

Department of Computer Science

University of Hong Kong

Final Year Project

Analyzing and Improving the Performance of SGX

Author: Fung Yuk Leung

Date: March 31, 2019

Issue: 2.0

Distributions: Fung Yuk Leung (FYP student)

Dr. Cui H.M. (FYP supervisor)

FYP Analyzing and Improving the Performance of SGX Page 2

Issue: 2.0 Computer Science Department

 University of Hong Kong

Change History

Issue Date Description Author

1.0 15-March-2019 First issue Fung Yuk Leung

2.0 6-April-2019 1. Changed format

2. More literature reviews

3. Reordered content

4. Improved Abstract, Introduction, Results

and Improvements

Fung Yuk Leung

FYP Analyzing and Improving the Performance of SGX Page 3

Issue: 2.0 Computer Science Department

 University of Hong Kong

ABSTRACT

Software Guard Extensions (SGX) is an Intel product that provides strong security guaranty

(including confidentiality and integrity) for confidential data. It makes use of a processor-

hardened container, called enclave, to isolate protected data from external environment. However,

it results in performance degradation (lager latency) at the same time because it requires extra

running time to initiate and maintain the enclave. This project used the method of control

experiment, to analyze the performance of SGX in micro/basic operations (such as ecall and

ocall) using the latest version of SGX Software Development Kit (SDK). This project

investigated totally three kinds of overheads that are caused by applying SGX, which are

switching, data transferring between enclaves and untrusted environment, and memory access

inside enclaves. With the experiment environment of Intel Core I7-6700k 4GHz with 4 hyper-

threaded cores and an operating system of Ubuntu 14.04 LTS, these three kinds of overheads

consume 13473, 2537, 755 instruction cycles respectively. These obtained statistics can help

identify the performance overhead caused by SGX. Basing on these findings, this project then

applied two improvements on SecureKeeper (ZooKeeper with SGX enabled) with the aim of

reducing the above three kinds of overheads. Specifically, this project applied a heuristic

function to predict required sizes of buffer in calling enclave functions. The overhead of data

transferring between enclaves and untrusted environment was reduced by this improvement.

Additionally, this project made use of smaller size of enclave to reduce the overhead of memory

access inside enclaves. However, the overhead of switching cannot be reduced because the

frequency of switching in SecureKeeper is already minimized. As a result, the above

improvements improved the overall performance (latency) by 3.5%. This can give inspirations to

programmers on how to improve the performance of SGX with optimal design and

implementation of program/software.

FYP Analyzing and Improving the Performance of SGX Page 4

Issue: 2.0 Computer Science Department

 University of Hong Kong

ACKNOWLEDGMENT

This project is supported/partially supported by Dr. Cui H.M and his PhD student, Mr. Jianyu

Jiang. I thank them for providing insight and expertise to help me set up scientific experiments

so that I can get concrete statistics to analyze the performance of Software Guard Extensions.

FYP Analyzing and Improving the Performance of SGX Page 5

Issue: 2.0 Computer Science Department

 University of Hong Kong

TABLE OF CONTENTS

1. INTRODUCTION………………………………………………………………11

 1.1 Background……………………………………………………………....11

 1.2 Major concern and existing studies………………………………………12

 1.3 Scope and contributions of the project……………………...……………13

 1.4 Outline of this report……………………………………………………...14

2. OBJECTIVES…………………………………………………..……………….15

3. LITERATURE REVIEW………………………………………………...……..16

3.1 Overheads caused by SGX………………………………………………..16

 3.1.1 switching………………………………………………………..16

 3.1.2 data transferring between enclaves and

untrusted environment………………………………………….16

 3.1.3 memory access inside enclaves………………………………….16

3.2 Performance analysis in actual applications……………………………….17

3.3 Improvements………………………………………………………………17

3.4 From ZooKeeper to SecureKeeper………………………………………...18

4. METHODOLOGY…………………………………………….…………...…….21

4.1 Control experiment……………………………………………………...…21

4.2 Statistical method…………………………………………………………..21

4.3 Timer…………………………………………...………………………….21

4.4 Experiment environment…………………………………………………..21

FYP Analyzing and Improving the Performance of SGX Page 6

Issue: 2.0 Computer Science Department

 University of Hong Kong

5. DIFFICUTIES…………………………………………………....………………..23

6. EXPERIMENT DETAILS AND FINDINGS……………………………………24

6.1 Switching……………………………………………………………………24

6.2 Data transferring between enclaves and untrusted environment……………26

 6.2.1 data transferring using ecall……………………………………….26

6.2.2 data transferring using ocall……………………………………….29

 6.3 Memory access inside enclaves……………………………………………...32

 6.4 Conclusion……………………………………………………………………33

7. LIMITAIONS………………………………………………………………………..34

8. IMPROVEMENTS………………………………………………………………….35

 8.1 Lower frequency of switching…………………………………..……………35

8.2 Heuristic function……………………………………………………………..35

8.3 Smaller enclave………………………………………………………………..37

8.4 Latency of improved SecureKeeper……………………………..……………38

9. CONCLUSION………………………………………………………………………39

10. REFERENCES……………………………………………………………………….40

FYP Analyzing and Improving the Performance of SGX Page 7

Issue: 2.0 Computer Science Department

 University of Hong Kong

LIST OF FIGURES

Figure Page

1. SGX creates a trusted zone, called enclave, to isolate confidential 11

data from untrusted environment, including operating system,

virtual machine manager and firmware.

