Robot Path Planning In

Wireless Communication:
Using Reinforcement Learning

Anushka Vashishtha
The University of Hong Kong

Final Presentation
April 2019

L]

&

L <‘$
| L|

Ik
o
-=-’ (1T,

_\,

o}l

Internet of Things

o~
o

r@

Objective

Tiny Size

Charging
DIFFICULT

Huge Number

\4

Global Spending

(10 billions
Euro)

Forbes Report 2017

40 40 40 40
30 25
20

D2 12 12

10| 10
. ‘EEEEE
0 1IN EFERBE
Manufacturing B2C Retail
B 2015 Bl 2020

Background

Wireless Power and Information Transmission

* Powercast demonstrated its distance-charging technique in
New York City in the summer of 2017.

* Collaborator demonstrated a prototype WPIT system in
Guangzhou in 2018.

Smart Warehouse

......-\I‘AA ‘_..:

/=N

% g 2 L AN \ foit
’

o

/

§ -
Hi | &
= -r/ ey . .
74 ;
o o s wettril s Y
7 T“ﬂ. \ -

".\lh\\ .“.. Aﬂ\‘ » g ! !
- w‘m_.\\ by i i
) ardul

24 ;umm

Path Planning

Charging Region Model

loT-Device ”‘
| 1

B

i

GOAL
—

Figure 1 Graphical abstraction of the problem

Multi Integer Non-Linear
Programming

: ay
%Ill{f/ll } Ey = (; + az)Tf(DTW) Energy Lost due to movement in Joules
v, A, m

Parameter Table

' Visit a point in the grid or not (Boolean variable)

X Link between two points in the grid or not (Boolean matrix)

a1, &2 Toning parameter: pioneer’s 3DX robot experiment result at MIT(constant)
a Velocity of UGV (constant)

D Distance between two point in the grid or not (Boolean matrix)

W Summation of X values (matrix)

M length & width of the grid (variable)

K Total number of IoT devices (variable)

s.t.

v1 = ovym = 1, (select starting and end points)
om € {0,1}, V2 < m < M —1, (selection is binary)
Y om>1, Vi=1,--- K, (charge all IoT users)

meC;

Wm]- € {0,1}, Vm,j, Wyum =0, Vm, (flow selection is binary)

Z Wy =1, Z Wi =0, (flow from starting point)
j=1 =1

i

M
0, Y Wjm =1, (flow to end point)

M
Z Wm’]- = Om, Z Wj,m = Um, Ym=2,---,M,
j=1 j=1

(flow passing selected points;no flow passing abandoned points)

o (Er o

—1
<Zvl 2—I—](Z)m—’(')j),vzfm,jSM_lrm#jr

M-1

Om < Ay < (Z U] — 1) Um, Vm > 2.

I=1
(guarantee flow connected)

Constraints

10

(O Starting point
() Terminal

+ Vertices

5 | Charging region 1
Charging region 2
Charging region 3
——=MINLP

0 2 4

MINLP : lower bound

Q-learning

[Agent} 2 3 n—t—1
Ry =ttty g+ v+ ... +y

state reward action

S, | R, A, q-(s,a) = max q,(s, a)
Rt+1 (7
S.. | Environment]¢

\.

g«(s,a) =E[R, | +v max g«(s’,a’)]

S={(x,y)|x,y € [M]} (location of each point on the grid)
A = {up,down, left, right}
(10 + S*x) if(x,y,) =vs x = no. of loT devices charged

R(x;,y;) =5 10 if (x,, y,) in charging region of a particular loT for the first time
-1 otherwise.

(Q-learning: Learn function @ : X x A — R
Require:
Sates X = {1,...,n,}
Actions A ={1,...,n.}, A: X = A
Reward function R: X x A - R
Black-box (probabilistic) transition function 7: X x A — X
Learning rate a € |0, 1], typically a = 0.1
Discounting factor v € [0, 1]
procedure QLEARNING(X, A, R, T, a,)
Initialize @ : X x A — R arbitrarily
while () is not converged do
Start in state s € X
while s is not terminal do
Calculate 7 according to Q and exploration strategy (e.g. w(z) <

arg max, Q(x,a))

a < m(s)

r < R(s,a) > Receive the reward
'« T(s,a) > Receive the new state
Q(s',a) (1 —a)-Q(s,a) + a- (r+7v-maxy Q(s',a'))

S+ 8

return

final.pdf
R

Grid size: 8x8 Q-learning

Real World Scenario

¢ Dyna-Q (direct reinforcement learning + model learning)

* Rewards can change
e Uses Tabular Q-planning & Tabular Q-learning

e Useful when not enough data

¢* Increase grid size from 8x8

e |s Q-learning still convenient ?

Deep Q-learning

¢* Q-learning + Deep neural network

 DQN approximates to optimal Q-function
q:(s,a) — g a) = loss

CI*(Sa Cl) — E[Rt+1 + }/ mE/lX Q*(S/a Cl,)]
a
e Accommodate large grid size

e Need more training episodes

* Features
o Experienced Replay e, = (s, a;, riyp1s8:41)
e Fixed Q-targets target_net updates every C steps

deep (Y-learning with experience replay and fixed Q-targets evaluate_net or build_net

Initialize replay memory D to capacity N / target_net
Initialize action-value function) with random weights 6’/

Initialize target action-value function Q with weights § = 6
for k=1, M do
In1t1ahze sequence s; = {1} and preprocessed sequence ¢; = ¢(s1)
fort =1,7T do
With probability € select a random action a;
otherwise select a; = argmax, (Q(¢(s¢),a;6))
No Execute action a; in emulator and observe reward r; and image x;1
correlation Get, St+1 = St, Q¢, Tyy1 and preprocess ¢p11 = P(Siy1)
Store transition (¢, ar, r¢, ¢ry1) in D
Sample random mini-batch of transitions (¢;,a;,r;, ¢;j4+1) from D

