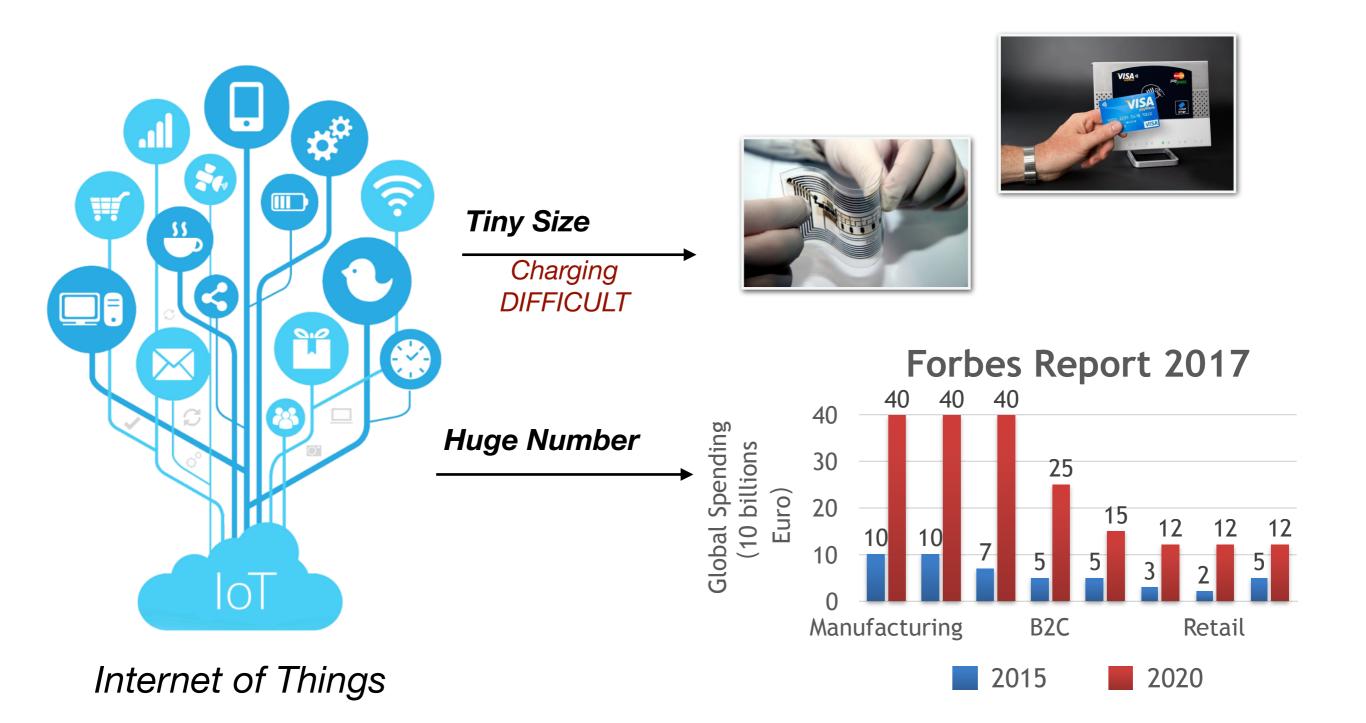
Robot Path Planning in Wireless Communication: Using Reinforcement Learning

Anushka Vashishtha

The University of Hong Kong Final Presentation April 2019

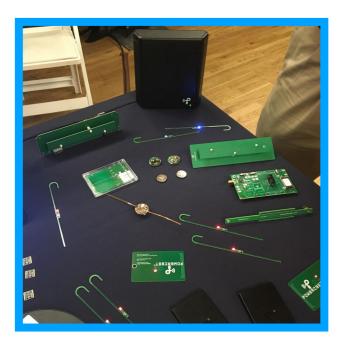
Objective



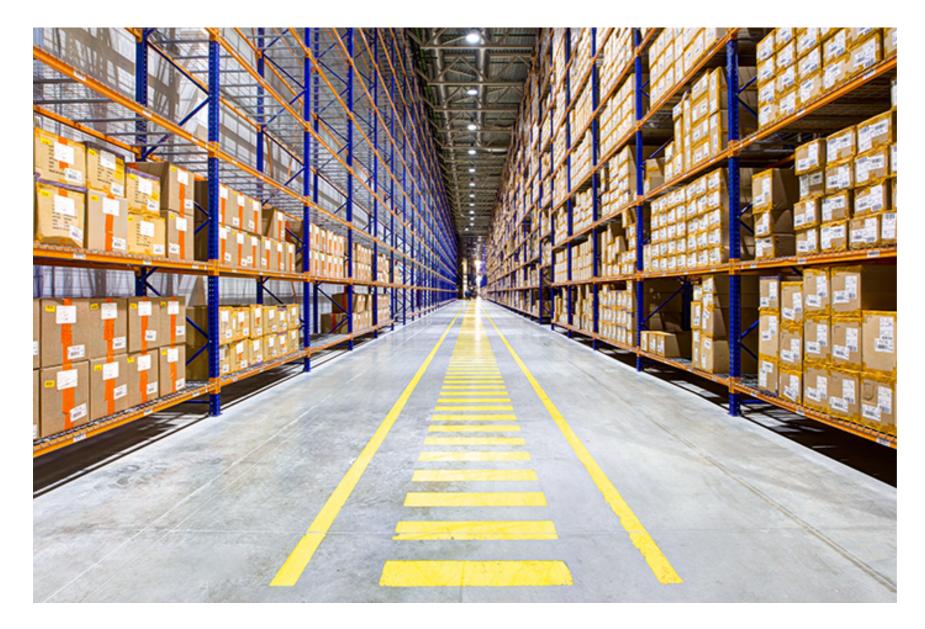
Background

Wireless Power and Information Transmission

- Powercast demonstrated its distance-charging technique in New York City in the summer of 2017.
- Collaborator demonstrated a prototype WPIT system in Guangzhou in 2018.