2. The manufacturer of SGX works as a trusted intermediary agent 12

between users and service providers.

3. The architecture of ZooKeeper 18

4. The architecture of SecureKeepeer 19

5. The program of experiment group in analyzing the overhead of 25

switching to SGX mode.

6. The program of control group in analyzing the overhead of 25

switching to SGX mode.

7. The .edl file of experiment group in analyzing the overhead

of switching to SGX mode. The experiment in analyzing the

overhead of ecall with option in. 25

8. The experiment in analyzing the overhead of ecall with option

 in. 26

9. The .edl file of experiment group in analyzing the overhead of

data transferring between enclaves and untrusted environment

using ecall with option in. 27

10. The results in analyzing the overhead of data transferring between

enclaves and untrusted environment using ecall with option in. 27

11. The .edl file of experiment group in analyzing the overhead of data

transferring between enclaves and untrusted environment using

ecall with option out. 28

12. The .edl file of experiment group in analyzing the overhead of data

transferring between enclaves and untrusted environment using ecall

with option in&out. 28

13. The results in analyzing the overhead of data transferring between

enclaves and untrusted environment using ecall with option out. 28

FYP Analyzing and Improving the Performance of SGX Page 8

Issue: 2.0 Computer Science Department

 University of Hong Kong

14. The results in analyzing the overhead of data transferring between

enclaves and untrusted environment using ecall with option in&out. 28

15. The experiment in analyzing the overhead of ocall with option in. 29

16. The .edl file of experiment group in analyzing the overhead of data

transferring between enclaves and untrusted environment using ocall

with option in. 30

17. The results in analyzing the overhead of data transferring between

enclaves and untrusted environment using ocall with option in. 30

18. The .edl file of experiment group in analyzing the overhead of data

transferring between enclaves and untrusted environment using

ocall with option out. 31

19. The .edl file of experiment group in analyzing the overhead of data

transferring between enclaves and untrusted environment using

ocall with option in&out. 31

20. The results in analyzing the overhead of data transferring between

 enclaves and untrusted environment using ocall with option out. 31

21. The results in analyzing the overhead of data transferring between

enclaves and untrusted environment using ocall with option in&out. 31

22. The results in analyzing the overhead of memory access inside the

enclave using consecutive read. 32

23. The results in analyzing the overhead of memory access inside the

enclave using non-consecutive read. 32

24. The results in analyzing the overhead of memory access inside the

enclave using consecutive write. 32

25. The results in analyzing the overhead of memory access inside the

enclave using non-consecutive write. 32

26. The principle of the heuristic function. 36

27. The interface of SecureKeeper. 37

28. The interface of improved SecureKeeper. 37

FYP Analyzing and Improving the Performance of SGX Page 9

Issue: 2.0 Computer Science Department

 University of Hong Kong

LIST OF TABLES

Table Page

1. Latencies of SecureKeeper and approved SecureKeeper 38

in different operations (in unit of instruction cycles).

FYP Analyzing and Improving the Performance of SGX Page 10

Issue: 2.0 Computer Science Department

 University of Hong Kong

ABBREVIATIONS

SGX: Software Guard Extensions

SDK: Software Development Kit

FYP Analyzing and Improving the Performance of SGX Page 11

Issue: 2.0 Computer Science Department

 University of Hong Kong

1. INTRODUCTION

1.1 Background

Cloud computing (e.g., Google Cloud Platform) is the on-demand delivery of hardware, software

and other IT resources through a cloud services platform via the internet. It is highly popularized

and commercialized nowadays because of its advantage of lower cost of computation and storage.

In cloud computing, users send their data to service providers, who process these data on behalf

of users and then return corresponding results. A problem arises in such a model, which is the

leakage of data due to irresponsible or untrusted service providers.

Software Guard Extensions (SGX), is invented to solve this problem. On the cloud server side,

SGX creates a processor-hardened container, called enclave, to isolate confidential data from

untrusted environment (see Figure 1) [2]. Additionally, the manufacturer of SGX works as a

trusted intermediary agent between users and service providers [7]. As Figure 2 shows, it

measures the identity (integrity) of the executing enclave in the execution environments using

FYP Analyzing and Improving the Performance of SGX Page 12

Issue: 2.0 Computer Science Department

 University of Hong Kong

software attestation (a technique for attesting authority), and then sends the corresponding

results to users so that they can know whether they are communicating with a safe and trusted

device.

1.2 Major concern and existing studies

While providing strong security guarantee, SGX leads to a concern about performance. SGX is

completely implemented with microcodes (the lowest specified level of processor and machine

instructions sets) [7]. Running these microcodes incurs higher overhead and consumes more

instruction cycles (the basic operational process of a computer system) than non-enclave

execution. Thus, SGX results in lower performance than regular programs [6]. Specifically,

while SGX creates an enclave to protect confidential data, it divides a program into two parts.

One part containing secret data and some important functions is placed inside the enclave,

another part containing regular functions is placed outside the enclave. However, functions in a

same program interact with each other regularly and hence they need to cross the border of

enclave. Crossing the border involves flush of Translation Lookaside Buffer (TLB) and data

transferring between enclaves and the external environment, which requires extra running time

and hence it results in performance degradation.

