deduced by other edges. For example, using the example in fig 3.6, 

“CGTACG”, “GTACGA, “TACGAT” are three consecutive nodes with overlapped length 5. 

Therefore, it can be deduced that “CGTACG” and “TACGAT” have overlapped length 4. As 

a result, that edge can be deleted. Repeat the above steps until a clear graph is left. 

 

Fig. 3.10: This figure shows which edges can be deleted in the layout phase. 

 

 

Fig. 3.11: This figure is a complicated overlap graph before the layout phase. 
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Fig. 3.12: This figure shows the result of the figure 3.11 after the layout phase. The regions 

circled by the red and blue circle are the readings that can be merged into a sequence of string 

called contigs, which will be used to construct the original genome. The remaining part of the 

graph will be left as it formed a loop which is unresolvable. 

 

3.3.2 De Bruijn Graph (DBG) Assembly 
 

DBG assembly is another way for genome assembly. It uses a different graph from the 

overlapped graph for constructing the genome. The name of the graph is De Bruijn graph. 

Firstly, the readings with k-length will be divided into two k-1 length nodes, one is the 

leftmost k-1 region and the other is the rightmost k-1 region. Then, a directed edge will be 

drawn between these nodes and start constructing the De Bruijn graph. Then, the same 

procedure will be repeated among all the readings and check whether there exist the same 

nodes in the graph. If yes, draw the edge from the old node. Otherwise, create a new node and 

draw the edge from it. 

 

Fig. 3.13: Divide the reading with k length into k-1 nodes. 
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Fig.3.14: Draw the De Bruijn graph according to the result of fig. 3.13. 

To construct the original sequence, it simply goes through all the edges once and construct 

the string by appending the starting string with destination node. For example, in fig 3.14, the 

result of the sequence is AAABBBA starting from the node AA. 

However, there are also two problems with this constructing method. The first problem is that 

in real life, the regions of the original genome will not be read only once by the sequencing 

machine and so there will be repeated readings which make the graph not reliable. 

To tackle this problem, the directed edges will be changed into weighted edge, which counts 

the number of out-going and in-going edges and give a value to the edge. 
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Fig. 3.15: Change the directed edges into weighted edges by counting the number of edges. 

 

The weighted edge can be used to determine the error occurred during the DNA sequencing. 

For an error-free sequencing, the number of edges should be normally distributed as shown in 

fig. 3.16.  
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Fig. 3.16: A graph showing the number of nodes occur in the De Bruijn graph with error-free 

sequencing. 

 

However, when an error occurs, there will be nodes separated from the main graph as errors 

are usually unique and they will create nodes with a single directed edge connected to the 

main graph. As a result, it is easy to figure out the error nodes. 
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Fig. 3.17: A graph comparing the number of nodes appear between an error-free sequencing 

and one with 0.1% error. There are more distinct nodes detected in 0.1% error sequencing. 

 

To tackle the problem, the error nodes will be compared with its neighbour nodes. If the 

number of its neighbour nodes are normal, the error nodes will be shifted to that correct 

nodes in order to reduce the number of errors and increase the reliability of the graph. 

The second problem is that this graph cannot resolve the repeated pattern in the original 

genome, as same as the OLC Assembly. As the genome will be constructed through the 

Eulerian path, there may be two or more possible solutions that satisfy the requirement. 
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Fig. 3.18: There are two possible solutions of this De Bruijn graph. It does not matter whether 

the purple path goes first or the green path goes first. 

Both the assembly algorithms cannot resolve the repeated patterns due to the problems 

discussed. The only solution is to increase the read length of the readings in order to cover the 

repeated regions so the number of unresolvable regions can be reduced. 
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3.4 Conclusion 
 

This chapter has introduced many useful tools and algorithms to assist the analysis of DNA 

sequence. These techniques and algorithms are efficient and widely used by other scientists 

while doing DNA sequencing. Finding a suitable tool is always the first step of efficient 

analysis. 
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Chapter 4. Genome Assembler and E.coli Dataset 
 

In this chapter, three different genome assemblers will be introduced, which are used to 

assembly a dataset of Paired-end sequencing (2x100 base) of E. coli library. They are 

ABySS, Ray and Edena. 

 

4.1 Genome Assembler 
 

Three different genome assemblers are chosen to compare the performance of assembling 

pair-end sequencing dataset. 

Assembler Programming Language Algorithm Input reads 

ABySS[6][7] C++ De Bruijn graph (DBG) Paired-end and 

single-end 

Ray[8] C++ Hybrid Paired-end and 

single-end 

Edena[9] C++ Overlap/layout/consensus 

(OLC) 

Paired-end and 

single-end 

 

From the above table, the three chosen de novo assemblers are ABySS, Ray and Edena. They 

are chosen because they use different algorithm for genome assembly, ABySS using De 

Bruijn graph (DBG), Edena using OLC and Ray using hybrid algorithm. They will be used to 

assemble paired-end dataset in order to show their performance during the assembly using the 

following evaluation. 

1. Efficiency Evaluation 

All the assemblers are installed in bal machine which is provided by the Bioinformatics 

Department. The machine has 48 cores, 1.5TB Ram and 128 GB hard disk space for genome 

assembly and the assemblers will use twenty four threads doing the assembly. The time used 

for the whole process will be recorded and compared. 
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2. Accuracy evaluation 

After the completion of assembly, assemblers will provide the statistics about the contigs 

generated, including the total number of contigs, total length and the N50 of the contigs. 

Theses information can be used to justify the performance of the assemblers. More detailed 

information will be discussed in Chapter 5, comparing the results of different assemblers. 