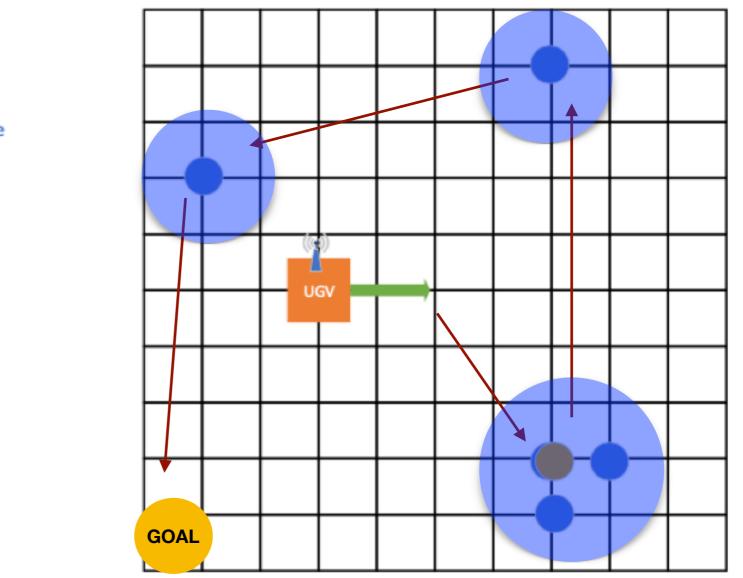


Smart Warehouse



Path Planning

Charging Region Model



IoT-Device

Figure 1 Graphical abstraction of the problem

Multi Integer Non-Linear Programming

$$\min_{\mathbf{v}, \mathbf{X}, \{\lambda_m\}} E_M = (\frac{\alpha_1}{a} + \alpha_2) \operatorname{Tr}(\mathbf{D}^T \mathbf{W})$$

Energy Lost due to movement in Joules

Parameter Table

V	Visit a point in the grid or not (Boolean variable)
X	Link between two points in the grid or not (Boolean matrix)
α_1, α_2	Toning parameter: pioneer's 3DX robot experiment result at MIT(constant)
а	Velocity of UGV (constant)
D	Distance between two point in the grid or not (Boolean matrix)
W	Summation of X values (matrix)
M	length & width of the grid (variable)
Κ	Total number of IoT devices (variable)

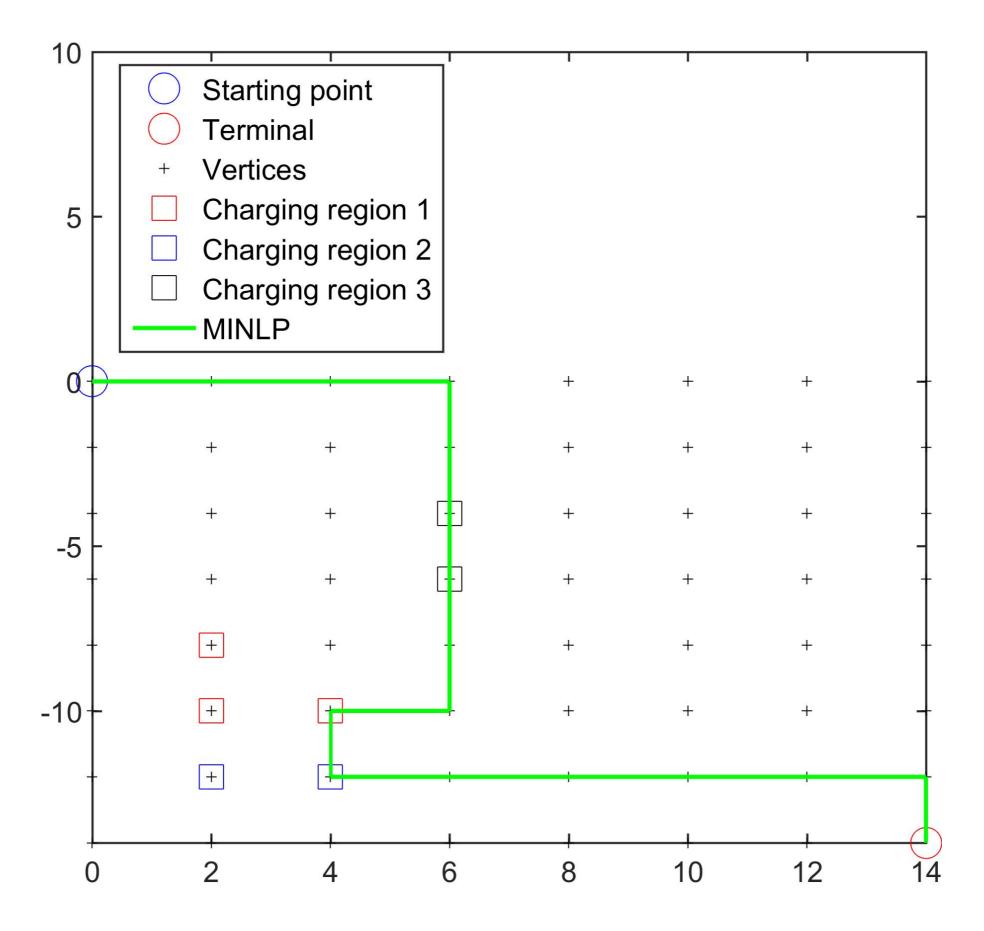
s.t.
$$v_1 = v_M = 1$$
, (select starting and end points)
 $v_m \in \{0,1\}, \ \forall 2 \le m \le M-1$, (selection is binary)
 $\sum_{m \in C_i} v_m \ge 1, \ \forall i = 1, \dots, K$, (charge all IoT users)
 $W_{m,j} \in \{0,1\}, \ \forall m, j, \ W_{m,m} = 0, \ \forall m, (flow selection is binary)$
 $\sum_{j=1}^{M} W_{1,j} = 1, \ \sum_{j=1}^{M} W_{j,1} = 0, (flow from starting point)$
 $\sum_{j=1}^{M} W_{M,j} = 0, \ \sum_{j=1}^{M} W_{j,M} = 1, (flow to end point)$
 $\sum_{j=1}^{M} W_{m,j} = v_m, \ \sum_{j=1}^{M} W_{j,m} = v_m, \ \forall m = 2, \dots, M,$
(flow passing selected points; no flow passing abandoned points)
 $\sum_{m=1}^{M} w_{m,j} = v_m \left(\sum_{j=1}^{M-1} w_{j,m} = v_m\right) W_{m,j} = 0$

$$\lambda_m - \lambda_j + \left(\sum_{l=1}^{M-1} v_l - 1\right) W_{m,j} + \left(\sum_{l=1}^{M-1} v_l - 3\right) W_{j,m}$$

$$\leq \sum_{l=1}^{M-1} v_l - 2 + J \left(2 - v_m - v_j\right), \quad \forall 2 \le m, j \le M - 1, \ m \ne j,$$