FYP Analyzing and Improving the Performance of SGX Page 13

Issue: 2.0 Computer Science Department

 University of Hong Kong

Although there are some existing studies analyzing performance of SGX, they are contradictory

with each other. For example, [4] investigated that programs using SGX ran 55% slower in mcf

(a kind of memory access pattern) while [5] claimed that they ran just 12% slower. This gap

implies that more researches are needed to prove which one is accurate. In addition, existing

studies (such as [4] and [6]) measured the performance of SGX with old versions of Software

Development Kit (SDK). However, Intel launched a latest version, 2.3.101, on October 18th,

2018. With new version of SDK, the performance of SGX might improve. Given the above two

reasons, there is a demand for new researches on latest version.

1.3 Scope and contributions of the project

This project focuses on the performance (especially the latency) of SGX in micro/basic

operations. Specifically, it aims at investigating the performance overhead of programs/software

applying SGX. The second focus of this project is to improve the performance of SGX. There are

two ways to achieve this aim. The first one is to modify the design and implementation of SGX,

which results in a better version of SGX. The second one is to optimize the design and

implementation of the target program/software so that it is well fitted with SGX. However, this

project concentrates on only the second method. Specifically, it tries to suggest any feasible

improvement on the target program/software to reduce those overheads identified in the first

focus, so that the performance of SGX is enhanced.

This project makes two contributions. Firstly, it investigated totally three kinds of overheads that

are caused by applying SGX, which are switching, data transferring between enclaves and

untrusted environment, and memory access inside enclaves. Concrete statistics are provided to

describe the effect of these overheads. Comparing to existing studies, these statistics provide

latest analysis on latest version of SGX SDK. Also, they help solve the contradiction between

existing studies as mentioned before. Secondly, this project used SecureKeeper (ZooKeeper with

SGX enabled; ZooKeeper is an open-source software for maintaining configuration information

and providing distributed synchronization and group services) as an example, to show methods

of reducing the previously mentioned overheads in order to improve the performance of SGX.

FYP Analyzing and Improving the Performance of SGX Page 14

Issue: 2.0 Computer Science Department

 University of Hong Kong

1.4 Outline of this report

This report lists the two objectives of this project in Section 2. Then it explains how to carry out

experiments for performance analysis in Section 4. The difficulties of these experiments are

described in Section 5. Section 6 of this report is the results and findings of the experiments in

Section 4. Next, Section 7 mentions the limitation of the findings in Section 6. Based on these

obtained findings, this report suggests two improvements to increase the performance of SGX in

Section 8.

FYP Analyzing and Improving the Performance of SGX Page 15

Issue: 2.0 Computer Science Department

 University of Hong Kong

2. OBJECTIVES

The first objective of this project is to investigate concrete statistics to describe the effect of

overheads that are caused by applying SGX, by means of investigating the performance (latency)

of SGX in micro/basic operations.

The second objective of this project is to suggest any feasible improvement on the target

program/software (SecureKeeper) to make it be well fitted with SGX, so that the overhead

identified in the first objective is reduced and hence the performance of SGX can be heightened.

FYP Analyzing and Improving the Performance of SGX Page 16

Issue: 2.0 Computer Science Department

 University of Hong Kong

3. LITERATURE REVIEW

3.1 Overheads caused by SGX

[4] and [7] pointed out three kinds of overheads that are caused by applying SGX, which are

switching, data transferring between enclaves and untrusted environment, and memory access

inside enclaves.

3.1.1 switching

Switching to/switching out of SGX mode is triggered when dealing with confidential data

inside the enclave (other modes have no right to process data inside the enclave). It

results in an overhead because it requires the computer to flush TCB during switching,

which consumes some running time [7].

3.1.2 data transferring between enclaves and untrusted environment

Passing data into/extract data out of SGX enclaves is triggered by the data interactions

between the enclave and the external environment. Data cannot pass the border of

enclave directly. Instead, the transportation of data is done by creating a new copy of the

data on another side of enclaves [4]&[7]. For example, when some data is passed from

the external environment to an enclave, SGX first allocates new memory space inside the

enclave and then copy the data into it, which costs extra time.

3.1.3 memory access inside enclaves

SGX maintains an integrity tree to ensure confidentiality of data, integrity of data, and

anti-roll-back protections [4]. Accessing (read/write) memory inside the enclave needs

to go through/modify the tree, which requires some running time.

With the inspiration of this, this project conducted experiments in Section 6 to investigate how

these three kinds of overheads affect the performance of SGX and hence the latency of the whole

program/software.

FYP Analyzing and Improving the Performance of SGX Page 17

Issue: 2.0 Computer Science Department

 University of Hong Kong

3.2 Performance analysis in actual applications

[6] suggested that the throughput of ZooKeeper applying SGX dropped by 11% comparing to

the one of original version of ZooKeeper, while providing stronger security guarantee. [4]

applied SGX to three applications, which are OpenVPN, Memcached and Lighttpd (OpenVPN is

an open-source software for encryption in Virtual Private Network; Memcached is a key-value

database; Lighttpd is a light-weight web server). It investigated that the latencies of these

software with SGX enabled increased by 220%, 370% and 420% respectively. With this

inspiration, this project analyzed and compared the latencies of SecureKeeper (ZooKeeper with

SGX enabled) and improved SecureKeeper (which is implemented by this project) to prove that

those improvements suggested by this project are effective to enhance the performance of SGX.

