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Abstract 
 

Video games have always been a popular proving ground for artificial intelligence techniques. 

Traditional AI agents have relied on scripted, rule-based approaches that have several flaws 

such as the inability to handle massive state spaces and the specificity of logic to a game that can 

be exploited. Recent breakthroughs in this domain have come through the application of novel 

approaches in machine learning such as reinforcement learning and neuro-evolution. After 

preliminary testing in the Arcade and Real-Time Strategy genre, we chose to further explore the 

applications of machine learning in StarCraft II which is claimed to be the next “grand 

challenge” for AI research. 

 In our project, we implement neuro-evolution using NEAT and reinforcement learning using 

Sarsa(𝜆) on micromanagement scenarios in StarCraft II involving the small-scale precise control 

of combat units. Using our developed training framework for applying NEAT to StarCraft II, we 

evolved neuroevolutionary agents that learned to demonstrate precise hit-and-run strategies to 

beat the in-game AI in ranged vs melee matchups. Our reinforcement learning agents using 

Sarsa(𝜆) learned to be successful in more complex micromanagement scenarios involving enemy 

engagement selection and timing. Our results serve as a proof-of-concept of the benefits and 

potential of the applications of these techniques in video games and represent meaningful 

contributions to the wider video gaming and artificial intelligence communities. 
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1 Introduction 

The project documentation is divided into two reports discussing the development and testing 

phases of the project respectively. The development report is written by my group member, 

Fawad Masood Desmukh and the testing report is written by myself, Zain Ul Abidin.  

The development report introduces the project, elaborates on the existing work and then 

comprehensively details the methodology and the developmental stages of the project. 

This report follows from the development report and the reader is recommended to read the 

development report first. This report first focuses on the testing and evaluation phase of the 

project and discusses all the results in detail. This is followed by a comparative analysis of the 

various implemented approaches where all the results are summarized. It finally ends with 

concluding remarks on the goals, contributions and future directions of the project. 

For sake of brevity, we have not included detailed information from the development phase in 

this report and instead refer to the development report at several points of this report to give 

context to our tests. Therefore, to get a complete understanding of the project, it is recommended 

to refer to the development report, wherever it is stated. For convenience we have used a 

reference notation, DEV-XX-YY, where XX is the section number and YY is the page number of 

the development report. 

StarCraft II is claimed as the next “grand challenge” for AI research. Keeping in line with the 

significance of that claim, this project aimed to implement various machine learning approaches 

on StarCraft II. This report details the successes and failures from our findings.  

2 Preliminary Testing and Exploration 

The preliminary testing and exploration phase of this project consisted of the application of the 

neuro-evolution approach to one of the DeepMind mini game [1], Move To Beacon. The 

following subsection focuses on the details of the mini game scenario and the preliminary testing 

results. 
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2.1 Move To Beacon 

2.1.1 Game Description 

The mini game consists of one Marine unit and one Beacon. The agent can control the marine 

unit that gets a reward every time it reaches the beacon. Upon reaching the beacon, the beacon 

position is randomly reset at least 5 units away from the Marine. The final score in the game is 

the number of beacons collected in a specified number of episode steps. For our validation test 

on Move To Beacon we had the number of episode steps set to 1800 steps per episode which 

takes roughly 60 in game seconds (these can be sped up for training). Figure 1 shows an instance 

of the 64 x 64 Move To Beacon map. 

 

Figure 1: Move To Beacon map. The blue unit is the Marine. The green circle is the Beacon. 
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2.2 Validation Test 

Before carrying out exploratory testing, we wanted to know whether neuro-evolution will work 

for the mini game scenario or not. Hence, we carried out an initial validation test. The details of 

the test are as follows. 

2.2.1 Inputs 

The neural network was given two basic inputs which were the minimum requirement for the 

neural network to learn whether moving to beacon is beneficial or not. The two inputs were: 

1. Marine selected. (boolean) 

2. Marine on beacon. (boolean) 

 

2.2.2 Genome Network Outputs 

The validation test had six outputs: 

1. No operation. 

2. Select marine. 

3. Deselect marine. 

4. Move to beacon. (move towards the center of the beacon) 

5. Move random. (move randomly anywhere on the map) 

6. Move middle. (move towards the center of the map) 

 

2.2.3 Results 

The results were encouraging. The agent learnt to always choose the output 4 (Move to beacon). 

This meant that given the exact coordinates of center of the beacon, the agent acknowledged that 

moving towards and collecting the beacon was rewarding. Figure 2 shows the visualization of 

the results that we achieved. It is visible from the increasing blue line that on average the 

genomes learnt to collect the beacon. The agent learnt the desired behavior in just about 40 

generations. 
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Figure 2: Validation test results over Move To Beacon mini game 

Hence, our validation test was successful and proved that the neuroevolutionary approach has the 

potential to produce desired results. 

2.3 Exploratory Tests 

After establishing that the neuro-evolution approach had learning potential on the mini game 

scenario, we decided it imperative to do further exploration with various inputs, outputs, fitness 

functions, and configuration settings. Table 1 details the various tests that were conducted over 

the Move To Beacon mini game scenario.     

2.3.1 Inputs 

There were two types of input used in our tests. The feature input extraction is elaborated in 

detail at DEV-3.4.3.2-38 

1. Pixel  

Trainings were launched with (64, 64), (32, 32) and (16, 16) screen resolution with 4096, 1024 

and 256 inputs respectively. 

2. Handcrafted 
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Trainings were launched with handcrafted features that took into account the player and beacon’s 

positional coordinates. 

2.3.2 Genome Network Outputs 

We used the second set of outputs in our tests from the two output sets that we designed at DEV-

3.4.3.2-39. This would allow us to specify both the magnitude and direction of movement of the 

marine as well as reduce the number of outputs.  

2.3.3 Configurations 

The DEV-3.4.3.2-33 mentions the notable configuration parameters that are used for NEAT 

evolution. The configuration setting for the exploratory test are as follows: 

Activation 

function 

Aggregation 

function 

Population 

Size 

Initial 

Connectivity 

Network 

types 

Number of input 

nodes 

Number 

of output 

nodes 

Clamped Sum 100 Partial 0.5 Feedforward/ 

Recurrent1  

Corresponds to 

features 

2 

Number 

of hidden 

nodes 

Node add 

probability 

Node delete 

probability 

Connection 

add 

probability   

Connection 

delete 

probability 

Weight max value Weight 

min value 

0 0.5 0.2 0.5 0.5 30 -30 

Weight 

mutate 

rate   

 

0.8 

 

2.3.4 Reward Functions 

Two fitness functions were used in our tests to assist the agent in learning the desired behaviour.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 += 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑏𝑒𝑎𝑐𝑜𝑛𝑟𝑒𝑤𝑎𝑟𝑑                                 (1) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠+= 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + (𝑏𝑒𝑎𝑐𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑏𝑒𝑎𝑐𝑜𝑛𝑟𝑒𝑤𝑎𝑟𝑑) + (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑤𝑒𝑖𝑔ℎ𝑡 ∗ ∆ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑒𝑤𝑎𝑟𝑑)             (2)       

                                                           
1 Refer to Table 1 in Appendices 
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2.3.5 Results 

Table 1 is a subset of the tests carried out for which the results were recorded. In other cases, 

incremental changes were made in an attempt to find improvements in results. The test results 

were not very encouraging. None of the attempts managed to achieve an intelligent strategy to 

the game.  

Initial tests used the pixel-based features. However, no substantial learning was observed. Most 

of the genomes picked a direction and kept moving in that direction. Eventually all of them got 

stuck in the corner of the map. 

Figure 3 shows the results of the run over 160 generations for test 2 which uses 256-pixel inputs. 

 

Figure 3: Fitness against Generations for Test 2. 256 Pixel inputs with a Fitness Function (2) 

The average population fitness remained stable. Some genomes managed to pick up three 

beacons which may have been picked up by chance. However, in training it was observed some 

genomes understood to directly go for the first beacon when it first spawned but do not 

subsequently go for the other ones. This can be seen with the best genome in figure 2 which 

consistently picked up one beacon to get a fitness above 10. 
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Due to the poor results from the pixel based runs we decided to do some further research. [2] 

indicated that NEAT faced difficulty in learning from raw pixel-based input when applied to 

Atari games. Therefore, we decided to test out handcrafted features. 

Figure 4 shows results from Test 6 according to Table 1 The graph only shows the progression 

from the last 150 generations. 

 

 Figure 4: Fitness against Generations for Test 6. Handcrafted feature inputs with a Fitness Function (2)  

The average population fitness remained stable. None of the genomes managed to learn a 

consistent policy for solving the environment.  

However, a significant majority of the genome population learnt an interesting strategy which 

was displayed by the best genome in figure 4 as well. The strategy was to go left and right 

(oscillate) but over a much wider range to pick up beacon in their traversal rather than actively 

seeking out the beacon. Some of the marines started oscillating from their start position. 

However, some displayed understanding of the objective by approaching some position near the 

beacon and then oscillating. This does represent a valid policy if the genome can learn to align 

with the beacon first before oscillating. This interesting behavior is encouraged by our fitness 

function that rewards reducing the distance to the beacon.  

As can be seen, the reward function has a great impact on the training efficiency and can lead to 

suboptimal strategies as was seen in our tests. Handcrafted features have proven to be more 
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efficient for agents to learn policies and going forward we will focus on using handcrafted 

features for NEAT. Having gained a better understanding of the neuroevolutionary approach, we 

moved on to more meaningful combat-based micromanagement scenarios. 

3 MicroManagement Tasks  

In StarCraft II micromanagement (micro for short) refers to the selection and control of 

individual units on a precise level to extract the maximum value out of the units. In a combat 

scenario some units are better matched against the other units. However, the weaker units might 

have certain advantages over the enemy units. Micromanagement in such situations means to 

exploit these advantages and inflict the maximum damage possible upon the stronger enemy 

units. Micromanagement involves different key techniques and behaviors such as “kiting”. 