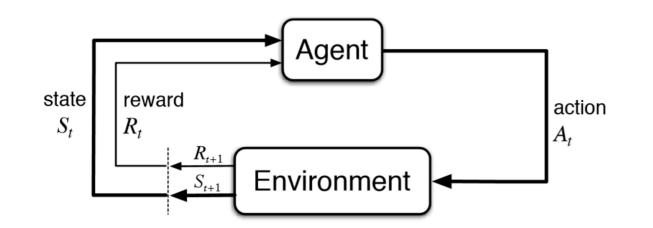
$$v_m \le \lambda_m \le \left(\sum_{l=1}^{M-1} v_l - 1\right) v_m, \quad \forall m \ge 2.$$

(guarantee flow connected)



MINLP : lower bound

Q-learning



$$R_{t+1} = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+2} + \gamma^3 r_{t+2} + \dots + \gamma^{n-t-1} r_n$$

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

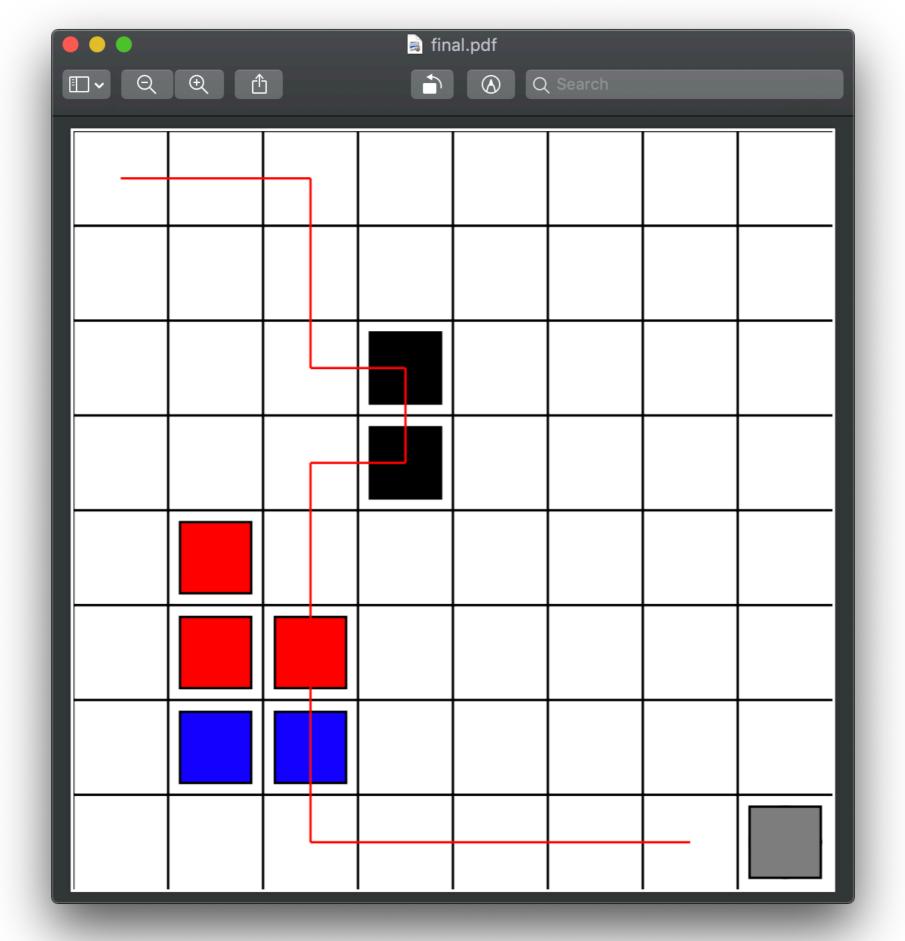
$$q_*(s, a) = E[R_{t+1} + \gamma \max_{a'} q_*(s', a')]$$

 $S = \{(x, y) | x, y \in [M]\} \text{ (location of each point on the grid)}$ $A = \{up, down, left, right\}$ $R(x_i, y_i) = \begin{cases} 10 + (5 * x) & \text{if } (x_i, y_i) = v_G, x = \text{ no. of IoT devices charged} \\ 10 & \text{if } (x_i, y_i) \text{ in charging region of a particular IoT for the first time} \\ -1 & \text{otherwise.} \end{cases}$

Q-learning: Learn function $Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$

Require:

Sates $\mathcal{X} = \{1, \ldots, n_x\}$ Actions $\mathcal{A} = \{1, \ldots, n_a\}, \qquad A : \mathcal{X} \Rightarrow \mathcal{A}$ Reward function $R: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ Black-box (probabilistic) transition function $T: \mathcal{X} \times \mathcal{A} \to \mathcal{X}$ Learning rate $\alpha \in [0, 1]$, typically $\alpha = 0.1$ Discounting factor $\gamma \in [0, 1]$ procedure QLEARNING($\mathcal{X}, A, R, T, \alpha, \gamma$) Initialize $Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ arbitrarily while Q is not converged do Start in state $s \in \mathcal{X}$ while s is not terminal do Calculate π according to Q and exploration strategy (e.g. $\pi(x) \leftarrow$ $\operatorname{arg\,max}_a Q(x,a)$ $a \leftarrow \pi(s)$ $r \leftarrow R(s, a)$ \triangleright Receive the reward $s' \leftarrow T(s, a)$ \triangleright Receive the new state $Q(s', a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma \cdot \max_{a'} Q(s', a'))$ $\mathbf{return}^{s}\overleftarrow{O}^{s'}$



Grid size: 8x8 Q-learning

Real World Scenario

Dyna-Q (direct reinforcement learning + model learning)

- Rewards can change
- Uses Tabular Q-planning & Tabular Q-learning
- Useful when not enough data
- Increase grid size from 8x8
 - Is Q-learning still convenient ?