3.3 Improvements

As mentioned before, there are two ways to improve the performance of SGX. One is to modify

the design and implementation of SGX, which results in a better version of SGX. Following this

principle, [4] constructed an new architecture for SGX, which consists of a requester, a

responder and a communication channel using un-encrypted shared memory. They worked

together to buffer and poll for new messages, which are function calls that cross the border of an

enclave. As a result, software context switch was avoided and hence it led to a 13-17x speed up

over the original interface. Although this approach is out of the scope of this project (as

explained in Section 1.3), it gives a general and useful idea to this project to enhance the

performance of SGX, which is reducing the frequency of switching.

The second way of improving the performance of SGX is to optimize the design and

implementation of the target program/software so that it is well fitted with SGX. [3] suggested

several general and intuitive ideas for achieving this aim:

a. Use batch calls to replace short identical successive calls so that the frequency of

switching decreases;

b. Merge short different successive calls into one so that the frequency of switching

decreases;

c. Reduce memory usage to avoid SGX paging so that the overhead of memory

access inside enclaves decreases.

FYP Analyzing and Improving the Performance of SGX Page 18

Issue: 2.0 Computer Science Department

 University of Hong Kong

In conclusion, [3] pointed out that the frequency of switching and memory usage inside the

enclave should be minimized to optimally apply SGX and hence to improve the performance of

SGX. These ideas give some guidance to this project to optimize the design and implementation

of SecureKeeper in Section 8.

3.4 From ZooKeeper to SecureKeeper

ZooKeeper is an open-source software for maintaining configuration information and providing

distributed synchronization and group services. It provides users with functions of creating,

getting, setting, deleting data on cloud servers. Therefore, it can be regarded as a kind of cloud

storage.

Figure 3 shows the architecture of ZooKeeper. Clients are directly connected to one replica,

which is a processor handling requests from clients. At the same time, a replica is also connected

to a replicated database so that it can access (read or write) data in the database and process

responses from the database. Besides connecting with clients and replicated databases, replicas

also connect with peer replicas and have agreements with each other so that they can cooperate

and serve different clients at the same time while ensuring consistency and synchronization of

data inside replicated databases.

Since replicas are processors of requests from clients and responses form databases, messages

and data must be decrypted inside replicas so that they are understandable to replicas. However,

FYP Analyzing and Improving the Performance of SGX Page 19

Issue: 2.0 Computer Science Department

 University of Hong Kong

these replicas do not provide sufficiently strong security guarantee for data. Thus, those

decrypted messages and data might be exposed to hackers if they can control a replica in some

threat models.

To solve the above problem and enhance the security level of ZooKeeper, [6] applied SGX

technique to ZooKeeper in order to develop a new version of it, called SecureKeeper. As Figure

4 shows, [6] added an enclave, which is implemented using SGX, between each client and

replica. The enclave can check the authorization of a client and block any communication if the

client is regarded to be malicious. The most significant modification is that the main processing

logic is moved from replicas to the enclave. As mentioned before, the enclave can provide

confidentiality, integrity and anti-roll-back protections for sensitive data and it can prevent any

illegal external accesses, even if they come from the operating system. It is regarded to be

impossible to hack the enclave because it is processor-hardened. Thus, messages and data inside

the enclave are guaranteed to be safe even though they are decrypted. In addition, the enclave

also re-encrypts messages and data, after processing and before sending them to a replica or a

client. In this case, hackers cannot know about the original messages or data even they have full

control of replicas or clients or even replicated databases because they can only get encrypted

messages or data, which are not understandable.

FYP Analyzing and Improving the Performance of SGX Page 20

Issue: 2.0 Computer Science Department

 University of Hong Kong

In fact, the actual architecture of SecureKeeper is more complicated than what Figures 4 shows.

For example, there is another type of enclave, called central enclave inside a replica for handling

accesses of sequential nodes. However, those improvements suggested by this project in Section

8 are based on the above architecture and they focus on only the enclaves between replicas and

clients. Therefore, that extra information is irrelevant to this project and hence they are not

shown or described in this report. The architecture shown in Figure 4 is sufficient to provide

necessary background information for understanding those improvements.

FYP Analyzing and Improving the Performance of SGX Page 21

Issue: 2.0 Computer Science Department

 University of Hong Kong

4. METHODOLOGY

4.1 Control experiment

This project used the method of control experiment. There were one control group of programs

and at least one experiment group of programs for each separate control experiment in this

project. The details of each experiment, including what the independent variable is, the number

of groups and the differences between control groups and experiment groups, are described in

Section 6. By comparing the results of control group and experiment group, the influence of

independent variable on the dependent variable is revealed.

4.2 Statistical method

In this project, each program in one experiment was run for 10, 000 times to reduce the effect of

accidental factors so that residuals are minimized. One example of accidental factors is context

switch to the operating system, which is discussed in the following section, Section 5. Since each

program was run for 10, 000 times, there were 10, 000 different numbers. In this situation, their

median was chosen to become the final result. Median instead of mean was selected because

median can get rid of extreme values but mean is influenced by extremely small or extremely

large values. Thus, median is more persuasive and convincing than mean.