 

4.2 E.coli dataset 
 

The E.coli dataset used in the comparison of assemblers used is Escherichia coli str. K-12 

substr. MG1655, which can be freely downloaded from the official website of European 

Bioinformatics Institute[10]. The dataset is submitted by Illumina Cambridge Ltd. using 

illumine genome analyser IIx, which fragment genomic DNA randomly using nebulisation 

and a ~600bp fraction using gel electrophoresis[10]. 

The dataset is Paired-end sequencing (2x100 base) of E. coli library and contains two files, 

each refers to one end of the paired-end DNA molecule. The total number of reads is 

45440200 and the average read length is 503bp with a standard deviation 34. 

The assemblers will use the same dataset for assembly and generate the assembled contigs for 

comparison, using the total number of contigs and the N50 of them. 
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Chapter 5. Schedule and Milestone 
 

This chapter will discuss about the result computed after the completion of assembly and the 

comparison of performance between different assemblers.  

 

5.1 Result 
 

5.1.1 Efficiency Evaluation 

 

 

Fig. 5.1: The computation time for each assemblers to finish assembling the input dataset of 

pair-end E.coli library. ABySS takes 1956 seconds, Ray takes 5696 seconds and Edena takes 

2144 seconds. 
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5.1.2 Accuracy Evaluation 

 

 

Fig. 5.2: The total number of contigs generated after the assembly process. ABySS has 108 

contigs, Ray has 177 contigs and Edena has 148 contigs. 

 

 

Fig. 5.3: The total length of contigs generated after the assembly process. ABySS produces 

contigs with total length ~4.58Mbp, Ray produces contigs with total length ~4.50Mbp and 

Edena produces contigs with total length ~4.58Mbp. 
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Fig. 5.4: The N50 length of contigs generated after the assembly process. ABySS produces 

contigs with N50 ~106Kbp, Ray produces contigs with N50 ~40.2Kbp and Edena produces 

contigs with N50 ~67.6Kbp. 

 

5.2 Comparison 
 

5.2.1 Efficiency 
 

From fig. 5.1, it shows that ABySS and Edena consume similar time to assemble the given 

dataset of genome, with about 2000 seconds for assembly. However, Ray consumes much 

more time than the other two assemblies, with a total time 5695 seconds for the assembly, 

which is almost twice the time of the other two assemblers. The data shows that Ray is the 

least efficient among the three assemblers and ABySS and Edena have similar performance. 
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5.2.2 Accuracy 
 

From fig. 5.2, it shows that Ray generates the most contigs compared to the other two 

assemblers, with a total number of 177. The second high is Edena, which has 148 and ABySS 

has the least, with a total number of 108. 

From fig. 5.3, it shows that three assemblers generate similar total length of contigs, with 

~4.58 Mbp, although Ray generates ~4.50Mbp total length of contigs, which is slightly less 

than the other two assemblers. 

From fig.5.4, it shows that ABySS has the highest N50 contig length with ~106 Kbp, while 

Ray has the lowest N50 contig length with ~40 Kbp. Edena has the second high N50 contig 

length with ~67.6 Kbp. 

N50 is a measurement that the contigs are sorted from longest to shortest. Then, add the 

lengths of contigs starting from the longest and stop when the summed length of contigs is 

larger than 50% of the total length, and the value of N50 is the length of contig where the 

calculation stops. N50 is an important measurement to justify the performance of assemblers 

in terms of contiguity. The higher of the value N50 means the longer contig length can be 

generated by assembler and the assembly process can be more accurate. However, to make 

the comparison of N50 be meaningful, the assembly size of the genome of different 

assemblers should be the same. This is not a problem in this project as the same set of dataset 

is used during the assembly process. 

Combining the three results, Ray produces the highest number of contigs but the lowest N50 

length. ABySS has the lowest number of contigs but the highest N50 length. Edena has the 

average of both measurements. 

Ray produces high number of contigs, which mean it is more conservatively than the other 

two assemblers while merging smaller contigs to larger contigs. However, it has the lowest 

N50 length which shows that the performance of Ray is not ideal while comparing to ABySS 

and Edena. The reason may be the hybrid algorithm of assembling the genome consumes too 

much time for generating intermediate contigs. In general, ABySS performs the best among 

the three assemblers. Although it produces the least number of contigs, it has the highest N50 

length which is twice of that of Ray. It means that the ability of ABySS assembling short 

sequences into large contigs is much better than the other two assemblers. Edena performs 
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moderate among the three assemblers with an average number of contigs and average length 

of N50. 

5.3 Conclusion 
 

Combining the evaluation of efficiency and accuracy, ABySS perform the best among the 

three assemblers. It consumes the lowest time for assembly and generates the highest N50 

value compared to the other two assemblers. Ray performs the worst among the three 

assemblers. It consumes lots of time for assembly, which is almost twice as that of ABySS, 

and generate contigs with low N50 length. Edena performs moderate when compared to the 

other two assemblers. It is as efficient as ABySS, but the result of N50 is not as good as 

AbySS’s. Therefore, it performs worse than ABySS 
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Chapter 6. Conclusion 
 

In conclusion, while assembling the paired-end genome library of E.coli, ABySS performs 

the best among the three assemblers. It consumes the least of time to generate the highest 

N50 length, which means it is highly efficient when compared to other two assemblers. Ray 

performs the worst among the three assemblers. It consumes the most of time to generate the 

lowest N50 length, which means it is not efficient as the other two assemblers. ABySS can be 

the best choice when assembling the paired-end genome library.  
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