Deep Q-learning

Q-learning + Deep neural network

• DQN approximates to optimal Q-function $q_*(s, a) - q_(s, a) = loss$

 $q_*(s, a) = E[R_{t+1} + \gamma \max_{a'} q_*(s', a')]$

- Accommodate large grid size
- Need more training episodes

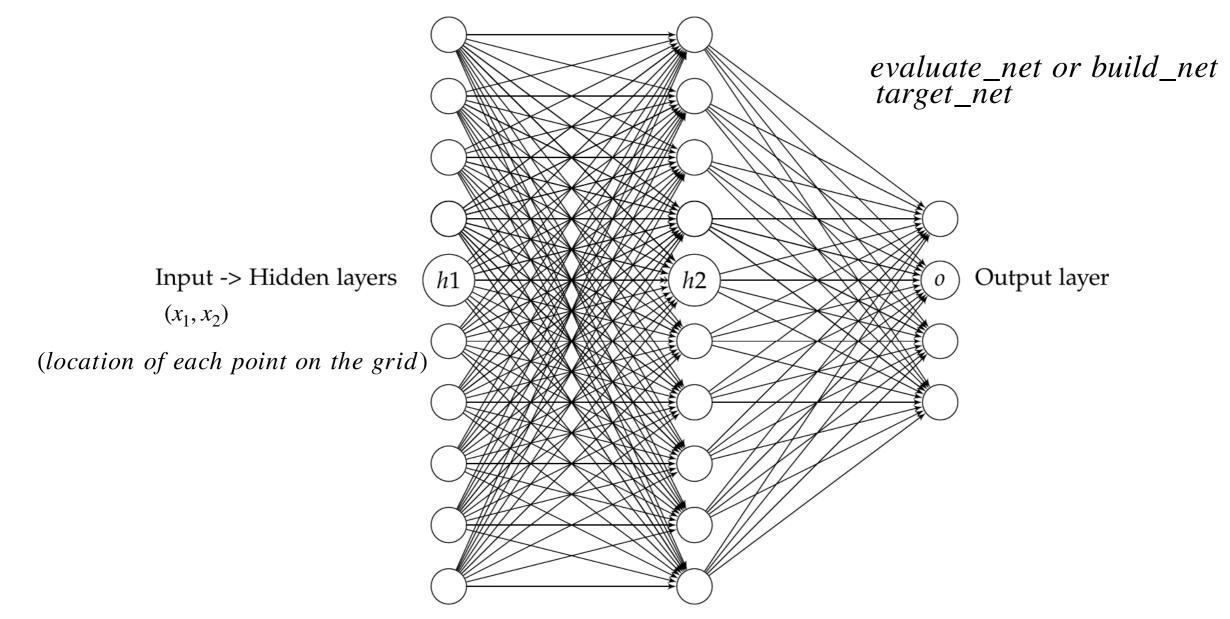
Features

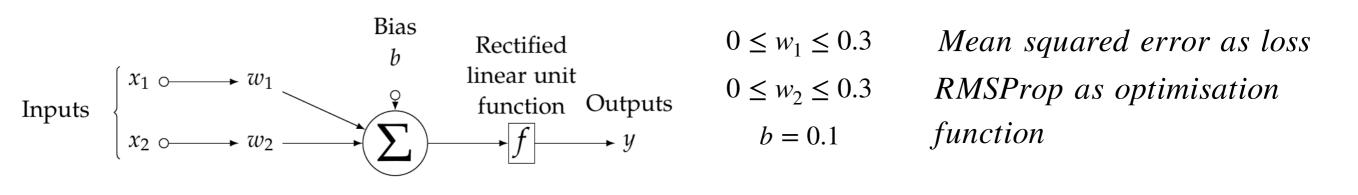
- Experienced Replay $e_t = (s_t, a_t, r_{t+1}, s_{t+1})$
- Fixed Q-targets target_net updates every C steps

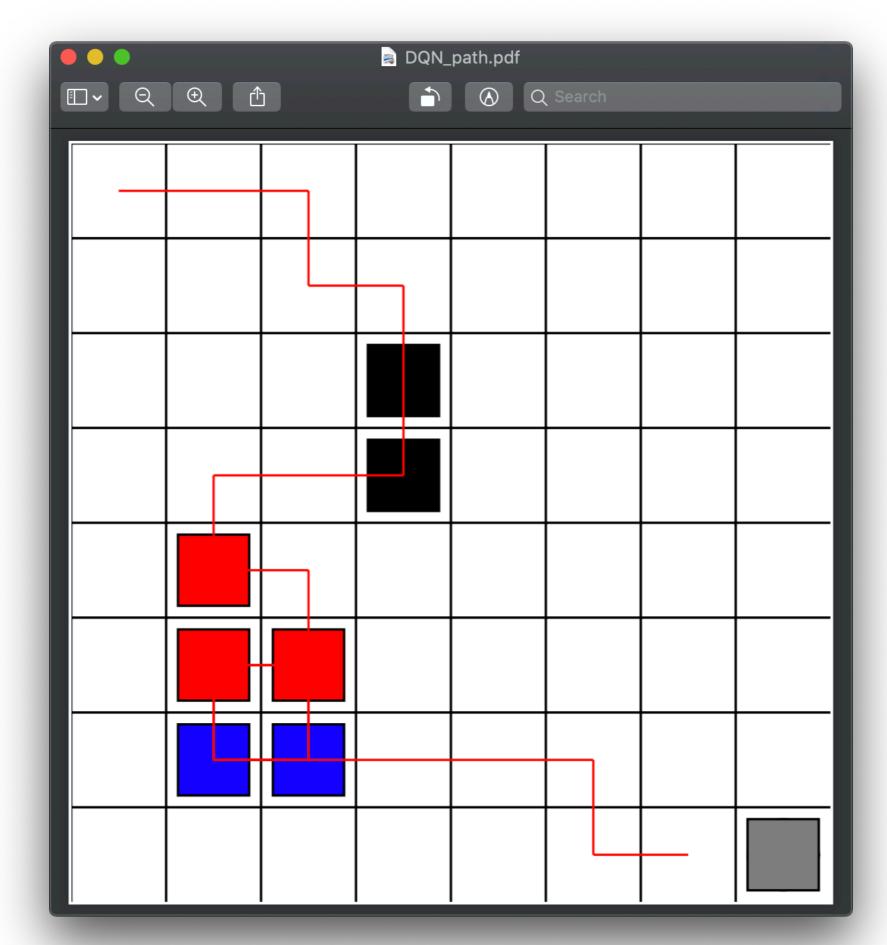
deep Q-learning with experience replay and fixed Q-targets evaluate_net or build_net Initialize replay memory D to capacity N_target_net Initialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\bar{\theta} = \theta$ for k = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \arg \max_a(Q(\phi(s_t), a; \theta))$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} No correlation Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D Sample random mini-batch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D Set $y_j = \begin{cases} r_j & \text{episode ends}(j+1) \\ r_j + \gamma \arg\max'_a(Q(\phi(t+1), a'; \bar{\theta})) & \text{otherwise} \end{cases}$ Perform gradient descent step on $(y_j - Q(\phi(j), a_j; \theta)^2)$ with respect to the network parameter θ Every C step reset $\hat{Q} = Q$