4.3 Timer

For each execution of a program, the real time stamp counter (RDTSCP, an instruction to obtain

the current cycle) was used as a timer. With one RDTSCP at the beginning and another one

RDTSCP at the end of a program, the running time (latency, in unit of instruction cycles) of a

program is obtained by the difference between these two RDTSCPs. RDTSCP is selected

because it is the most precise way to measure the running time.

4.4 Experiment environment

All programs in this project were run in an environment with Intel Core I7-6700k 3.4GHz with 4

hyper-threaded cores, disabled dynamic frequency and voltage scaling, an operating system of

Ubuntu 14.04 LTS, 16GB DDR4 RAM@2133MHz, 256KB L1-cache, 1MB L2-cahce and 8MB

FYP Analyzing and Improving the Performance of SGX Page 22

Issue: 2.0 Computer Science Department

 University of Hong Kong

L3-cache. I7-6700k was selected because only 6th (or later) generation of Intel Cores support

SGX [2].

FYP Analyzing and Improving the Performance of SGX Page 23

Issue: 2.0 Computer Science Department

 University of Hong Kong

5. DIFFICULTIES

When executing programs in experiments, there is a certain porbability that context switch to the

operating system (an unpredictable event triggered by accidents) happens, which contaminates

the measurement. If this kind of event happens during experiments, the running time is longer

than the actual one. For solution, the negative influence can be minimized by running each

program for 10, 000 times. This is because context switch to the operating system happens rarely,

so the majority of 10, 000 executions are not affected and hence the negative influence is

reduced and becomes negligible.

There is a worse case that context switch to the operating system occurs when the computer is

running in SGX mode. This result in asynchronous Exit (AEX), which is much more expensive

than normal context switch. For solution, that particular execution must be discarded to ensure

the accuracy of performance estimation.

FYP Analyzing and Improving the Performance of SGX Page 24

Issue: 2.0 Computer Science Department

 University of Hong Kong

6. EXPERIMENT DETAILS AND FINDINGS

According to Section 3, literature review, there are totally three kinds of overheads that are

caused by applying SGX, which are switching, data transferring between enclaves and untrusted

environment, and memory access inside enclaves. Therefore, this project conducted one control

experiment for each kind of overhead in order to investigate concrete statistics that describe its

effect on the performance (latency) of programs/software applying SGX. For each separate

control experiment, the details of experiment settings and findings are explained in each of the

following sub-sections.

All experiments in this project involve ecall or ocall. Eacll is to call a function, which is defined

inside an enclave, from untrusted environment (outside the enclave). On the contrary, ocall is to

call a function, which is defined outside the enclave, from inner enclave. If data transferring

between enclaves and untrusted environment is involved in ecall or ocall (in section 6.2), there

are totally four options to pass the data, which are user_check, in, out, and in&out. User_check is

a special case because there is no copying involved and hence there is no overhead for both ecall

with option user_check and ocall with option user_check when passing the data. Therefore, this

project did not analyze this option.

6.1 Switching

Figure 5 shows the work flow of experiment group in analyzing the overhead of switching to

SGX mode. First, the timer starts. Then the program calls a function, which is defined inside an

SGX enclave, through an ecall. At this moment, the computer switches to the SGX mode from

user mode. The called function has no parameter (except the id of enclave), does nothing and

returned immediately. Then the computer switches back to original mode. Finally, the timer ends.

In this situation, the difference between the two timers, which is the result (27556 instruction

cycles), is the total running time of the timer itself, a function call and two times of switching

(switching into enclave and switching out of enclave). In theory, it is better if the timer ends

inside the enclave instead of in the main function. In this case, the running time of switching is

counted only once (only switching into the enclave). However, the timer is not allowed to run

inside the enclave. Therefore, this project can only make the timer end in the main function and

count the running time of switching twice (switching into enclave and switching out of enclave).

FYP Analyzing and Improving the Performance of SGX Page 25

Issue: 2.0 Computer Science Department

 University of Hong Kong

Figure 7 shows the content of enclave definition language (EDL) file of the experiment group. It

defines the interface between the enclave and untrusted environment. As mentioned before, it has

no parameter (except the id of enclave) and hence involves no data transferring. Thus, there is no

need to specify an option (user_check, in, out, or in&out. User_check).

The result of experiment group includes not only the running time of two times of switching, but

also the running time of the timer and a function call, which is not in interest. Thus, a control

group is required. Figure 6 shows the work flow of the control group. It is the same as the one of

experiment group except that the function called in control group is not defined inside the

enclave. Thus, there is no switching to SGX mode or switching out of SGX mode when it is

called. In this situation, the result of control group (610 instruction cycles) is the running time of

FYP Analyzing and Improving the Performance of SGX Page 26

Issue: 2.0 Computer Science Department

 University of Hong Kong

the timer and a function call. Then the result of experiment group subtracted by the result of

control group is the running time of two times of switching (27556 – 610 = 26946 instruction

cycles) and hence the running time of one switching is 13473 instruction cycles.