Kiting, a behavior which alternates between attacking and running from an opponent, is an 

example of good micro. It is usually favorable in scenarios where a unit with greater attack range 

(ranged unit) is against a unit with a relatively smaller attack range (melee unit). Hence, the 

ranged unit can consistently hit and run from the melee unit, by staying out of the enemy attack 

range and wins the battle by exploiting its attack range advantage. 

Another example of good micro includes enemy selection where a player must be aware of the 

strengths, weaknesses and abilities of the units in play, in order to engage various enemy units 

with the most effective units.  

Micro also includes the engagement time of the enemy units. This accounts for the position of 

own units as well as the enemy units and determines the precise time of attacking the enemy to 

ensure the maximum damage. An example would be attacking the enemy when it is clumped 

together at a narrow section of the map. 

Such management of units on a micro level is the essence of StarCraft II combat scenarios which 

allows the player to outplay his opponent in competitive battles. Provided that the micro is 

perfectly executed, it can shift the tide of the battle, and even result in favorable results for a 

weaker player. However, this requires high levels of skill and dexterity which only the most 

professional players of StarCraft II can demonstrate. 
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In the remainder of this report, we demonstrate neuro-evolution and reinforcement learning 

agents learning intelligent micromanagement strategies. 

3.1 Neuro-Evolution 

First, we focused on training the agents in adversarial scenarios using the neuro-evolution 

approach. In this section we will discuss the tests that were conducted and evaluate the results. 

3.1.1 Map Specification 

We designed a standard 

map for testing our 

neuroevolutionary approach 

using the SC2 map editor 

DEV-3.4.5.1-49 The same 

map was used in all our 

tests, however, some 

changes were required to 

change the units and the 

starting configurations, as 

required. A detailed set of 

maps that were used in our 

tests are mentioned in the development report 

DEV-3.4.5.2-49.  

The standard map had the dimensions of 64 x 64 with two spawn regions, Spawn Region Left 

and Spawn Region Right, and a Playable Space. Figure 5 shows the layout of the standard map. 

The map specifies two players, player 1 and player 2, where player 1 is controlled by the 

learning agent and player 2 is controlled by the scripted in-game AI. To remove unfair advantage 

for the learning agent, we disabled the auto attacking feature of the units controlled by the agent.  

At the beginning of the test, the map is initialized, and an episode timer starts for 120 game time 

seconds. The units are spawned randomly in groups in each of the spawn regions and then 

engage each other by moving towards the opposite spawn region. Each time a unit from either 

Figure 5: The layout of the standard map used for neuro-
evolution tests 
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side dies, the cumulative score for the episode is updated. In a case where either of the player 

loses all its units, the units are again randomly spawned in either of the spawn regions. At the 

end of each episode the episode timer is restarted. This carries on for the desired number of 

generations. 

3.1.2 Initial Test 

3.1.2.1 Combat Agent 1 

Our initial set of tests were conducted using the Combat Agent 1. Table 2 shows the various tests 

that were run over the 5v5 map instance of Hellions V Zealots. 

● Hellions are ranged units with a fast speed. However, they have low armor and health 

which requires them to be microed effectively. 

● Zealots are melee units with a relatively slower speed but a very strong attack. At a close 

range they can defeat hellions with ease. 

In our tests Hellions were controlled by player 1 (agent) whereas Zealots were controlled by 

player 2 (scripted AI). The desired result was precise kiting demonstrated by Hellions against 

Zealots. 

i. Inputs 

This combat agent used the following handcrafted feature inputs scaled to a range of [0,1]: 

1. Current hp - The current hit points of our units 

2. Weapon cooldown - Boolean that is true when at least half of our units’ weapons are on a 

cooldown 

3. Enemy in range - Boolean stating whether the enemy is in attacking range or not. 

 

ii. Genome Network Outputs 

Using the above inputs the agent was able to make a decision of either engaging in a fight or 

fleeing from the enemy. The outputs are as follows: 

1. Fight/Flee - boolean 

2. Displacement in x 

3. Displacement in y 
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iii. Configuration 

Activation 

function 

Aggregation 

function 

Population 

Size 

Initial 

Connectivity 

Network 

types 

Number of input 

nodes 

Number 

of output 

nodes 

Sigmoid Sum 100 Partial 

0.5/Full2 

Feedforward/ 

Recurrent3  

3 3 

Number 

of hidden 

nodes 

Node add 

probability 

Node delete 

probability 

Connection 

add 

probability   

Connection 

delete 

probability 

Weight max value Weight 

min value 

0 0.5 0.2 0.5 0.5 30 -30 

Weight 

mutate 

rate   

 

0.8 

 

3.1.2.2 Reward Functions 

The following reward function was used to evaluate the reward in these tests without reward 

scaling.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  ((𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑚𝑎𝑔𝑒 𝑑𝑒𝑎𝑙𝑡 −  ℎ𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 𝑙𝑜𝑠𝑠)/ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑒𝑙𝑓 ℎ𝑖𝑡 𝑝𝑜𝑖𝑛𝑡𝑠)  +  1  (3)  

                                                           
2 Refer to Table 2 in Appendices 
3 Refer to Table 2 in Appendices 
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3.1.2.3 Results 

 

Figure 6: Test 3 results from Table 2 of Combat Agent 1. Handcrafted feature inputs with a Fitness Function (3) 

All the tests had very similar results. There was inconsistency observed in the results with no 

substantial learning observed. Figure 6 shows the results of last 300 generations of test 3. The 

average population fitness remained stable at 200. None of the genomes managed to learn a 

consistent policy for solving the environment. 

However, some of the genomes learnt to engage the Zealots at the start of the episode. After the 

initial engagement they demonstrated a fleeing behavior from the enemy and eventually got 

stuck in the north west corner of the map. Hence, the enemy was lured towards Hellions in a 

clump which would allow the Hellions to do splash damage over the Zealots and maximize the 

damage caused. Figure 7 shows an instance of the behavior. This resulted in occasional wins for 

the agent which are observed by the peaks in Figure 6. 

This lack of learning was attributed towards insufficient inputs for the agent to determine the 

map bounds. Hence, we increased our inputs in the combat agent and carried out a new series of 

tests. 
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Figure 7: Hellions lure Zealots into the north west corner of the map 

3.1.3 Further Tests 

Although the initial set of tests failed, it proved the importance of appropriate feature input 

extraction for the neural network. An updated version of the previous combat agent, Combat 

Agent 2 was used to conduct these tests. The units, Hellion and Zealots, were unchanged. The 

summary of the notable tests can be found in Table 3.  

3.1.3.1 Number of genomes per episode 

In these set of tests, we made a key decision to make the fitness of a genome evaluation reliant 

on more than one episode by running the same genome on multiple episodes and then averaging 

the fitness across the episodes run. A genome was classified as a good genome only if it reached 

the threshold over the specified number of episodes. We hoped that this would reduce the 

probability of winning by chance and emphasize good strategies that consistently performed 

well. This proved to be a significant breakthrough in terms of the quality of results. 

3.1.3.2 Combat Agent 2 

i. Inputs 

In addition to the inputs used by the Combat Agent 1, the updated Combat Agent 2 used 

additional handcrafted feature inputs. The new inputs accounted for the map bounds in four 

directions, directions in which the enemy was present, and the previous command chosen by the 

neural network. All inputs were scaled to a range of [0,1]: 
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Current hp Weapon cooldown Enemy in range  Previous command 

North bound South bound West bound East bound 

North West 

enemy presence 

North East enemy 

presence 

South West 

enemy presence 

South East enemy 

presence 

 

ii. Outputs 

The outputs remained the same as in Combat Agent 1: 

1. Fight/Flee - boolean 

2. Displacement in x 

3. Displacement in y 

 

iii. Configurations 

For this series of tests, we came up with seven different configuration settings. Below we 

mention the two successful configuration settings. 

a) Configuration 1 

The first successful configuration settings (Config 1) were as follows: 

Activation 

function 

Aggregation 

function 

Population 

Size 

Initial 

Connectivity 

Network 

types 

Number of input 

nodes 

Number 

of output 

nodes 

Clamped Sum 150 Full Feedforward 

  

12 3 

Number 

of hidden 

nodes 

Node add 

probability 

Node delete 

probability 

Connection 

add 

probability   

Connection 

delete 

probability 

Weight max value Weight 

min value 

0 0.15 0.1 0.15 0.1 2 -2 

Weight 

mutate 

rate   

 

0.95 
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b) Configuration 2 

The second successful configuration settings (Config 2) were as follows: 

Activation 

function 

Aggregation 

function 

Population 

Size 

Initial 

Connectivity 

Network 

types 

Number of input 

nodes 

Number 

of output 

nodes 

Clamped Sum 150 Full Feedforward 

  

12 3 

Number 

of hidden 

nodes 

Node add 

probability 

Node delete 

probability 

Connection 

add 

probability   

Connection 

delete 

probability 

Weight max value Weight 

min value 

0 0.02 0.01 0.04 0.025 3 -3 

Weight 

mutate 

rate   

 

0.95 

 

3.1.3.3 Reward Functions 

The following reward function was used to evaluate the reward in these tests with scaling in the 

range [0,1]:  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑚𝑦 ℎ𝑖𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 +  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑙𝑓 ℎ𝑖𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑛𝑒𝑚𝑦 ℎ𝑖𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 (4) 

3.1.3.4 Successful Results (Trained Agent) 

Multiple tests were run with the seven different configuration files and changing number of 

episodes per genome. We divided these tests into two different series.  

● Series 1 consisted of tests with number of episodes per genome set to 1 

● Series 2 consisted of tests with number of episodes per genome set to 3. 

The results from the first series of tests were not very successful as they demonstrated a behavior 

similar to the initial set of tests by moving into a corner of the map and causing splash damage to 

the Zealots. 

However, tests in the second series had successful results. Two of the test results demonstrated 

the perfect kiting behavior which is impressive considering the space constraint in the map. 
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These tests used the configuration setting 1 and 2. Figures 8 to 10 show the kiting behavior 

exhibited by the hellion units. 

Figure 11 shows the results of the test with config 1. An increasing fitness can be seen 

throughout the 200 generations until the fitness is maximized. 