Efficient convergence to optimal Q-function

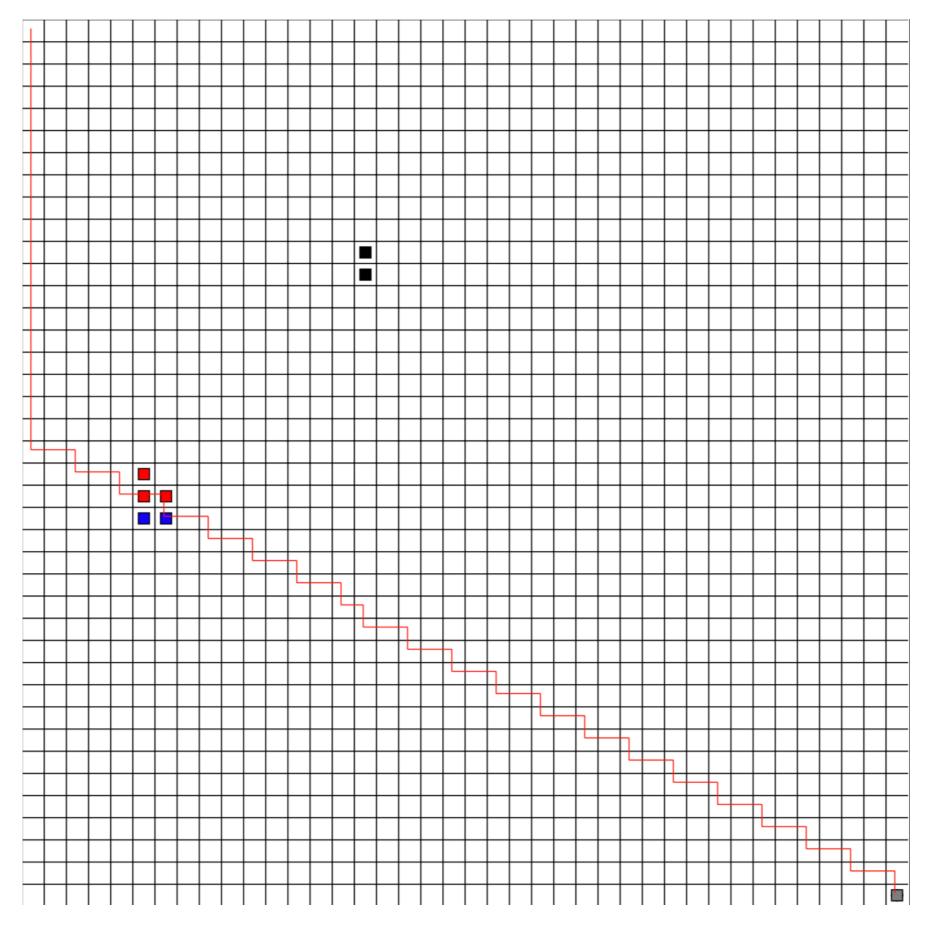
Neural Network Architecture





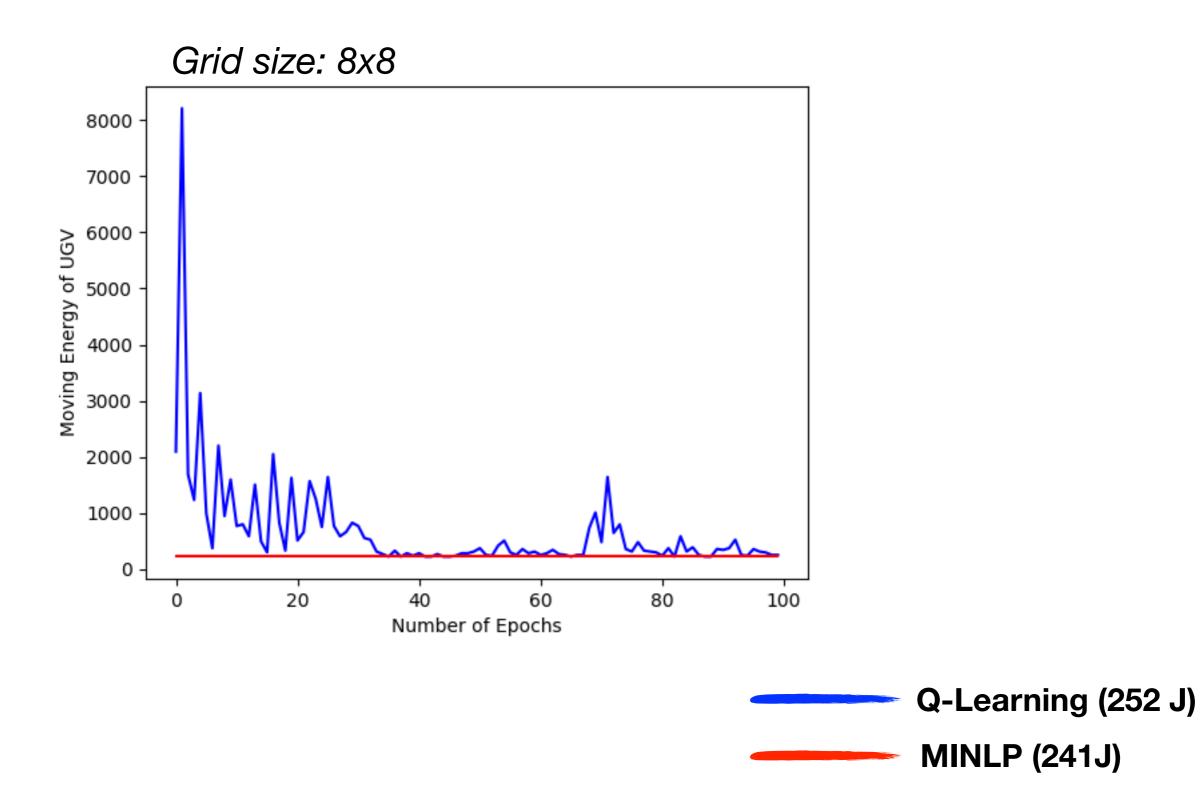


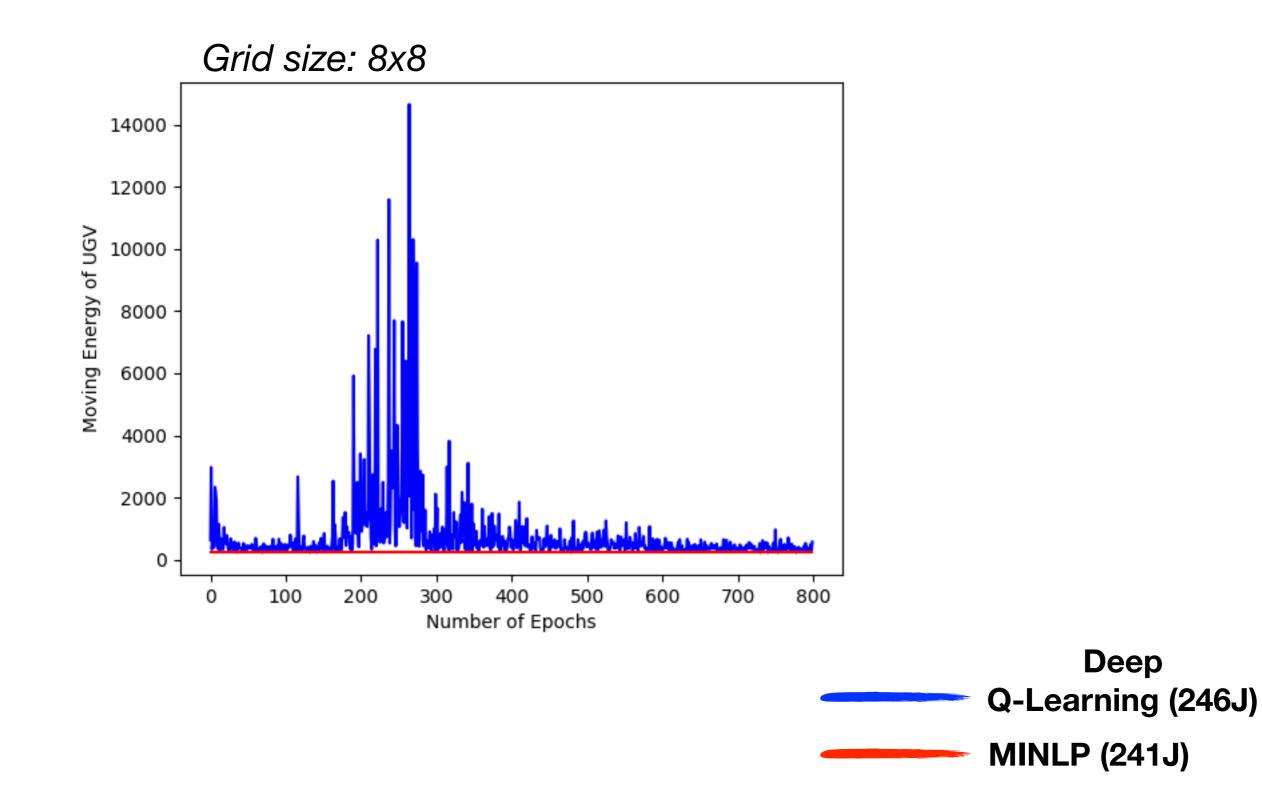