6.2 Data transferring between enclaves and untrusted environment

6.2.1 data transferring using ecall

Figure 8 shows the work flow of experiment in analyzing the overhead of data transferring using

ecall with option in. It is similar with the one in Figure 5 except that there is data transferring

using ecall involved. There are several groups of programs in this experiment. Different groups

have different sizes of data to transfer. For example, the first group passes a 0-KB buffer of data

while the second group passes a 2-KB buffer of data into the enclave. Since the only difference

between different groups is the size of data, the difference of results between different groups is

caused by the difference of sizes of data. Thus, the total running time is a function of the size of

FYP Analyzing and Improving the Performance of SGX Page 27

Issue: 2.0 Computer Science Department

 University of Hong Kong

data. With similar experiments, relationship between the total running time and the size of data

in ecall with option out and ecall with option in&out are also obtained.

Figure 9 shows the content of EDL file of those groups in analyzing the overhead of data

transferring using ecall with option in. It defines the interface between enclaves and trusted

environment. The variable ‘pack’ is a buffer of data for tansferring, the variable ‘buffersize’ is

the size of data. Data transferring using ecall is performed when the function ‘ecall_in’ is called.

Different groups in this experiment use the same EDL file as the one in Figure 9, except that they

set the variable ‘buffersize’ to be different values so that different groups have different size of

data transferring. Figure 10 shows the obtained results, which are the latencies of different

groups. The intercept and slope of the straightline in Figure 10 are 27937 and 1429 respectively.

Thus, a mathematic function is obtained: total running time = 1429 * size of data + 27937 (in

FYP Analyzing and Improving the Performance of SGX Page 28

Issue: 2.0 Computer Science Department

 University of Hong Kong

unit of instruction cycles), which implies that it consumes 1429 instruction cycles to transfer

every 1-KB data using ecall with option in.

Experiments in analyzing overheads of data transferring using ecall with option out and ecall

with option in&out have the same work flows as the one in Figure 8, except that their directions

of data transferring are different. The contents of their EDL files are shown in Figure 11 and

Figure 12 respectively. They are similar with the one in Figure 9 except that they use different

options. Figure 13 and Figure 14 are the corresponding results of data transferring using ecall

with option out, and ecall with option in&out respectively. Similar with the previous explanation,

FYP Analyzing and Improving the Performance of SGX Page 29

Issue: 2.0 Computer Science Department

 University of Hong Kong

slopes of straightlines in Figure 13 and Figure 14 show that it consumes 1995 instruction cycles

to transfer every 1-KB data using ecall with option out, and that it consumes 2309 instruction

cycles to transfer every 1-KB data using ecall with option in&out.

6.2.1 data transferring using ocall

Figure 15 shows the work flow of experiment in analyzing the overhead of data transferring

using ocall with option in. The difference between this one and the one in figure 5 is that in

Figure 15, the function defined in the enclave calls and passes data to a function defined outside

the enclave before it returns. Thus, there is data transferring using ocall involved. Similar with

before, there are several groups of programs in this experiment. Different groups have different

sizes of data to transfer. Since the only difference between different groups is the size of data, the

difference of results between different groups is caused by the difference of sizes of data. Thus,

the total running time is a function of the size of data. With similar experiments, relationship

FYP Analyzing and Improving the Performance of SGX Page 30

Issue: 2.0 Computer Science Department

 University of Hong Kong

between the total running time and the size of data in ocall with option out and ocall with option

in&out are also obtained.

Figure 16 shows the content of EDL file of those groups in analyzing the overhead of data

transferring using ocall with option in. These variables have the same meaning as those in ecall.

During execution, the function ‘intermediate_function’ calls ‘ocall_in’ to perform data

transferring using ocall. Different groups in this experiment use the same EDL file as the one in

Figure 16, except that they set the variable ‘buffersize’ to be different values so that different

groups have different size of data transferring. Figure 17 shows the obtained results, which are

the latencies of different groups. The intercept and slope of the straightline in Figure 17 are

33160 and 3054 respectively. Thus, a mathematic function is obtained: total running time = 3054

FYP Analyzing and Improving the Performance of SGX Page 31

Issue: 2.0 Computer Science Department

 University of Hong Kong

* size of data + 33160 (in unit of instruction cycles), which implies that it consumes 3054

instruction cycles to transfer every 1-KB data using ocall with option in.

One important note is that the range of size of data in experiments of ocall is smaller than the

one of ecall. This is because the buffer of ocall is allocated on the untrusted stack with similar

mechanism with ‘alloca’ but not ‘malloc’ [7]. As the size of stack is limited, the size of buffer

of ocall and its range are limited as well.

FYP Analyzing and Improving the Performance of SGX Page 32

Issue: 2.0 Computer Science Department

 University of Hong Kong

Experiments in analyzing overheads of data transferring using ocall with option out and ocall

with option in&out have the same work flows as the one in Figure 15, except that their directions

of data transferring are different. The contents of their EDL files are shown in Figure 18 and

Figure 19 respectively. They are similar with the one in Figure 16 except that they use different

options. Figure 20 and Figure 21 are the corresponding results of data transferring using ocall

with option out, and ocall with option in&out respectively. Similar with the previous explanation,

slopes of Figure 20 and Figure 21 show that it consumes 2249 instruction cycles to transfer every

1-KB data using ocall with option out, and that it consumes 4188 instruction cycles to transfer

every 1-KB data using ocall with option in&out.

