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DIFFICULT  



Wireless Power and Information Transmission

• Powercast demonstrated its distance-charging technique in 
New York City in the summer of 2017.

• Collaborator demonstrated a prototype WPIT system in 
Guangzhou in 2018.

Background



Smart Warehouse



Charging Region Model

GOAL

Path Planning



Energy Lost due to movement in Joulesmin
v, X, {λm}

EM = (
α1

a
+ α2)Tr(DTW)

Parameter Table

Multi Integer Non-Linear 
Programming 



Constraints



MINLP : lower bound



Rt+1 = rt+1 + γrt+2 + γ2rt+2 + γ3rt+2 + … + γn−t−1rn

q*(s, a) = max
π

qπ(s, a)

q*(s, a) = E[Rt+1 + γ max
a′�

q*(s′�, a′�)]

S = {(x, y) |x, y ∈ [M]} (location of each point on the grid)

A = {up, down, left, right}

R(xi, yi) =
10 + (5 * x) if (xi, yi) = vG, x =  no. of IoT devices charged
10 if (xi, yi) in charging region of a particular IoT for the first time
−1 otherwise.

Q-learning





Grid size: 8x8 Q-learning



Real World Scenario

✤ Dyna-Q (direct reinforcement learning + model learning)
• Rewards can change

• Uses Tabular Q-planning & Tabular Q-learning

• Useful when not enough data

✤ Increase grid size from 8x8
• Is Q-learning still convenient ?



Deep Q-learning

q*(s, a) − q(s, a) = loss

q*(s, a) = E[Rt+1 + γ max
a′�

q*(s′�, a′�)]

✤ Q-learning + Deep neural network
• DQN approximates to optimal Q-function

• Accommodate large grid size

• Need more training episodes

✤ Features

• Experienced Replay 

• Fixed Q-targets

et = (st, at, rt+1, st+1)

target_net updates every C steps



Efficient convergence to optimal Q-function 

No 
correlation 

evaluate_net or build_net

target_net



q*(s, a) − q(s, a) = loss

Neural Network Architecture

0 ≤ w1 ≤ 0.3

0 ≤ w2 ≤ 0.3

b = 0.1

(x1, x2)

(location of each point on the grid )

evaluate_net or build_net
target_net

Mean squared error as loss
RMSProp as optimisation
function



Grid size: 8x8 deep Q-learning



Grid size: 40x40 deep Q-learning



Results

Q-Learning (252 J)
MINLP (241J)

Grid size: 8x8



Deep  
Q-Learning (246J)
MINLP (241J)

Grid size: 8x8



Deep  
Q-Learning (356J)

MINLP (345J)

Grid size: 40x40



Deep  
Q-Learning
MINLP

Q-Learning

All Methods Comparison

Grid size: 8x8



Conclusion
✤ Q- learning 

✤ Small operation area
✤ Not enough training required
✤ More effective with Dyna-Q if reward changes

✤ Deep Q- learning 
✤ Supports large operation area 
✤ Stable and more accurate    correlation  and 

converges to  optimal Q function
≠

Real world 
environment Simulated 

environment 



Future Work 

✤ Variable power given by UGV to IoT devices 
according to distance from IoT device 

✤ Federated Q-Learning
✤ Limited energy present in UGV
✤ Safe Exploration
✤ Add convolutional layers to detect location of IoT 

devices
✤ Continuous charging model (multi-armed bandit )



Thank You!
Any question?



Q - Learning
Location of each point is state 

Reward = -1

Charging region of 
first IoT device 

(harvested power at 
each IoT)  

if visited for the first 
time: 

Reward = 10 
else: 

Reward = -1

Location of UGV 
Action = {up, down, left, right}

Location of goal 
Reward = 10 + 5*x (x is the number of IoT 

 devices charged)
Environment 

Learning rate = 0.5 
Reward_decay = 0.5 

Epsilon = 0.9



Continuous Charging model
Arm 

UCB algorithm to 
choose the arm. 

If chosen get random 
observation (How 

many users active?) 
• Change in loc of 

IoT 
• Disturbances

Multi-armed Bandit with correlation 

Low probability for 
nearby arms



IoT Net = Tiny Size + Huge number

How to provide energy?



Q - Learning
Location of each point is state 

Reward = -1

Charging region of 
first IoT device 

(harvested power at 
each IoT)  

if visited for the first 
time: 

Reward = 10 
else: 

Reward = -1

Location of UGV 
Action = {up, down, left, right}

Location of goal 
Reward = 10 + 5*x (x is the number of IoT 

 devices charged)
Environment 



Q-Learning

Reward at goal is too 
high! 

Reward = 100+ 5*x (x 
is the number of IoT 
 devices charged)



Q-Learning