Grid size: 8x8 deep Q-learning

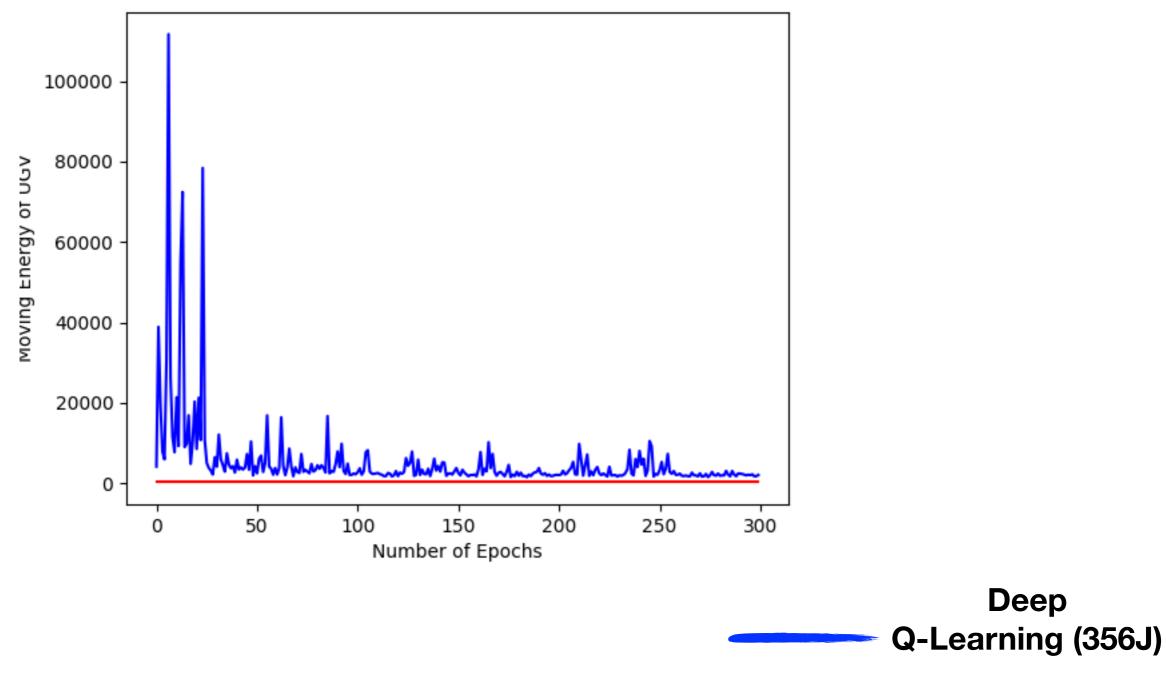


Grid size: 40x40 deep Q-learning

Results

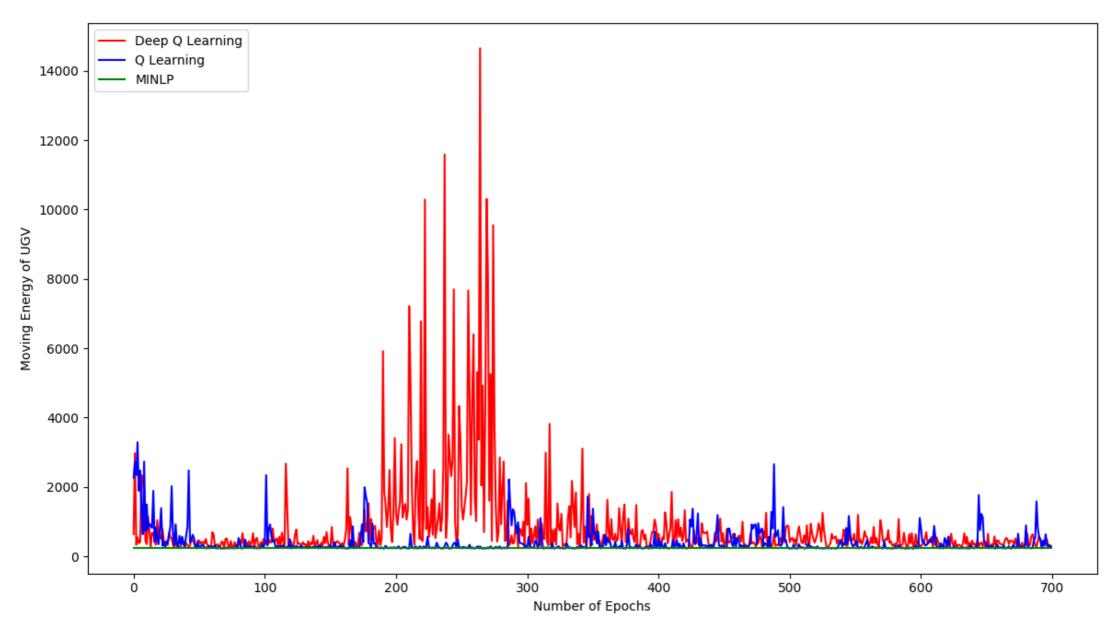






MINLP (345J)

Grid size: 8x8



Conclusion

Q- learning

- Small operation area
- Not enough training required
- More effective with Dyna-Q if reward changes

Deep Q- learning

- Supports large operation area
- Stable and more accurate correlation and converges to optimal Q function

Simulated environment

Real world environment

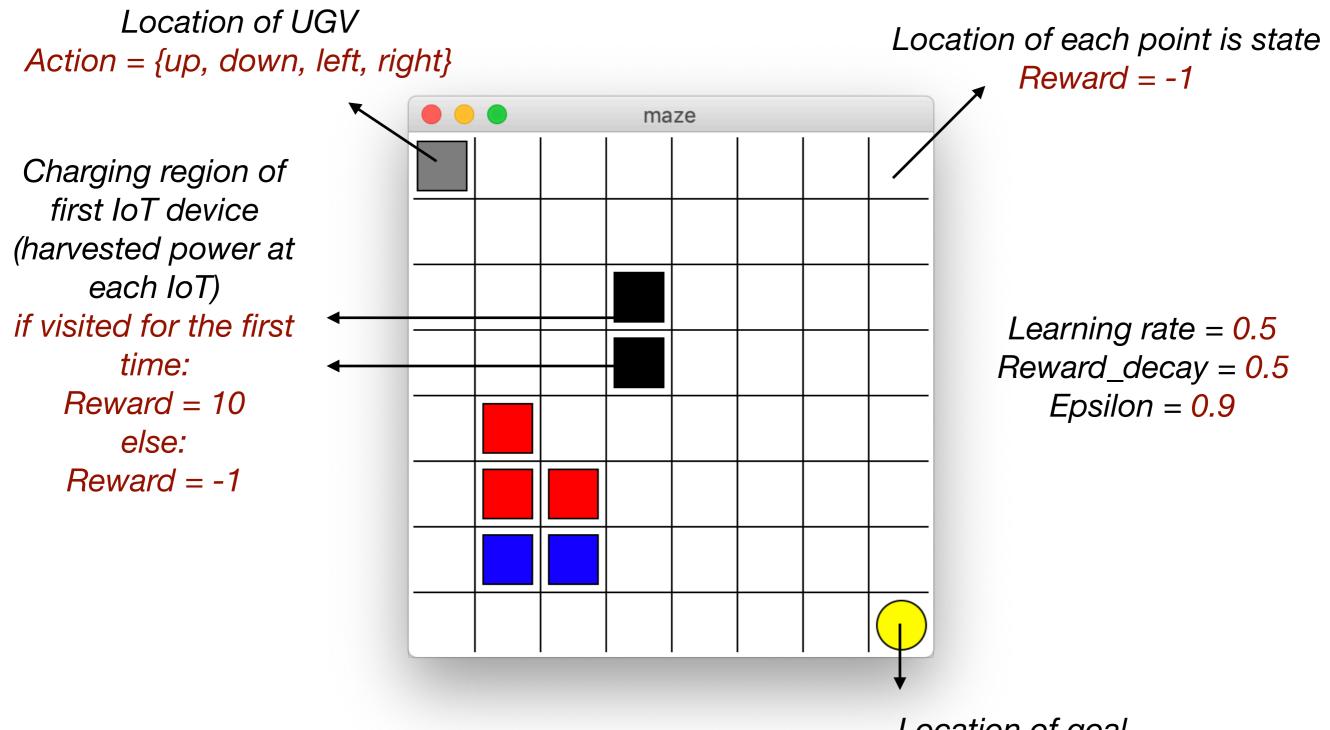
Future Work

- Variable power given by UGV to IoT devices according to distance from IoT device
- Federated Q-Learning
- Limited energy present in UGV
- Safe Exploration
- Add convolutional layers to detect location of IoT devices
- Continuous charging model (multi-armed bandit)

Thank You!

Any question?

Q - Learning



Environment

Location of goal Reward = 10 + 5*x (x is the number of IoT devices charged)

Continuous Charging model

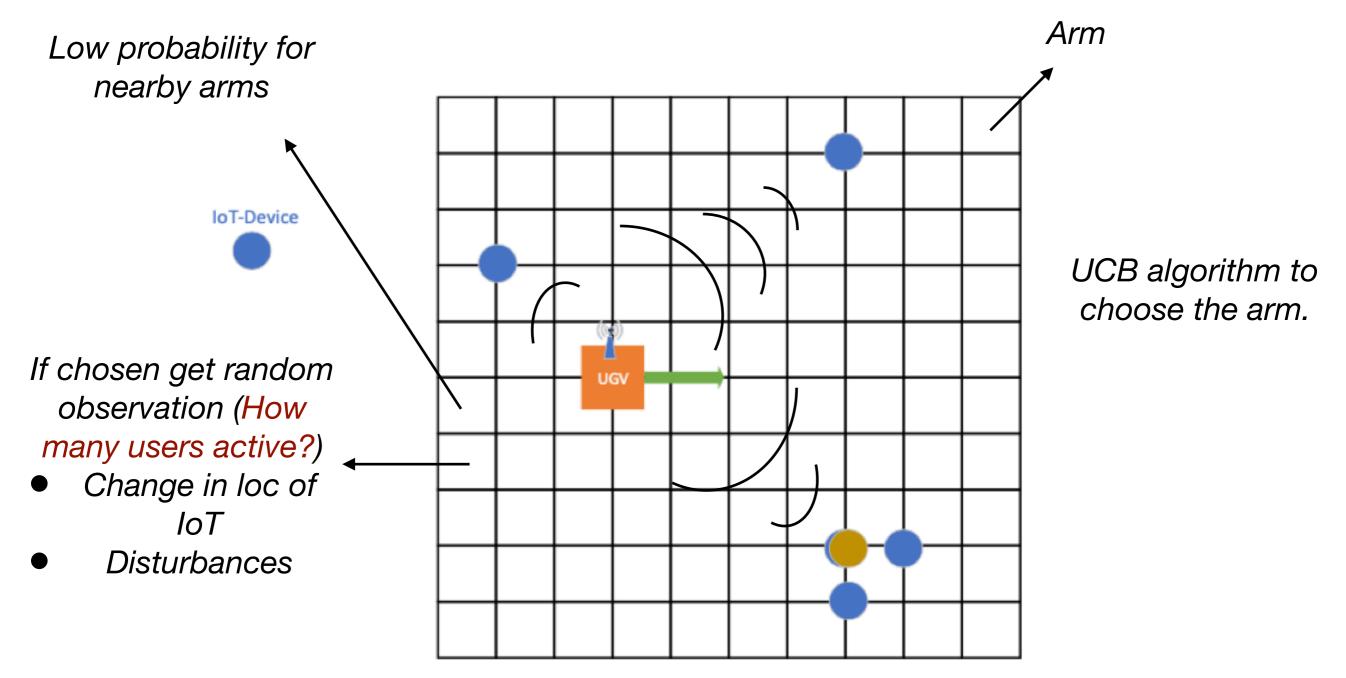


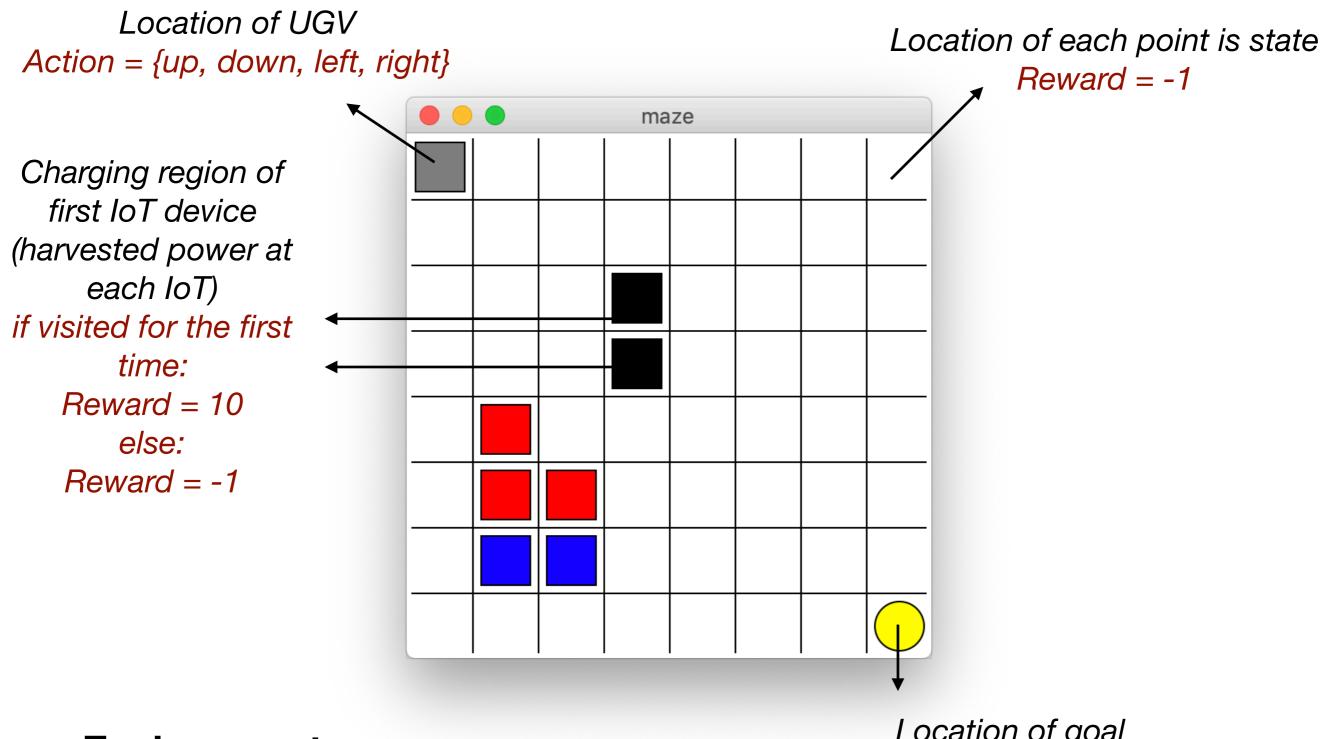
Figure 1 Graphical abstraction of the problem

Multi-armed Bandit with correlation

IoT Net = Tiny Size + Huge number

How to provide energy?

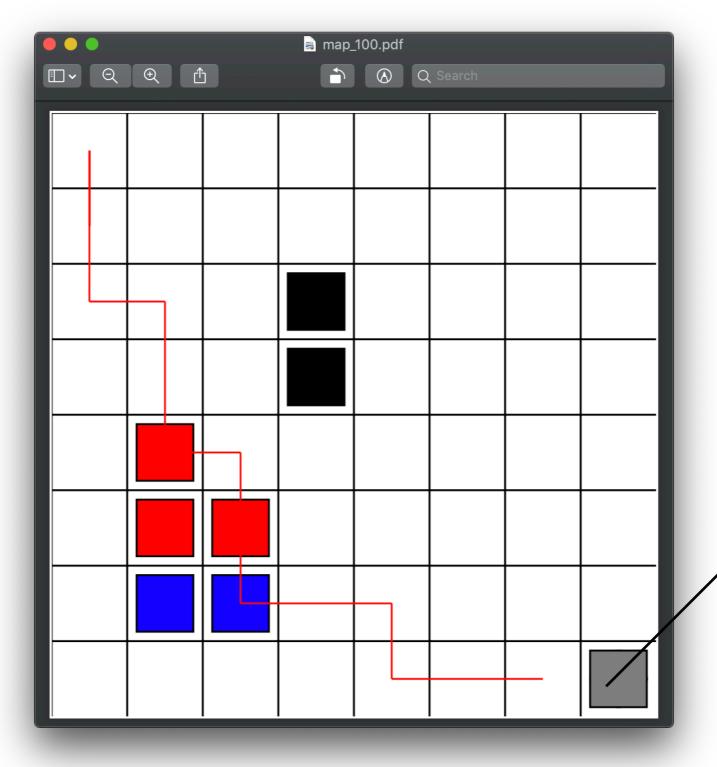
Q - Learning



Environment

Location of goal Reward = 10 + 5*x (x is the number of IoT devices charged)

Q-Learning



Reward at goal is too high! Reward = 100+ 5*x (x is the number of IoT ✓ devices charged)

Q-Learning