6.3 Memory access inside enclaves

FYP Analyzing and Improving the Performance of SGX Page 33

Issue: 2.0 Computer Science Department

 University of Hong Kong

There are four kinds of memory access inside enclaves, which are consecutive read, non-

consecutive read, consecutive write and non-consecutive write. Figure 22 – Figure 25 show the

corresponding results respectively. Similar with Section 6.2, they are obtained by measuring

different running time of accessing different sizes of target memory. Through slopes of those

straightlines in Figure 22 – Figure 25, it is shown that it consumes 506 instruction cycles to

consecutively read every 1-KB data; it consumes 615 instruction cycles to non-consecutively

read every 1-KB data; it consumes 867 instruction cycles to consecutively write every 1-KB data;

and it consumes 1030 instruction cycles to non-consecutively write every 1-KB data

6.4 Conclusion

With the results and findings in Section 6.1, 6.2 and 6.3, it is derived that frequently invoking

ecall/ocall is not efficient because it results in high frequency of switching; the size of data

transferring between enclaves and untrusted environment should be minimized to reduce the

related overhead; it is not efficient to access a large size of data/codes inside the enclave because

the corresponding overhead is proportional to the size.

FYP Analyzing and Improving the Performance of SGX Page 34

Issue: 2.0 Computer Science Department

 University of Hong Kong

7. LIMITATION

Since the experiment environment in this project has smaller size of RAM and fewer CPUs than

actual server, the above results might have a certain level of residual, however, it can still give a

reasonable estimation of true value.

FYP Analyzing and Improving the Performance of SGX Page 35

Issue: 2.0 Computer Science Department

 University of Hong Kong

8. IMPROVEMENTS

With the above findings, this project suggested some improvements on SecureKeeper in order to

reduce those overheads that are caused by applying SGX and discussed in Section 6. Specifically,

this project focused on improving the design and implementation of enclaves between replicas

and clients (as shown in Figure 4), so that SecureKeeper is optimally fitted with SGX and hence

the performance (latency) of SecureKeeper is improved.

8.1 Lower frequency of switching

In SecureKeeper, since one enclave is connected with one client as well as one replica (as shown

in Figure 4), it involves two times of ecall, which results in two times of switching, for dealing

each request from a client: the client passes the request to the enclave through an ecall; then the

replica passes the corresponding response from databases to the enclave through another ecall.

According to the findings in Section 6.1, it is optimal to minimize the frequency of switching for

reducing the overhead. In theory, removing all databases and let the enclave act as a new

database can eliminate the ecall called by replicas so that there is only one switching involved

for dealing one client request. However, the size of enclave is limited (with maximum of 128MB)

[7], which implies that enclaves cannot serve as databases. Therefore, this modification is not

effective in practice. In other words, the frequency of switching in SecureKeeper is regarded to

be minimized and hence there is no further improvement on this kind of overhead.

8.2 Heuristic function

In SecureKeeper, the main logic of processing requests and responses is implemented inside the

enclave (as explained in Section 3.4). In this situation, the client program calls the main logic

inside the enclave through an ecall with option in&out to raise a request. Option in&out is used

because the main logic requires input arguments and returns responses. Before calling an an ecall

with option in&out, the size of buffer (which transfers input arguments into the enclave and then

transfers outputs out of the enclave later) need to be fixed and it cannot be changed later.

However, the problem is that the encryption supporting message authentication code (MAC) in

the main logic appends extra data to the input arguments after processing. Therefore, the

corresponding output has larger length and size than input arguments. If the size of buffer of

FYP Analyzing and Improving the Performance of SGX Page 36

Issue: 2.0 Computer Science Department

 University of Hong Kong

ecall is set to be the length of input arguments at the beginning, the buffer cannot hold the

corresponding response because its size is smaller than the response.

To solve this problem, SecureKeeper sets the size of buffer to be a large number, which is much

larger than the size of input arguments, to ensure that the buffer can store the output (according

to the codes on GitHub). As a result, the buffer is not fully utilized in most cases, which results

in memory waste while solving the problem. Furthermore, according to findings of in Section 6.2,

the overhead of data transferring is proportion to the size of buffer. Thus, redundant part of

buffer causes unnecessary overhead and hence lower performance.

For improvement, this project applied a heuristic function to predict the required size of buffer so

that there is less wasted memory and hence smaller overhead. As Figure 26 shows, the heuristic

function makes use of an analogue encryption logic, which is similar with that one in the enclave,

and analogue inputs, which are similar with actual inputs. It applies those analogue imputs to the

analogue encryption logic to get an analogue output. Then the length of the analogue output is an

estimation of the one of real output. Finally, the size of buffer is set to be the sum of the

estimated length and a safety margin, which is a constant number. The reason why actual

encryption logic and actual request are not used to get the real size is that they must be processed

inside the enclave for safety reason. It will make them exposed inside an untrusted environment

if they are processed before an ecall.

FYP Analyzing and Improving the Performance of SGX Page 37

Issue: 2.0 Computer Science Department

 University of Hong Kong

With the above heuristic function, required size of buffer is reduced, so the overhead of data

transferring between enclaves and untrusted environment is also reduced. As a result, the

performance of SecureKeeper improves.

8.3 Smaller enclave

Figure 27 shows the content of EDL file of SecureKeeper. It defines the interface between

enclaves and untrusted environment in SecureKeeper. It contains two functions to handle ecalls

from clients and replicas in SecureKeeper respectively. Variable ‘pack’, ‘id’ and ‘buffersize’

have same meaning as those in Section 6. The variable ‘psize’ is the original size of inputs and it

is smaller than the variable ‘buffersize’ for solving the problem that is discussed in Section 8.2.