N episode ends(j + 1)
& r; +yargmax,(Q(¢(t+1),a’;0)) otherwise

Perform gradient descent step on (y; — Q(#(j), a;;0)* with respect to
the network parameter ¢
Every C step reset () = @)

N

N

Efficient convergence to optimal Q-function

Neural Network Architecture

\\\\'{/{//‘\ evaluate _net or build_net
7

2N — target_net
<27 -
NiS><7%

L%
2 T\
NT47
NNNSELTL)
NORXK L

NN e A %%
ez
SN\ SRS XK LANE ¥,
.’f_‘&\\\x‘&\k’:‘& LA BT

RS R FoS NSNS

NSV sl ORISR
In ut -> Hidden la ers “\‘Z‘}\’A‘\‘B’& Z‘ﬂ'l‘&'bi‘x’ll‘« A AN\ X X773 Out ut la er

P y ORI 12 e SR putiay

SERFHA FLARESS TN, RIS

(X, %) CBIGER TSP SECEA
NAK BNT7 N>
KK S FRE XS *"‘ /(‘K‘XOI~°‘

PO X) Q
S kS =SSR i
. . . SR EL KT X REER ' XK AR
(location of each point on the grid) " EZIZAA 2RI 4 2,70}3::?
Y S T s A ET AN
5L AR RIS Vet
S

PRI CSRAXR
=" e o
ZAL LA i" "§ AROTL O
K TS RN /
® e\ &
79SS\
‘ N\

i

B
s Rectified 0<w <03 Mean squared error as loss

linear unit
function Outputs
- f .y b=0.1 function

b
xZ O > ZUQ :UE >

0<w,<0.3 RMSProp as optimisation
Inputs

DQN_path.pdf
m ® Q

Grid size: 8x8 deep Q-learning

1

Grid size: 40x40 deep Q-learning

Results

Grid size: 8x8

8000 -
7000 -
6000 -
5000 -

4000 A

3000 -
2000 -
1000 - jA‘\/\‘J\\
A
2'0 4l0 6l0 8'0 160

Number of Epochs

Moving Energy of UGV

- Q-Learning (252 J)
MINLP (241J)

Grid size: 8x8

14000 -

12000 A

10000 -

8000 A

6000 -

Moving Energy of UGV

4000 -

2000 -

0 100 200 300 400 500 600 700 800
Number of Epochs

Deep
- Q-Learning (246J)

— MINLP (241J)

Grid size: 40x40

100000 A

80000 -

60000 A

40000 A

MOVING ENEergy or uuv

20000 -

0 50 100 150 200 250 300
Number of Epochs

Deep
- Q-Learning (356J)

— MINLP (345J)

Moving Energy of UGV

Q-Learning
Deep
Q-Learning

All Methods Comparison — MINLP

Grid size: 8x8

—— Deep Q Learning
—— Q Learning
140004 MINLP
12000 A
10000 -
8000 A
6000 -
4000 A
|
2000 - |
W PR s AR e 1
L.LJA‘.‘A AL MaNAT .L"l ol -Aw“ .1.|¢ U AL J!’-l.l'.tl.)Y .:'Jll“ JJ“L‘ a* :H “‘E’L‘_‘AL.L'w‘A..I'.I}AN“.'AI l.!‘ w.u\‘ b]’l
O -
6 1(')0 260 360 4('JO 560 6(')0 760

Number of Epochs

Conclusion

[Q- learning
i % Small operation area

@ Not enough training required

» More effective with Dyna-Q if reward changes f
"I‘ Deep Q- learning
o* Supports large operation area ;
of» Stable and more accurate# correlation and :

| . convergesto optimal Qfunction

aI world
Simulated environment

environment

B I <

Future Work

Variable power given by UGV to loT devices
according to distance from loT device

Federated Q-Learning
Limited energy present in UGV
Safe Exploration

Add convolutional layers to detect location of loT
devices

Continuous charging model (multi-armed bandit)

Thank You!

Any question?

Q - Learning

Location of UGV
Action = {up, down, left, right}

® O maze /
Charging region of \-

first loT device

Location of each point is state
Reward = -1

(harvested power at
each loT)
if visited for the first Learning rate = 0.5
time: < Reward_decay = 0.5
Reward = 10 Epsilon = 0.9
else:
Reward = -1

¥

Location of goal
Reward = 10 + 5*x (x is the number of loT
devices charged)

Environment

Continuous Charging model

Low probability for Arm

nearby arms a

loT-Device

o

— ™] UCB algorithm to
auA

choose the arm.

If chosen get random
observation (How \ S
many users active?)
® Change in loc of ~)

loT ~/

- -
® Disturbances ®0e
|

Multi-armed Bandit with correlation

Figure 1 Graphical abstraction of the problem

loT Net = Tiny Size + Huge number

How to provide energy?

Q - Learning

Location of UGV
Action = {up, down, left, right}

® O maze /
Charging region of \-

first loT device

Location of each point is state
Reward = -1

(harvested power at
each loT)
if visited for the first =
time: <
Reward = 10
else:
Reward = -1

¥

Location of goal
Reward = 10 + 5*x (x is the number of loT
devices charged)

Environment

Q-Learning

map_100.pdf
 @® Q

Reward at goal is too
high!
Reward = 100+ 5*x (x
Is the number of loT
devices charged)

Q-Learning