Figure 11 shows the results of the test with config 1. An increasing fitness can be seen 

throughout the 200 generations until the fitness is maximized. Similarly, Figure 12 shows the test 

results with config 2. The agent learnt the desired behavior relatively faster as the fitness of the 

best genomes converges to approximately one in just about 100 generations. The average fitness 

also has an increasing trend throughout the 200 generations indicating that a significant 

proportion of the genome population is learning the kiting strategy. 

 

 

 

 

 

 

 

 

 

 

Figure 8: Hellions start to kite Figure 9: Hellions attack while kiting Figure 10: Hellions continue kiting 

Figure 11: Test results of Combat Agent 2 from further 
tests series 2 with config 1 on Hellion V Zealot map with a 
Fitness Function (4) 

Figure 12: Test results of Combat Agent 2 from further 
tests series 2 with config 2 on Hellion V Zealot map with 
a Fitness Function (4) 
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The evolved network looks as follows (Figure 13): 

 

 

Figure 13: Evolved net from training over Hellion V Zealot NEAT map 

NEAT successfully learns the behavior with a small network with only a few hidden nodes. The 

network optimizes for the fitness function and thus does not evolve more should it sufficiently 

build up for obtaining a high reward. 

Overall, we were able to achieve successful results in our further test series because of a few 

additional factors: 

1. Multiple episodes per genome as mentioned in section 3.1.3.1 

2. Increased inputs accounting for the map bounds and the enemy presence. 

3. New configuration setting, namely, the weight range and the weight mutate rate. 

 

For here onwards we refer to the agent that was successfully trained in this section as the 

Trained Agent. In the following tests over, adversarial scenarios we used Config 2 and Combat 

Agent 2 

3.1.4 Evaluation performance of Trained Agent 

This section focuses on evaluating the performance of the Trained Agent that learnt kiting on the 

Hellion V Zealot map. It was imperative to test the robustness of our agent and observe its 

behavior in different adversarial scenarios. Hence, we tested the agent by changing the spawn 

regions, units and engagement strategies respectively. 
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3.1.4.1 Different number of Zealot units 

 

We evaluated the Trained Agent by changing the number of zealots. Our evaluation was done by 

incrementing the number of Zealots from five (the number of zealots in the training). The agent 

performed well even if the zealot units were more than the Hellions. Figure 14 shows the 

remaining hellion units vs increasing zealot units and Figure 15 shows the remaining zealot units 

vs increasing zealot units. As can be seen from the figures, the agents do well even with an 

increasing number of enemy zealot units. Performance goes down due to difficulty of kiting in 

such a restricted space, so it becomes difficult to avoid enemies when their numbers become too 

big.  

          

Figure 15: Remaining number of Zealot units against Number of   

Zealots 

3.1.4.2 Different starting configs 

We modified the standard map (section 3.1.1) to include new spawn regions in addition to the 

left and right regions. Figure 16 shows the map layout. With respect to the center of the map, 

these included: 

Up Down Left 

Diagonal 1 

Left 

Diagonal 2 

Right 

Diagonal 1 

Right 

Diagonal 2 

 

Figure 14: Remaining number of Hellion units against 
Number of Zealots. 
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Figure 16: The layout of the standard map with additional spawn regions used for neuro-evolution tests 

We evaluated the Trained Agent on the new map by randomly spawning the units in the new 

regions. The agent only performed kiting if it was spawned in the left or right regions. In any 

other scenario the agent failed to defeat Zealots. 

3.1.4.3 Different ranged units 

 

Next, we evaluated the Trained Agent by changing the units that it controls. Since it originally 

learnt over the ranged unit, Hellion, we limited ourselves to the ranged unit types in our 

evaluation. The new units used in our evaluation were: 

1. Stalkers - Relatively slower than hellions with a longer attack range 

2. Roaches - Relatively slower than hellions with a small attack range 

 

The learned agent displayed the same kiting behavior. However, performance improved or 

deteriorated based on the difference in speed and range of those units in comparison to hellions 
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using which the network was trained. Therefore, there is a difference in how often the unit 

should attack which affects performance if the same network is reused.  

3.1.4.4 Different engagement strategies 

The Trained Agent was further evaluated with different engagement strategies. Three 

engagement strategies were evaluated: 

1. The agent engages the enemy first. 

2. The enemy engages the agent first. 

3. Both do not engage each other. 

The agent did well only on the first engagement strategy since it was trained using that strategy. 

The other two engagement strategies lead to defeat for the agent in all of the runs. 

3.1.5 Fresh Trainings 

Since our Trained Agent was not performing well if the environment and the conditions were 

changed, we conducted new tests, which are discussed in the following sub section. As 

mentioned previously we continued to use config 2 and Combat Agent 2 over the following 

trainings since our previous trainings showed the best results when they were used. 

3.1.5.1 Different engagement strategies 

Since our evaluation with different engagement strategies failed, we trained the agent using the 

engagement strategy 2 and 3 (section 3.1.4.4), over the same Hellion V Zealot map used in our 

initial and further test sets. (section 3.1.2)  
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Figure 17 shows the results of the training using engagement strategy 2. We can see that the 

average fitness is increasing but it is rather slow as compared to the training with engagement 

strategy 1 which converged to the maximum fitness of one within 100 generations.  

 

Whereas engagement strategy 2 showed some learning within 200 generations, the agent with 

engagement strategy 3 did not learn too much since the two enemy groups do not come into 

contact often enough to accelerate learning. Figure 18 shows that the average fitness in almost 

constant at 0.35. 

After establishing that engagement strategy 1 produced the fastest learning rate for the agent, we 

decided to use the strategy 1 in all subsequent trainings 

 

3.1.5.2 Different self-units 

After training using different engagement strategies, we trained the agent in adversarial scenarios 

by changing the units that the agent controls. 

i. Stalker V Zealot 

The training was done using five Stalker units against five Zealot units. The results are shown in 

Figure 19 

Figure 18: Test results of Combat Agent 2 using config 2 with 
engagement strategy 3 on Hellion V Zealot map with a Fitness 
Function (4) 

Figure 17: Test results of Combat Agent 2 using config 2 with 
engagement strategy 2 on Hellion V Zealot map with a Fitness 
Function (4) 
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Figure 19: Test results of Combat Agent 2 using config 2 with engagement strategy 1 on Stalker V Zealot map with a Fitness 

Function (4) 

 

As seen from the figure, the average fitness increased, and the agent was able to maximize the 

fitness in just about 75 generations. Hence, the agent learnt to kite using Stalkers and was able to 

defeat the Zealots. This kiting was more effective than when the Trained agent was used to 

control Stalkers in section 3.1.4.3 and accounted for the difference in speed and range of the 

stalkers. 

ii. Roach V Zealot 

This training was similar to the Stalker V Zealot except for the self-units which were Roaches in 

this case. Roaches have a lower attack range and a slower speed as compared to Hellions. This 

combined with the space constraint in the map made it harder for the Roaches to kite properly. 

However, the agent was able to learn the desired results in about 200 generations. Figure 20 

visualizes the results. Once again, this kiting was more effective than when the Trained Agent 

was used to control roaches in section 3.1.4.3 and accounted for the difference in speed and 

range of the roaches. 
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Figure 20: Test results of Combat Agent 2 using config 2 with engagement strategy 1 on Roaches V Zealot map with a Fitness 

Function (4) 

iii. Zealot V Hellion 

This training switched the ranged and melee units between the agent and the in-game AI. The 

agent now controlled Zealots against the scripted Hellions. The ideal strategy would be to head 

on attack Hellions since they are weak if they are not properly kited. The agent quickly learnt the 

desired strategy and charges and attacks the ranged enemy units as can be seen from Figure 21. 

The in-game AI does not know how to kite and therefore loses against the melee units if they 

engage. 
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Figure 21: Test results of Combat Agent 2 using config 2 with engagement strategy 1 on Zealot V Hellion map with a Fitness 

Function (4) 

3.1.6 Generalization Trainings 

After achieving successful results in the individual trainings, we worked towards generalizing 

our previously Trained Agent from (section 3.1.3.4) over different environmental conditions. In 

the subsequent trainings we used config 2, combat agent 2 and engagement strategy 1. We hoped 

for our Trained Agent to retain the previously learnt strategies and additionally learn new 

strategies according to the units in play. Our attempts to generalize the agent included the 

following: 

3.1.6.1 Trained Agent over Stalker V Zealot 

The Trained Agent was retrained on the Stalker V Zealot map. Figure 22 shows the result of the 

training over 400 generations. It can be clearly seen that the average fitness remains constant 

without decreasing and the best genome continues to perform well over the new setting.  

The new agent was evaluated over the Hellion V Zealot map and the Stalker V Zealot map and it 

performed optimally on both of them. It achieved a high level of micro in both scenarios and 

therefore we manage to get a single network that performed well on different types of ranged 

units.  
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Figure 22: Test results of Trained Agent using config 2 with engagement strategy 1 on Stalker V Zealot map with a Fitness 

Function (4) 

3.1.6.2 Trained Agent over Cycling maps 

A new set of cycling maps were developed. These maps changed the units in play every time it 

was reset. Below is a list of the maps with the unit details: 

Map Self-Units Enemy-Units 
Micromanagement 

Strategy 

Cycling enemy 

melee units 
5 Hellions 

5 Zealots, 10 

Zerglings, 5 

Ultralisks 

Kiting 

Cycling enemy 

melee and ranged 

units 

5 Hellions 5 Zealots, 5 Roaches 

Kiting against Zealots 

and Stutter Stepping 

against Roaches 

Cycling enemy 

melee and self 

ranged units 

5 Hellions, 5 

Stalkers, 5 Roaches 

5 Zealots, 10 

Zerglings, 5 

Ultralisks 

Kiting 

Cycling self ranged 

units 

5 Hellions, 5 

Stalkers, 5 Roaches 
5 Zealots Kiting 

Cycling self melee 

and ranged units 
5 Hellions, 6 Zealots 5 Zealots 

Kite with Hellions, 

Engage with Zealots 
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The agent failed to learn optimally over any of the cycling maps. This may be because the 

network does not get enough training time to learn any one particular strategy due to the high 

frequency of change in training scenarios. This could also be due to insufficient amount of 

information provided by inputs. In the next section we discuss a new combat agent that we 

developed to attempt to solve this. 

3.1.6.3 Refined Combat Agent 

i. Inputs 

Refined Combat Agent had inputs in addition to the Combat Agent 2. These additional inputs 

accounted for the unit speeds, weapon ranges and their types. Below is the list of the inputs. For 

details of these inputs please refer to DEV-3.4.3.3-41. 

Current hp Weapon cooldown Enemy in range Previous command 

North bound South bound West bound East bound 

North West 

enemy presence 

North East enemy 

presence 

South West 

enemy presence 

South East enemy 

presence 

In enemy range Self-unit type Enemy unit type Self-weapon range 

Enemy weapon 

range 

Self-Movement 

Speed 

Enemy 

Movement Speed 
 

 

ii. Outputs 

The outputs were the same as used in Combat Agent 1 and 2: 

1. Fight/Flee - boolean 

2. Displacement in x 

3. Displacement in y 

iii. Hellion V Zealot 

To validate our new inputs, we first trained the new agent on the Hellion V Zealot map from 

which we previously got our Trained Agent (section 3.1.3.4) with combat agent 2. The new 

agent was rather slow to maximize the fitness and in the first 200 generations it was only able to 

maximize the fitness to 0.65. Figure 23 shows the results of the training for the first 200 



P a g e  37 | 83 

 

generations. Since the fitness was not maximized we continued the training for another 200 

generations as shown by Figure 24. After training for a further 200 generations the agent was 

close to maximizing the fitness. Hence, it was proven that the new inputs help the agent achieve 

the desired result and the agent learnt to perform kiting to win the battle every time. However, 

due to an increase in the inputs it took more generations to learn.  

 

Figure 23: Test results of first 200 generation of Refined Combat Agent using config 2 with engagement strategy 1 on Hellion V 
Zealot map with a Fitness Function (4) 

 

Figure 24: Test results of the continued 200 generation of Refined Combat Agent using config 2 with engagement strategy 1 on 
Hellion V Zealot map with a Fitness Function (4) 
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This same network was further trained on the Stalkers vs Zealot map. The fitness was 

maintained, and the newly evolved network learnt optimal kiting strategies for both hellions and 

stalkers. The results are left out for sake of brevity.  

 

Similarly, the same network was further trained by switching the units such that the agent now 

controlled zealots against AI hellions. Figure 25 shows the training. Upon evaluation, it was 

observed that the network learnt to attack head-on with the zealots to win the battle consistently. 

However, when re-evaluated using Hellion units, it no longer knew how to kite and kept losing. 

 

Figure 25: Test results of the continued training of Refined Combat Agent using config 2 with engagement strategy 1 on Zealot V 

Hellion map with a Fitness Function (4) over Trained Agent 

iv. Cycling maps 

Since our previous cycling map tests failed to generalize the agent over different unit matchups, 

we ran training on the Refined Combat Agent with enhanced inputs. However, the results were 

not very different than our previous attempt. The agent failed to learn multiple strategies for 

different types of units and failed to generalize. This may once again be attributed to lack of 

training time against any one-unit matchup due to the high frequency of change. For example, in 

a map where Hellions played against cycling Zerglings and Zealots the agent learnt to just attack 

head on and perform no kiting. This would work for Zerglings (which had low health) but not for 

Zealots. 
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However, some learning was observed for the case of cycling self-ranged units. Figure 26 shows 

the training progress. The agent learnt to kite with the different self-ranged units. However, this 

kiting was sub-optimal and not as perfect as the networks which were trained independently on 

those ranged separately. 

 

 

Figure 26: Test results of the continued training of Refined Combat Agent using config 2 with engagement strategy 1 on Cycling 

Self map with a Fitness Function (4) over Trained Agent 

3.1.6.4 Hetero-Combat Agent 

So far, we have been training the agent to learn to micromanage homogenous units (all of our 

units were of the same type). We had successful results whenever the agent was trained 

individually against different units. In situations where the units over which the agent had learnt 

the strategy were changed the agents performed sub optimally even though the overall behavior 

was maintained. 

In this section, we focus on our attempts to micromanage heterogenous units (our controlled 

units are of different types). The control logic for the units after working out available unit types 

is in a cycle: 

1. Select unit group. 

2. Retrieve inputs with respect to that unit group and give a fight or flee command 

3. Repeat step 1 and 2 for the next unit group 
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i. Inputs 

We mention the inputs below. For a detailed understanding of the inputs you may refer to (DEV-

3.4.4.3-41) 

Current hp Weapon cooldown Enemy in range  Previous command 

North bound South bound West bound East bound 

North West 

enemy presence 

North East enemy 

presence 

South West 

enemy presence 

South East enemy 

presence 

In enemy range Self-unit type Enemy unit type Self-weapon range 

Enemy weapon 

range 

Self-Movement 

Speed 

Enemy 

Movement Speed 

Distance to Enemy 

 

 

ii. Outputs 

The outputs were the same as used in Combat Agent 1, 2 and Refined Combat Agent: 

1. Fight/Flee - boolean 

2. Displacement in x 

3. Displacement in y 

 

iii. Hellion and Stalker V Zealot 

We modified the standard map (section 3.1.1) to develop a map for our test. In this new map the 

agent controlled three hellion units and three stalker units against eight scripted zealot units. 

We first attempted to use our already trained networks together to control the heterogenous army 

i.e. we used the trained agent for StalkersVsZealots for controlling the Stalkers and the trained 

agent for HellionsVsZealots for controlling the Hellions. However, the two networks working 

together did not manage to produce successful results. This was mainly due to the fact that the 

enemy was now responding differently to being faced with two types of independently controlled 

units. This response was significantly different to the enemy response during the training of the 

networks and so the networks could not accommodate for it. In addition, the individual networks 

were trained on the assumption that the network would be able to command the units at each 

step. However, due to the control logic of the Hetero Combat Agent, the network is only able to 
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command the same unit group every third step. This affects the preciseness of the micro-control 

leading to poor results. 

Due to the failure of the multiple network control we decided to train the agent (so that one 

network would be responsible for controlling both types of units). This was run on the new map 

for 1000 generations. Figure 27 shows the results of the last 300 generations of the training. No 

concrete learning was seen, and the agent failed to increase the fitness.  This was the last test that 

we conducted for neuro-evolution. 

 

Figure 27: Test results of the last 300 generation of Hetero Agent using config 2 with engagement strategy 1 on Hellion and 

Stalker V Zealot map with a Fitness Function (4) 

3.2 Reinforcement Learning. 

This section discusses the testing and evaluations for reinforcement learning. In our project we 

used the Sarsa (𝜆) reinforcement learning approach. This approach is described in detail at 

(DEV-3.4.4.1-44).   

3.2.1 Map Specificaiton 

The standard map used in Sarsa tests is larger than the one used in neuro-evolution tests. This is 

due to the fact that we have used Python SC2 (DEV-3.4.4.2-45) for sarsa which allows the agent 

to obtain observations from the entire map instead of just being bounded by the camera. Hence, 

the map had dimensions of 128 x 128. The standard map had two players, Player 1 controlled by 
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the sarsa agent and Player 15 controlled by the in-game AI. An episode is started at the start of 

the map which is reset each time any of the players loses all of its units. Since the map is huge, 

some of the episodes would last very long without any progress as the units will go to the 

opposite corners of the map and stay there. Therefore, we added a reset timer of 60 seconds 

which resets the whole map if no unit is killed before the timer expires. The choice of the 

duration of the reset timer was arbitrary as in normal adversarial scenarios at least a unit is killed 

within 60 seconds. We modified the units for the standard map for various tests as per the 

requirement. As before, we removed the auto attack feature to remove any unfair advantage for 

the Sarsa agent. A list of maps developed for sarsa tests can be found at (DEV-3.4.5.3-52) 

3.2.2 States 

Sarsa agent requires states to abstract the required information. Details about the state definition 

can be found at (DEV-3.4.4.3-46). Below we mention the state definition briefly for reference: 

1. Unit Type of currently selected unit group 

2. Unit Type of closest enemy to currently selected unit group 

3. Distance to closest enemy 

4. Scaled Relative Power  

5. Weapon On Cooldown 

6. Is Together 

3.2.3 Reward Functions 

The reward is calculated and used for learning at each step as follows: 

𝑟𝑒𝑤𝑎𝑟𝑑 =  𝑑𝑎𝑚𝑎𝑔𝑒−𝑑𝑒𝑎𝑙𝑡 − 𝑑𝑎𝑚𝑎𝑔𝑒−𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ∗  (1 − 𝑎𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 

The value of aggression can be set before training is launched and is mentioned when reporting 

results in the following sections. 

3.2.4 Parameters 

To drive the learning of Sarsa agent we are required to set a few parameters. Details about these 

parameters can be found at DEV-3.4.4.3-47: 
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Learning rate 𝜶 Reward decay/Discount 

Factor 𝜸 

Trace decay 𝝀 Epsilon 𝜺 

0.05 0.9 0.9 0.5 – 0.95 

 

3.2.5 Homogenous Units 

3.2.5.1 Hellion V Zealot 

i. Unit details 

Hellion: Ranged unit with a fast speed. However, it has a low armor and health which requires it 

to be microed effectively. 

Zealots: Melee unit with a relatively slower speed but a very strong attack. At a close-range 

Zealots can defeat Hellions with ease. 

The map consisted of 7 Hellions controlled by the agent and 10 Zealots, controlled by the 

scripted in-game AI. 

ii. Optimal Strategy 

To win, the optimal strategy for Hellions is to kite against the relatively slower Zealots as 

mentioned in section 3.1.3.4. Hellions can use their faster speed to their advantage to stay out of 

the range of Zealots while attacking them. 

iii. Results 

The results were successful. The agent was able to learn the micromanagement strategy of kiting 

optimally. Figure 28 shows the results of the training. It only took the agent 600 episodes of 

training to learn the strategy, after which the reward remains stable near the maximum value.  
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Figure 28: Test results of Sarsa Agent on Hellion V Zealot map 

A similar training was launched in which the Hellions were switched to Stalkers. An optimal 

kiting strategy was learnt once more but the results are not reported here for sake of brevity. 

3.2.5.2 Marine V Baneling 

i. Unit details 

Marine: Ranged unit with a medium speed. It can make use of kiting to defeat weak melee units. 

Baneling: It is a fast unit with a very short attack range that involves exploding. However, it 

causes splash damage to groups of units by suicide bombing. 

The map consisted of 25 Marines controlled by agent against 26 scripted Banelings. 

ii. Optimal Strategy 

In this map instance it is very hard for the Marines to win against the Banelings as Marines are 

slower than the Banelings. Marines can only do maximum damage when they attack in groups, 

however, the whole group can be killed by a single blasting Baneling. Hence, in this case it 

would be ideal for the Marines to scatter and receive the damage individually instead of in 

groups. 

iii. Results 

The results were successful for this test as well. Since the optimal strategy was difficult to 

discover, it took about 25000 episodes for the agent to learn. The results are shown in Figure 29. 
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As mentioned, the agent demonstrated the scattering behavior to disperse the Banelings and take 

the damage individually. Figure 30-31 and 32-33 show the initial positioning of the Marines and 

the scattering behavior respectively.  

 

Figure 29: Test results of Sarsa Agent on Marine V Baneling map 

 

 

Figure 30: Initial positioning of Marines on Marine V Baneling map 
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Figure 31: Minimap view of the situation in fig 30. Green dots are Marines, White dots are Banelings 

          

 

 

 

 Figure 32: Optimal Strategy of scattering Marines performed by 
Sarsa Agent on Marine V Baneling map 
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3.2.5.3 Zergling V Marine 

i. Unit details 

Zergling: A fast melee unit with a very low health. 

Marine: Ranged unit with a medium speed. It can make use of kiting to defeat weak melee units. 

This map consisted of 30 Zerglings controlled by agent against 15 Marines. 

ii. Optimal Strategy 

Although Zerglings are low in health, an army of Zerglings can easily defeat a much stronger 

ranged unit by head on attacking strategy. Hence, it will be ideal to surround the Marines and 

attack them. 

iii. Results 

Since the optimal strategy was straightforward the agent was able to learn it in about 250 

episodes of training. Figure 34 shows a fast-increasing reward up to 250 episodes until it 

maximizes and remains constant for the subsequent episodes. This agent was the fastest learning 

agent so far in our sarsa trainings. Figure 35-36 shows the initial positioning of the Zerglings and 

Figure 37-38 shows the optimal strategy of attacking and surrounding the Marines. 

Figure 33: Minimap view of the situation in fig 32. 
Green dots are Marines, White dots are Banelings 
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Figure 34: Test results of Sarsa Agent on Zergling V Marine map 

 

Figure 35: Initial positioning of Zerglings on Zergling V Marine map 

 

 

Figure 36: Minimap view of the situation in fig 35. Green dots are Zerglings, White dots are Marines 
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Figure 37: Optimal Strategy of attacking and surrounding Marines performed by Sarsa Agent on Zergling V Marine map 

 

 

Figure 38: Minimap view of the situation in fig 37. Green dots are Zerglings, White dots are Marines 
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3.2.6 Heterogenous Units 

After successful results with Homogenous units, we decided to move further and test whether the 

Sarsa agent can learn over Heterogenous scenarios. Our first priority was to tackle the scenario 

which failed in NEAT as elaborated on in section 3.1.6.4 

3.2.6.1 Hellion and Stalker V Zealot 

Here we used the same settings as the NEAT test. However, the agent failed to learn any 

significant strategy. We believe that this was due to the space constraint and since we were using 

Python-SC2 for Sarsa tests, we had the freedom of using a bigger map. hence, we shifted our 

training to the standard 128 x 128 Sarsa map (DEV-3.4.5.3-53). 

i. Optimal Strategy 

The optimal strategy here would be to kite both Stalkers and Hellions. Since Stalkers and 

Hellions have different speeds, it would be ideal to kite in different directions and break the 

Zealots into two groups 

 

ii. Results 

The results were finally very encouraging as the agent learnt the optimal strategy. Figure 39 

shows the increasing trend in the reward that the agent was able to retrieve. Figure 40-41 show 

the initial positioning of the units and then Figure 42-43 shows the instance where Hellions and 

Stalkers separate the Zealots into two groups. 
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Figure 39: Sarsa Agent on Hellion and Stalker V Zealot 

 

 

 

Figure 40: Initial positioning of Hellion and Stalkers on Hellion and Stalker V Zealot 

 

Figure 41: Minimap view of the situation in fig 40. Green dots are Hellions and Stalkers, White dots are Zealots 
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Figure 42: Optimal Strategy of kiting in different directions performed by Sarsa Agent on Hellion and Stalker V Zealot 

 

Figure 43: Minimap view of the situation in fig 42. Green dots are Hellions and Stalkers, White dots are Zealots 
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3.2.6.2 Zergling and Roach V Baneling and Immortal 

i. Unit details 

Zergling: A small and fast melee unit. An army of Zerglings can easily defeat a much stronger 

ranged unit by head on attacking strategy. 

Roach: Medium ranged unit with a slow speed. However, they have large health values and high 

damage. 

Baneling: It is a fast unit with a very short attack range. However, it causes splash damage to 

groups of units by suicide bombing. 

Immortal: It has a large attack range with a powerful attack. Additionally, it has a strong armor 

and shield. 

The agent controlled 25 Zerglings and 6 Roaches against 7 Banelings and 4 Immortals controlled 

by the scripted in-game AI 

ii. Optimal Strategy 

The optimal play would be to pull back the Zerglings at the start of the match and defeat 

Banelings with Roaches, since Zerglings have a low health which will not be able to sustain the 

splash damage from the Banelings’ bombing. After the Banelings are killed, it is best to attack 

Immortals with the fast moving Zerglings since they are the most effective in head on attack 

against ranged units. Additionally, the Immortals are strong against Roaches and so the Zerglings 

should attract their attention before the Roaches engage. 

iii. Results 

This training was an attempt to train the sarsa agent to control heterogenous units in complicated 

scenarios. The optimal strategy was a complicated one, however, Figure 44 shows that the agent 

was able to improve the reward over episodes until it was maximized. Therefore, the training 

was a success. Figure 45 shows the instance of pulling the Zerglings back while Roaches face 

Banelings and Figure 46 shows the instance of Zerglings pushing to attack the Immortals once 

the Banelings are killed 
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Figure 44: Test results of Sarsa Agent on Zergling and Roach V Baneling and Immortal 

 

Figure 45: Optimal Strategy of pulling back Zerglings performed by Sarsa Agent on Zergling and Roach V Baneling and Immortal 

 

Figure 46: Optimal Strategy of engaging Immortals with Zerglings performed by Sarsa Agent on Zergling and Roach V Baneling 
and Immortal 
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3.2.6.3 Banshee and Marine V Corruptor and Ultralisk 

i. Unit details 

Banshee: It a flying unit which can only attack ground units. In a group it can prove to be very 

deadly for ground units 

Marine: Ranged unit with a medium speed. It can make use of kiting to defeat weak melee units. 

Corruptor: Air unit with a strong anti-air capability. However, it has a slow speed which makes 

it difficult to evade fast moving ground to air units. 

Ultralisk: A powerful melee unit with massive health and splash damage capability.  

The agent controlled 7 Banshees and 30 Marines against 9 Corruptors and 6 Ultralisks controlled 

by the scripted in-game AI. 

ii. Optimal Strategy 

Since Banshee cannot attack air units, the optimal strategy would be to pull back Banshees as the 

Corruptors approach. The Marines can then engage Corruptors, who cannot engage the ground 

units in return. Once Corruptors are killed, the Marines should engage the Ultralisks by 

scattering to avoid the splash damage. Simultaneously, Banshees should move in to support 

Marines and attack the Ultralisks. 

 

iii. Results 

The agent successfully learnt this complex strategy with heterogeneous units as well. Figure 47 

supports the claim as the reward increases until it is maximized. Figure 48 shows the instance 

when Banshees are pulled back to save them from Corruptors and the Marines engaging 

Corruptors. The optimal strategy of scattering before engaging the Ultralisks by Marines is 

shown in Figure 49. Later in Figure 50 we can see Banshees engaging Ultralisks to support the 

Marines since the air threat is now neutralized. 
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Figure 47: Test results of Sarsa Agent on Banshee and Marine V Corruptor and Ultralisk map

 

Figure 48: Optimal Strategy of pulling Banshee back performed by Sarsa Agent on Banshee and Marine V Corruptor and Ultralisk 
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Figure 49: Optimal strategy of scattering Marines before engaging Ultralisks perfomred by SARSA agent on Banshee and Marine 
V Corruptor and Ultralisk 

 

Figure 50: Optimal Strategy of engaging Ultralisks with Banshees to support Marines performed by Sarsa Agent on Banshee and 
Marine V Corruptor and Ultralisk map 
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3.2.7 End to End Game 

After encouraging results with the Sarsa agent for self-contained micromanagement scenarios we 

attempted to transfer it to the end-to-end StarCraft II game where two players must build up their 

armies and then destroy the opponents base. Details of development can be found in the 

development report at DEV-3.4.4.3-47. 

The training was launched against different difficulty levels on the Simple64 StarCraft II map. 

However, results were not very substantial. Figure 51 shows the progress of training for the bot 

on the medium difficulty. Unfortunately, training times are significantly longer than in previous 

cases due to each game lasting at least five minutes even after being sped up. This means that 

due to time limitations we were not able to run enough games for true learning to emerge. The 

wins can be attributed to creating a very large enemy that the enemy cannot contest against rather 

than good micro. However, we are confident that should the training be run for sufficient number 

of games good micro behavior should emerge.  

 

 

Figure 51: Test results of Sarsa Micro Agent on Simple 64 map in End to End game on Medium difficulty 
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4 Analysis 

In this section, we comment on the success and shortcomings of our implemented approaches. 

4.1 Neuro-Evolution 

We first applied the neuroevolutionary approach with the NEAT algorithm on micromanagement 

scenarios. Specifically, we attempted to evolve networks that could learn the appropriate fighting 

strategy in a ranged vs melee matchup or vice versa.  

The neuroevolutionary approach successfully evolved a micro-controller that achieved the 

desired behavior of kiting/hit-and-run in the case of the ranged vs melee matchup (section 

3.1.3.4) and achieved results comparable to [3]. Figure 52 and 53 indicates the strength and skill 

of the evolved control which maintains good scores even as enemy units are increased. This 

behavior is impressive considering the fact that the map area is very restricted and thus requires 

very precise micro-control. In addition, even the in-game scripted Elite level AI for ranged units 

does not know how to hit-and-run and that behavior must be separately hard coded when making 

AI bots. 

 

 

 

 

 

 

 

 

 

These networks become more robust to changing conditions if they are incorporated into the 

training process. For example, incorporating changing starting configurations into the training 

process means the evolved network learns to perform well regardless of where units are spawned 

Figure 52:  Remaining Zealots against Number of Zealots in 
battles against Hellions, Stalker and Roaches. 

Figure 53:  Remaining Ranged Units against 
Number of Zealots in battles against Zealots. 
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on the map. Similarly, if an evolved network for one ranged unit (for example Hellion) is further 

trained for another ranged unit (for example Stalker) then the newly evolved network learns the 

optimal strategy for both (section 3.1.6.1).  

Optimal behavior is evolved fairly quickly, and a successful controller is generally achieved 

within a hundred generations with the restricted input set as used in Combat Agent 2 (section 

3.1.3.2) as shown in figure 54.  

 

Figure 54: Approximate number of generations to get stable optimal performance of Combat Agent 2 input set 

 

Similarly, the neuroevolutionary approach successfully evolved a micro-controller that achieved 

the desired behavior of attacking head-on in the case of the melee vs ranged matchup (section 

3.1.5.2 (iii)). The evolved melee units consistently win because the in-game AI for ranged units 

does not know to kite even when set to an Elite difficulty level. 

Ranged vs Ranged matchup was not emphasized during testing and evaluation since that relies 

more on unit matchups than good micro-strategy. In the ranged vs ranged matchup, a very 

advanced technique is “stutter-stepping” which means to stay outside the enemy’s firing range 

while using your range advantage to fire. However, this requires very precise control that would 

be unreasonable on a small map. Likewise, the melee vs melee matchup was not emphasized on 

during testing and evaluation since the only evolvable strategy is to attack head-on in which case 

the winner would be whoever managed to get the first hit by chance. Any neural structure 
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mutations evolved during the evolution process would lead to a drop-in performance if it 

prioritized running away for melee units.  

In an attempt to create more robust agents, the input set was extended (section 3.1.6.3). The 

agent once again relearnt all the scenarios with the reduced set albeit at cost of an increased 

training time. However, no significant improvement was seen. The evolved network couldn’t 

learn a strategy that would be optimal for controlling both ranged and melee units. On maps with 

cycling units, most trainings failed. However, in the case of training during which we cycled 

between different types of ranged units for itself (Hellions, Stalker, Roaches), the agent learnt 

kiting behavior though at a suboptimal level (section 3.1.6.3 (iv)).  

This extended input set was applied to scenarios in which we controlled different types of units 

concurrently with the Hetero-Combat Agent (section 3.1.6.4). However, the agent couldn’t learn 

a successful strategy even after a thousand generation training. This could be attributed to the 

process of selecting and commanding units’ groups one after another being too complicated for 

NEAT to handle especially on such a small map. 

The neuroevolutionary approach managed to learn precise micro with rather sparse networks. 

The evolutionary process just optimizes for the fitness function. Starting from small networks 

and gradually introducing complications means that simple effective networks are evolved with a 

reduced search space which decreases the time needed to find an optimal solution. In addition, 

for the neuro-evolutionary approach one does not need to define the neural network structure 

before-hand and the best structure is discovered over time.  

However, this approach is not without its faults and limitations. The simple networks evolved do 

not generalize too well and are sensitive to training conditions with performance drops if the 

conditions (such as map size) change. To transfer these networks to the full end-to-end StarCraft 

II game would be a significantly hard challenge because of the increase in diversity and 

complexity. It would take a significantly longer time to evolve large enough networks that could 

hope to perform competently in such complex scenarios. This increase in training times could 

however be reduced by parallelizing the training across a large enough distributed computational 

cluster since the neuroevolutionary approach is trivial to massively parallelize. 
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The neuro-evolutionary approach through NEAT overcomes some of the issues that are inherent 

in temporal difference RL algorithms such as Sarsa(𝜆). The training process isn’t as sensitive to 

the size of the state space in comparison to Sarsa. Furthermore, the evaluation of actions taken in 

a game are done using the accumulated reward at the end of the game episode and not at each 

game step as is the case with TD algorithms. This helps avoid the issue of delayed reward for 

actions which is particularly useful for games like StarCraft II with long reward horizons. In 

addition, TD algorithms require an initial period of exploration where reward is received 

infrequently. Neuroevolutionary approaches on the hand do not require the period of exploration 

and can optimize towards the fitness function from the beginning of the training. 

Traditionally, gradient-descent methods with backpropagation have been popular for machine 

learning applications. Neuro-evolutionary algorithms like NEAT present an alternative approach. 

In particular, these approaches are well-suited to control problems and can be simulated (making 

video games a well-suited test environment for them) as one can just define a suitable fitness 

function that defines good behavior in the simulation. It is harder to apply gradient-descent based 

supervised learning to the same problems because of the difficulty of generating a dataset that 

defines good behavior in that environment. In addition, neuroevolutionary approaches have been 

shown to converge much faster to a solution. [2] demonstrates how deep neuro-evolution can be 

used to achieve high quality results on the ATARI platform in around 4 hours for a desktop in 

comparison to the several days of training needed with a deep reinforcement learning algorithm 

such as Deep Q-Learning. We planned to experiment and compare the performance of NEAT 

against a Multi-layer perceptron-based reinforcement learning algorithm such as DQN but were 

unable to do it due to lack of time. 

4.2 Reinforcement Leanring with Sarsa (𝝀) 

After exploring NEAT, we applied reinforcement learning with a temporal difference algorithm 

known as Sarsa (𝜆). Specifically, we attempted to apply it to a wider variety of 

micromanagement scenarios than was possible with our implementations for NEAT agents 

because of shifting from PySC2 to Python-SC2 framework. 

The Sarsa agent successfully managed to learn optimal strategies in all of the micromanagement 

scenarios that were tested. To roughly compare against the tasks that the NEAT agent worked 

on, the Sarsa agent was first trained on a homogenous ranged vs melee matchup (Hellions vs 
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Zealots) on a larger map (section 3.2.6.1). The agent effectively achieved the desired behavior of 

kiting/hit-and-run. 

Following this, the Sarsa agent was tested in scenarios in which it had to learn more creative 

micromanagement strategies. In the Marines vs Banelings scenario, the agent learnt to scatter the 

marines wide before engaging the enemy in order to avoid the massive area-of-effect damage of 

the Banelings (section 3.2.5.2). Similarly, in the Zerglings vs Marines scenario, the agent learnt 

to rush and attack the enemy head-on with the Zerglings (section 3.2.5.3). 

NEAT was unable to learn on a heterogenous army composition (our army consists of different 

types of units) due to a combination of limitations of the PySC2 framework and NEAT itself. 

The Sarsa agent successfully managed to learn strategies when applied to the hetero scenarios. It 

not only learnt which of our units are strong against which of the enemy units but also learnt the 

timing for when to engage which enemy unit. This is impressive considering it takes human 

players experience to learn these nuanced behaviors that are not obvious at first observation. For 

example, in the Zerglings and Roaches vs Bane lings and Immortals scenario (section 3.2.6.2) 

the agent learns to first make the Zerglings retreat to avoid the Bane lings splash damage and 

engage with Roaches. Then once the Banelings are destroyed, the agent sends in the Zerglings to 

fight the Immortals before sending in the Roaches. By performing these maneuvers, it wins the 

battle through good micromanagement. Had it just engaged all units head-on it would have lost. 

Other hetero scenarios are mentioned in section (3.2.6).  

The learnt behavior is obtained in a reasonable amount of time in the space of a few hours 

quicker than the non-parallelized training for NEAT (this may however be attributed to the fact 

that a tabular representation is used instead of a neural net). However, the tabular representation 

used for Sarsa (𝜆) has its drawbacks. The tabular representation means that the agent fails to 

perform optimally if it ever encounters a state it has not been trained on. This makes it harder to 

transfer to a full end-to-end game which consists of many variations in unit compositions for 

ourselves and the enemy. Nonetheless, it is theoretically still possible to transfer to a full game 

given enough time to train against all possible unit combinations and an effective state 

representation.  

This was attempted towards the end of the project where the agent-controlled micro in an end-to-

end game with scripted macro (section 3.2.7). However, due to lack of time the agent was unable 
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to play enough number of games to learn effective strategies to beat more than the Easy in-game 

AI. The natural next step to solve this issue would be to use a neural network for function 

approximation through deep reinforcement learning as in [4]. In addition, the delayed correlation 

between actions taken and rewards assigned introduces learning difficulties for a temporal 

difference method like Sarsa. The weight of this issue is alleviated through temporal assignment 

with the trace decay parameter in Sarsa(𝜆). 

5 Conclusion 

To conclude, we first discussed the importance of artificial intelligence in the domain of video 

games and vice versa and then went on to discuss the value proposition of using novel machine 

learning approaches such as neuro-evolution and reinforcement learning after an exploratory 

phase. As discussed earlier, StarCraft II is referred to as the next “grand challenge” for AI 

research dealing with issues such as navigation, resourcing, micro-control, incomplete 

information and long-horizon planning to name a few. The complexity of the problems in the 

StarCraft II environment make it an excellent testbed for machine learning approaches. Thus, 

solutions and techniques found to be successfully applied in StarCraft II can be transferred to 

other real-life domains. 

In this project we explored two areas of machine learning - reinforcement learning and neuro-

evolution on micromanagement in StarCraft II. We built and open-sourced a novel framework 

for applying neuro-evolution to StarCraft II using which we built several iterations of our neuro-

evolution agents. The trained neuro-evolution agents successfully learnt precise hit-and-run 

strategies to achieve a significantly high win rate against the in-game AI.  

Subsequently, we implemented the Sarsa(𝜆)reinforcement learning algorithm and applied it to a 

set of diverse micromanagement scenarios requiring more complex strategies. The trained Sarsa 

agents successfully learnt more complex strategies that involved kiting, effective positioning and 

enemy engagement selection and timing. Towards the end of the project, we attempted to 

transfer the Sarsa agent into a full end-to-end game scenario where the agent was in control of 

the micromanagement of the army created by the scripted macro of the bot. It was able to win 

sometimes on the Very Easy and Easy difficulty but consistently lost on the Medium and above 

difficulty. The wins could be attributed to the strength of the size of the army and less so because 

of good micro. However, it should be noted that these results on the end-to-end game were from 
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training on a very small set of games and true learning for a TD learning algorithm would only 

emerge with a large number of games played. Unfortunately, this was not possible due to time 

constraints. 

There are many directions to take in the future to attempt to overcome the drawbacks of the 

approaches used as mentioned in the analysis section. Newer versions of NEAT such as 

rtNEAT[5], HyperNEAT [6] and ES-HyperNEAT [7] may be used. The HyperNEAT variants in 

particular are sensitive to the geometry domain of a problem and thus can also learn from pixel-

based feature inputs rather than handcrafted features. All of the networks that were evolved were 

Feedforward networks modelling all the problems as simple MDPs. However, it may make sense 

to experiment with recurrent networks and LSTMs to accommodate for more long-term strategic 

planning and more complex coordination. A distributed version of the developed NEAT-SC2 

framework can be written to massively parallelize and speed up training. 

The Sarsa agent was able to generate some of these more complex behavior at the loss of being 

able to generalize outside of training conditions. The Sarsa agent can therefore be extended with 

the use of neural nets as function approximators for the action-value pairs as in [4] for an 

application of deep reinforcement learning. This would also make it more equivalent to compare 

against the neuro-evolutionary methods. In addition, all our agents applied actions to groups 

instead of individual units and so it would be interesting to apply multi-agent versions of our 

approaches to see if any interesting behavior emerges. Finally, work can be continued on 

incorporating the Sarsa micro agent into the full end-to-end StarCraft II game by training on a 

larger set of games. 

Our implementations have shown the power and potential of the neuroevolutionary and 

reinforcement learning approaches for complex control problems. Through effective 

experimentation in the StarCraft II environment, one can transfer the findings of the report to 

real-world problems such as evolving effective controllers for robots. Our open-source Neuro-

evolution-StarCraft II training framework along with the extensive testing done with our agents 

establishes neuro-evolution and reinforcement learning as promising machine learning 

techniques in this domain and represents meaningful contributions to the StarCraft II and 

artificial intelligence communities upon which the community may build upon.  
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7 Appendices 

7.1 Glossary 
 

Baneling – Melee unit. Suicide bombing attack. Medium health 

Banshee – Air to ground unit. Medium speed. 

Corruptor – Air to air unit. Slow speed. 

Genome – The set of genes that together code for a (neural network) phenotype.  

Hellion – Fast ranged unit. Splash damage. Low armor and health. 

Heterogenous – One player controls different groups of units at a time. 

Homogenous – One player controls the same group of units at a time. 

Immortal – Ranged unit. Slow speed. Long attack range. Strong armor. 

Kiting – A micromanagement strategy which demonstrates the repetitive behavior of 

attacking the enemy unit and then fleeing. 

Marine – Ranged unit. Medium speed. Medium health 

Micromanagement – Low-level control of individual units in the player’s army 

Melee – A type of unit in SC2 which can attack only if it is near the enemy unit. 

Neuro-Evolution – Artificial Intelligence approach using evolutionary algorithms to 

generate artificial neural network, topology, parameters and rules. 

Ranged – A type of unit in SC2 which can attack the enemy units at a distance from 

themselves. 

Roach – Ranged unit. Medium speed. Medium attack range. High health 

Stalker – Ranged unit. Medium speed. Long attack range. 

Ultralisk – Melee unit. Slow speed. Massive health. 

Zealot – Melee unit. Slow speed. Strong attack. 

Zergling – Melee unit. Fast speed. Low health. 

 

 

 

 

https://neat-python.readthedocs.io/en/latest/glossary.html#term-gene
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7.2 Config File 

7.2.1 Config 1 
#--- parameters for the neat adversarial experiment ---# 

# 2 -2 weight range 

[NEAT] 

fitness_criterion     = max 

fitness_threshold     = 150000 

pop_size              = 150 

reset_on_extinction   = False 

 

[DefaultGenome] 

# node activation options 

activation_default      = clamped 

activation_mutate_rate  = 0.0 

activation_options      = clamped 

# activation_options      = sigmoid gauss relu 

 

# node aggregation options 

aggregation_default     = sum 

aggregation_mutate_rate = 0.0 

aggregation_options     = sum  

 

# node bias options  

bias_init_mean          = 0.0 

bias_init_stdev         = 1.0 

bias_max_value          = 2.0 

bias_min_value          = -2.0 

bias_mutate_power       = 0.8 
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bias_mutate_rate        = 0.4 

bias_replace_rate       = 0.02 

 

# genome compatibility options 

compatibility_disjoint_coefficient = 1.0 

compatibility_weight_coefficient   = 1.0 

 

# connection add/remove rates 

conn_add_prob           = 0.15 

conn_delete_prob        = 0.1 

 

# connection enable options 

enabled_default         = True 

enabled_mutate_rate     = 0.01 

 

# NEEDS TESTING 

feed_forward            = True 

initial_connection      = full 

# initial_connection      = partial_nodirect 0.5 

 

# node add/remove rates 

node_add_prob           = 0.15 

node_delete_prob        = 0.1 

 

# network parameters 

num_hidden              = 0 

num_inputs              = 12 

num_outputs             = 3 
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# node response options 

response_init_mean      = 1.0 

response_init_stdev     = 0.0 

response_max_value      = 2.0 

response_min_value      = -2.0 

response_mutate_power   = 0.01 

response_mutate_rate    = 0.1 

response_replace_rate   = 0.0 

 

# connection weight options 

weight_init_mean        = 0.0 

weight_init_stdev       = 1.0 

weight_max_value        = 2 

weight_min_value        = -2 

weight_mutate_power     = 0.5 

weight_mutate_rate      = 0.8 

weight_replace_rate     = 0.1 

 

[DefaultSpeciesSet] 

compatibility_threshold = 2.5 

 

[DefaultStagnation] 

species_fitness_func = max 

max_stagnation       = 50 

species_elitism      = 4 

 

[DefaultReproduction] 

elitism            = 3 

survival_threshold = 0.3 
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7.2.2 Config 2 
#--- parameters for the neat adversarial experiment ---# 

[NEAT] 

fitness_criterion     = max 

fitness_threshold     = 150000 

pop_size              = 150 

reset_on_extinction   = False 

 

[DefaultGenome] 

# node activation options 

activation_default      = clamped 

activation_mutate_rate  = 0.0 

activation_options      = clamped 

# activation_options      = sigmoid gauss relu 

 

# node aggregation options 

aggregation_default     = sum 

aggregation_mutate_rate = 0.0 

aggregation_options     = sum  

 

# node bias options  

bias_init_mean          = 0.0 

bias_init_stdev         = 1.0 

bias_max_value          = 2.0 

bias_min_value          = -2.0 

bias_mutate_power       = 0.8 

bias_mutate_rate        = 0.4 

bias_replace_rate       = 0.02 

 



P a g e  72 | 83 

 

# genome compatibility options 

compatibility_disjoint_coefficient = 1.0 

compatibility_weight_coefficient   = 1.0 

 

# connection add/remove rates 

conn_add_prob           = 0.04 

conn_delete_prob        = 0.025 

 

# connection enable options 

enabled_default         = True 

enabled_mutate_rate     = 0.01 

feed_forward            = True 

# initial_connection      = full 

initial_connection      = partial_nodirect 0.5 

 

# node add/remove rates 

node_add_prob           = 0.02 

node_delete_prob        = 0.01 

 

# network parameters 

num_hidden              = 0 

num_inputs              = 12 

num_outputs             = 3 

 

# node response options 

response_init_mean      = 1.0 

response_init_stdev     = 0.0 

response_max_value      = 2.0 

response_min_value      = -2.0 
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response_mutate_power   = 0.01 

response_mutate_rate    = 0.1 

response_replace_rate   = 0.0 

 

# connection weight options 

weight_init_mean        = 0.0 

weight_init_stdev       = 1.0 

weight_max_value        = 3 

weight_min_value        = -3 

weight_mutate_power     = 0.5 

weight_mutate_rate      = 0.95 

weight_replace_rate     = 0.1 

 

[DefaultSpeciesSet] 

compatibility_threshold = 2.5 

 

[DefaultStagnation] 

species_fitness_func = max 

max_stagnation       = 50 

species_elitism      = 4 

 

[DefaultReproduction] 

elitism            = 3 

survival_threshold = 0.3 
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7.2.3 Refined Combat Agent Config  
#--- parameters for the neat adversarial experiment ---# 

[NEAT] 

fitness_criterion     = max 

fitness_threshold     = 150000 

pop_size              = 150 

reset_on_extinction   = False 

 

[DefaultGenome] 

# node activation options 

activation_default      = clamped 

activation_mutate_rate  = 0.0 

activation_options      = clamped 

# activation_options      = sigmoid gauss relu 

 

# node aggregation options 

aggregation_default     = sum 

aggregation_mutate_rate = 0.0 

aggregation_options     = sum  

 

# node bias options  

bias_init_mean          = 0.0 

bias_init_stdev         = 1.0 

bias_max_value          = 2.0 

bias_min_value          = -2.0 

bias_mutate_power       = 0.8 

bias_mutate_rate        = 0.4 

bias_replace_rate       = 0.02 
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# genome compatibility options 

compatibility_disjoint_coefficient = 1.0 

compatibility_weight_coefficient   = 1.0 

 

# connection add/remove rates 

conn_add_prob           = 0.04 

conn_delete_prob        = 0.025 

 

# connection enable options 

enabled_default         = True 

enabled_mutate_rate     = 0.01 

feed_forward            = True 

# initial_connection      = full 

initial_connection      = partial_nodirect 0.5 

 

# node add/remove rates 

node_add_prob           = 0.02 

node_delete_prob        = 0.01 

 

# network parameters 

num_hidden              = 0 

num_inputs              = 18 

num_outputs             = 3 

 

# node response options 

response_init_mean      = 1.0 

response_init_stdev     = 0.0 

response_max_value      = 2.0 

response_min_value      = -2.0 
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response_mutate_power   = 0.01 

response_mutate_rate    = 0.1 

response_replace_rate   = 0.0 

 

# connection weight options 

weight_init_mean        = 0.0 

weight_init_stdev       = 1.0 

weight_max_value        = 3 

weight_min_value        = -3 

weight_mutate_power     = 0.5 

weight_mutate_rate      = 0.95 

weight_replace_rate     = 0.1 

 

[DefaultSpeciesSet] 

compatibility_threshold = 2.5 

 

[DefaultStagnation] 

species_fitness_func = max 

max_stagnation       = 50 

species_elitism      = 4 

 

[DefaultReproduction] 

elitism            = 3 

survival_threshold = 0.3 

 

 

 



7.3 Tables 
 

Table 1: A Summary of notable tests executed using NEAT on Move To Beacon mini game 

Test 

ID 

Inputs 

Type 

Inputs Definition Outputs Fitness Function Random 

exploration, 

Network 

Type, Config 

details 

Gene

ratio

ns 

Results 

1 Pixel 1024 inputs 

Pixel values 

 

2 outputs 

1. Displacement

_x 

2. Displacement

_y 

Fitness function (2) 

Beacon_weight = 5 

Distance_weight = 1 

Feedforward 

network 

No Random 

Exploration 

300 No learning observed for the majority. Marine just 

picks one direction and gets stuck at the edge of 

the map. 

Few genomes learn the oscillation strategy but to 

much less effectiveness. 

2 Pixel 256 inputs 

Pixel values 

 

2 outputs 

1. Displacement

_x 

2. Displacement

_y 

Fitness function (2) 

Beacon_weight = 10 

Distance_weight = 

0.5 

Recurrent 

Network 

2a) 16 

 

2b) 

160 

2a) First run terminated at 16 gens with a genome 

somehow reaching 4 beacons. Winner pickle can't 

replicate results. It seems some of them 

understand to approach the first beacon directly. 

2b) Some genomes managed to pick up 3 beacons 

but results cant be replicated and the 3 beacons 

may have been picked up by chance. However, in 

training it was observed some genomes 
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understood to directly go for for beacon when it 

first spawned but do no subsequently go for the 

other ones. No oscillation behaviour observed. 

3 Pixel 1024 inputs 

Pixel values 

 

2 outputs 

1. Displacement

_x 

2. Displacement

_y 

Fitness function (1) Feedforward 

network 

No Random 

Exploration 

300 No learning observed for the majority. Marine just 

picks one direction and gets stuck at the edge of 

the map. 

Few genomes learn the oscillation strategy but to 

much less effectiveness. 

4 Pixel 4096 inputs 

Pixel values 

 

2 outputs 

1. Displacement

_x 

2. Displacement

_y 

Fitness function (1) Feedforward 

network 

No Random 

Exploration 

300 No learning observed. Marine just picks one 

direction and gets stuck at the edge of the map. 

5 Handcr

afted 

4 Inputs - Scaled [0,1] 

1. Player_x 

2. Player_y 

3. Beacon_x 

4. Beacon_y 

2 outputs 

1. Displacement

_x 

2. Displacement

_y 

Fitness function (2) 

Beacon_weight = 5 

Distance_weight = 1 

 

Feedforward 

network 

No Random 

Exploration 

 

500 The majority of “good genomes” that achieved 

scores of 15+ (meaning 2 beacons and some 

distance reward) had the same policy - just move 

left and right on a wide range from the starting 

position. 

A valid policy would be to approach the same y as 

beacon center and then oscillate but none seemed 

to have learnt that. 
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Some odd ones stand around and do nothing while 

the rare one stops right next to the beacon and 

does not take it. 

6 Handcr

afted 

4 Inputs - Scaled [0,1] 

1. Player_x 

2. Player_y 

3. Beacon_x 

4. Beacon_y 

2 outputs 

1. Displacement

_x 

2. Displacement

_y 

Fitness function (2) 

Beacon_weight = 5 

Distance_weight = 1 

Feedforward 

network 

No Random 

Exploration 

1500 Population extinct before 1500 generations. 1400 

generations done. Most genomes oscillate from 

starting position. Some stand in place. No genome 

approaches beacon. No learning observed. 

7 Handcr

afted 

4 Inputs - Scaled [0,1] 

1. Player_x 

2. Player_y 

3. Beacon_x 

4. Beacon_y 

1 Input - distance to 

beacon 

2 outputs 

1. Displacement

_x 

2. Displacement

_y 

Fitness function (2) 

Beacon_weight = 5 

Distance_weight = 1 

Feedforward 

network 

No Random 

Exploration 

1500 Population extinct before 1500 generations. 1400 

generations done. Most genomes oscillate from 

starting position. Some stand in place. No genome 

approaches beacon. No learning observed. 

8 Handcr

afted 

4 Inputs - Scaled [0,1] 

1. Player_x 

2. Player_y 

3. Beacon_x 

4. Beacon_y 

2 outputs 

1. Displacement

_x 

2. Displacement

_y 

Fitness function (2) 

Beacon_weight = 5 

Distance_weight = 1 

 

Recurrent 

network 

1500 The agent learnt to move around in a circle over 

the map with the circle edge near the boundary of 

the map. It was observed that the agent decreases 

the radius of the circle to whenever the beacon is 

spawned to collect the beam and hence the 

reward. 
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Table 2: A Summary of notable initial tests executed using Combat Agent 1 on HellionVZealot map 

ID 
Inputs 

Type 

 

Inputs 

Definition 
Outputs 

 

Fitness 

Function 

Random 

exploration, 

Network Type, 

Config details, 

Map 

Gener

ations 
Results 

1 Handcrafted Total Self 

Current hp, 

Weapon 

cooldown 

(majority), 

enemy in 

range (avg 

position) 

[0,1] 

Displacement 

(x,y), 

Fight/flee 

(boolean) 

Enemy Initial 

hp + Current 

self hp - 

Current 

Enemy hp 

Feedforward, 

Partial 0.5 initial 

connection, 5v5 

HellionVZealots 

500 No consistent results. Most tend to 

approach and then get stuck in north west 

corner where they get some score hitting 

the zealots as they approach in a group 

2 Handcrafted Total Self 

Current hp, 

Weapon 

cooldown 

Displacement 

(x,y), 

Fight/flee 

(boolean) 

Enemy Initial 

hp + Current 

self hp - 

Current 

Feedforward, 

Partial 0.5 initial 

connection, 5 v 5 

HellionVZealots 

1000 No consistent results. Most tend to 

approach and then get stuck in north west 

corner where they get some score hitting 

the zealots as they approach in a group 
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(majority), 

enemy in 

range (avg 

position) 

[0,1] 

Enemy hp 

3 Handcrafted Total Self 

Current hp, 

Weapon 

cooldown 

(majority), 

enemy in 

range (avg 

position) 

[0,1] 

Displacement 

(x,y), 

Fight/flee 

(boolean) 

Enemy Initial 

hp + Current 

self hp - 

Current 

Enemy hp 

Feedforward, full 

initial connection, 

5v5 

HellionVZealots 

1000 No consistent results. Most tend to 

approach and then get stuck in north west 

corner where they get some score hitting 

the zealots as they approach in a group 
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Table 3: A Summary of notable further tests executed using Combat Agent 2 on HellionVZealot map 

Series 

 

Inputs 

Type 

 

Inputs 

Definition 

Outputs 

 

Fitness 

Function 

Random 

exploration, 

Network Type, 

Config details, Map 

Genera

tions 
Results 

1 

 

Handcraf

ted 

Total Self 

Current hp, 

Weapon 

cooldown 

(majority), 

enemy in range 

(avg position), 4 

boundary 

sensors, 4 enemy 

regional sensors 

 

[0,1] 

Displaceme

nt (x,y), 

Fight/flee 

(boolean) 

Enemy 

Initial hp + 

Current 

self hp - 

Current 

Enemy hp 

 

[0,1] 

Feedforward, 5v5 

HellionVZealots, 7 

different configs, 

notable change is 

weight min max 

range, 

 

1 eps per genome 

200 None of the config files showed any 

learning. Wins by chance by going in 

to the corner of the map and when a 

group of zealots if formed it splash 

damages them all 

2 Handcraf Total Self 

Current hp, 

Displaceme

nt (x,y), 

Enemy 

Initial hp + 

Feedforward, 5v5 

HellionVZealots, 7 

200 Config file 1 and 3 showed much 

promise. Both of them showed an 
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 ted Weapon 

cooldown 

(majority), 

enemy in range 

(avg position), 4 

boundary 

sensors, 4 enemy 

regional sensors 

 

[0,1] 

Fight/flee 

(boolean) 

Current 

self hp - 

Current 

Enemy hp 

 

[0,1] 

different configs, 

notable change is 

weight min max 

range, 

 

3 eps per genome 

 

 

upward learning trend in the average 

and the best genomes. The agent 

learnt to show some form of kitting. 

It hits and then runs away and carries 

this behaviour out until it wins. 

Proven and tested against 6 enemies 

as well. However a change of map 

changed the behaviour of the agent 

and it was unable to win which is 

weird. 

 