Figure 28 shows the interface of improved SecureKeeper. It contains only one function, which is

the combination of those two in Figure 27. It has one more argument than the previous one. The

variable ‘source’ is used to distinguish the source of an ecall, which is either from clients or

replicas in SecureKeeper. Since the interface of improved SecureKeeper is relatively narrower

than the one of SecureKeeper (this is because the one of improved SecureKeeper has only one

function), the probability that its interface is under attack is smaller and hence it is safer.

Furthermore, it results in smaller size of enclave. This because those functions in Figure 27 are

similar with each other. Both of them involve serializing/deserializing, encryption/decryption

and other common functionalities. Combining them into one can reduce some duplicated codes

and hence the size of enclave.

FYP Analyzing and Improving the Performance of SGX Page 38

Issue: 2.0 Computer Science Department

 University of Hong Kong

According to findings of Section 6.3, the overhead of memory access inside enclaves is

proportional to the size of memory. Therefore, improved SecureKeeper with smaller enclave has

smaller overhead and hence higher performance because it accesses codes of only one function

instead of two functions during running time. In addition, [6] proved that smaller enclave can

allow more random read/write at the same time, which leads to higher overall performance. Thus,

smaller enclave is effective to enhance the performance of SecureKeeper.

8.4 Latency of improved SecureKeeper

Table 1 shows the latencies of SecureKeeper and improved SecureKeeper (applying

improvements in Section 8.2 and 8.3) in different operations, including create, get, set, delete

and list all children. It is shown that the performance (latency) of SecureKeeper improves by 3.5%

on average with those two improvements. Although the effect is tiny considering only one

request, it can save running time cumulatively because the software handles lots of requests in

one day. As a result, the change is significant considering the overall performance in one day.

FYP Analyzing and Improving the Performance of SGX Page 39

Issue: 2.0 Computer Science Department

 University of Hong Kong

9. CONCLUSION

With control experiments, this project investigated totally three kinds of overheads that are

caused by applying SGX, which are switching, data transferring between enclaves and untrusted

environment, and memory access inside enclaves. Frequency of ecall/ocall, size of buffer and

size of memory are key factors of these overheads respectively. Additionally, this project applied

a heuristic function and reduced sizes of enclaves in SecureKeeper. With these two

improvements, overheads of data transferring between enclaves and untrusted environment, and

memory access inside enclaves were reduced. The performance of SecureKeeper was enhanced

as a result. Since the experiment environment in this project has smaller size of RAM and fewer

CPUs than actual server due to limitation of laboratory, which results in residuals to true values,

future researches equipped with real server can be done to obtain true values of performance

analysis.

FYP Analyzing and Improving the Performance of SGX Page 40

Issue: 2.0 Computer Science Department

 University of Hong Kong

10. REFERENCES

[1] Frank McKeen. Intel Labs. Stanford University [Internet]. 2015. Available from:

https://web.stanford.edu/class/ee380/Abstracts/150415-slides.pdf

[2] Intel [Internet]. USA: Intel. [cited 2018 Sep 26]. Available from:

https://software.intel.com/en-us/sgx

[3] Nico Weichbrodt et al. Sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves.

IBR TU[Internet]. Available from:

https://www.ibr.cs.tu-bs.de/users/weichbr/papers/middleware2018.pdf

[4] Ofir Weisse, Valeria Bertacco, Todd Austin. Regaining Lost Cycles with HotCalls: A

Fast Interface for SGX Secure Enclaves. University of Michigan [Internet]. Available from:

http://www.ofirweisse.com/ISCA17_Ofir_Weisse.pdf

[5] Shay Gueron. A Memory Encryption Engine Suitable for General Purpose Processors.

University of Haifa, Israel [Internet]. Available from: https://eprint.iacr.org/2016/204.pdf

[6] Stefan Brenner et al. SecureKeeper: Confidential ZooKeeper using Intel SGX. Institut für

Betriebssysteme und Rechnerverbund [Internet]. 2016. Available from: https://www.ibr.cs.tu-

bs.de/users/brenner/papers/2016-middleware-brenner-securekeeper.pdf

[7] Victor Costan, Srinivas Devadas. SGX Explained. International Association for

Cryptologic Research [Internet]. 2016. Available from: https://eprint.iacr.org/2016/086.pdf

https://web.stanford.edu/class/ee380/Abstracts/150415-slides.pdf
https://web.stanford.edu/class/ee380/Abstracts/150415-slides.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://www.ofirweisse.com/ISCA17_Ofir_Weisse.pdf
http://www.ofirweisse.com/ISCA17_Ofir_Weisse.pdf
https://eprint.iacr.org/2016/204.pdf
https://eprint.iacr.org/2016/204.pdf
https://www.ibr.cs.tu-bs.de/users/brenner/papers/2016-middleware-brenner-securekeeper.pdf
https://www.ibr.cs.tu-bs.de/users/brenner/papers/2016-middleware-brenner-securekeeper.pdf
https://www.ibr.cs.tu-bs.de/users/brenner/papers/2016-middleware-brenner-securekeeper.pdf
https://www.ibr.cs.tu-bs.de/users/brenner/papers/2016-middleware-brenner-securekeeper.pdf
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf

