
Robot Path Planning in

Wireless Communication:

Using Reinforcement Learning

Anushka Vashishtha
The University of Hong Kong

Final Presentation

April 2019

Forbes Report 2017

G
lo

ba
l S

pe
nd

in
g

（
10

 b
ill

io
ns

Eu

ro
）

0

10

20

30

40

Manufacturing B2C Retail

12121215

25

404040

523557
1010

2015 2020Internet of Things

Huge Number

Objective

Tiny Size
Charging

DIFFICULT

Wireless Power and Information Transmission

• Powercast demonstrated its distance-charging technique in
New York City in the summer of 2017.

• Collaborator demonstrated a prototype WPIT system in
Guangzhou in 2018.

Background

Smart Warehouse

Charging Region Model

GOAL

Path Planning

Energy Lost due to movement in Joulesmin
v, X, {λm}

EM = (
α1

a
+ α2)Tr(DTW)

Parameter Table

Multi Integer Non-Linear
Programming

Constraints

MINLP : lower bound

Rt+1 = rt+1 + γrt+2 + γ2rt+2 + γ3rt+2 + … + γn−t−1rn

q*(s, a) = max
π

qπ(s, a)

q*(s, a) = E[Rt+1 + γ max
a′�

q*(s′�, a′�)]

S = {(x, y) |x, y ∈ [M]} (location of each point on the grid)

A = {up, down, left, right}

R(xi, yi) =
10 + (5 * x) if (xi, yi) = vG, x = no. of IoT devices charged
10 if (xi, yi) in charging region of a particular IoT for the first time
−1 otherwise.

Q-learning

Grid size: 8x8 Q-learning

Real World Scenario

✤ Dyna-Q (direct reinforcement learning + model learning)
• Rewards can change

• Uses Tabular Q-planning & Tabular Q-learning

• Useful when not enough data

✤ Increase grid size from 8x8
• Is Q-learning still convenient ?

Deep Q-learning

q*(s, a) − q(s, a) = loss

q*(s, a) = E[Rt+1 + γ max
a′�

q*(s′�, a′�)]

✤ Q-learning + Deep neural network
• DQN approximates to optimal Q-function

• Accommodate large grid size

• Need more training episodes

✤ Features

• Experienced Replay

• Fixed Q-targets

et = (st, at, rt+1, st+1)

target_net updates every C steps

Efficient convergence to optimal Q-function

No
correlation

evaluate_net or build_net

target_net

q*(s, a) − q(s, a) = loss

Neural Network Architecture

0 ≤ w1 ≤ 0.3

0 ≤ w2 ≤ 0.3

b = 0.1

(x1, x2)

(location of each point on the grid)

evaluate_net or build_net
target_net

Mean squared error as loss
RMSProp as optimisation
function

Grid size: 8x8 deep Q-learning

Grid size: 40x40 deep Q-learning

Results

Q-Learning (252 J)
MINLP (241J)

Grid size: 8x8

Deep
Q-Learning (246J)
MINLP (241J)

Grid size: 8x8

Deep
Q-Learning (356J)

MINLP (345J)

Grid size: 40x40

Deep
Q-Learning
MINLP

Q-Learning

All Methods Comparison

Grid size: 8x8

Conclusion
✤ Q- learning

✤ Small operation area
✤ Not enough training required
✤ More effective with Dyna-Q if reward changes

✤ Deep Q- learning
✤ Supports large operation area
✤ Stable and more accurate correlation and

converges to optimal Q function
≠

Real world
environment Simulated

environment

Future Work

✤ Variable power given by UGV to IoT devices
according to distance from IoT device

✤ Federated Q-Learning
✤ Limited energy present in UGV
✤ Safe Exploration
✤ Add convolutional layers to detect location of IoT

devices
✤ Continuous charging model (multi-armed bandit)

Thank You!
Any question?

Q - Learning
Location of each point is state

Reward = -1

Charging region of
first IoT device

(harvested power at
each IoT)

if visited for the first
time:

Reward = 10
else:

Reward = -1

Location of UGV
Action = {up, down, left, right}

Location of goal
Reward = 10 + 5*x (x is the number of IoT

 devices charged)
Environment

Learning rate = 0.5
Reward_decay = 0.5

Epsilon = 0.9

Continuous Charging model
Arm

UCB algorithm to
choose the arm.

If chosen get random
observation (How

many users active?)
• Change in loc of

IoT
• Disturbances

Multi-armed Bandit with correlation

Low probability for
nearby arms

IoT Net = Tiny Size + Huge number

How to provide energy?

Q - Learning
Location of each point is state

Reward = -1

Charging region of
first IoT device

(harvested power at
each IoT)

if visited for the first
time:

Reward = 10
else:

Reward = -1

Location of UGV
Action = {up, down, left, right}

Location of goal
Reward = 10 + 5*x (x is the number of IoT

 devices charged)
Environment

Q-Learning

Reward at goal is too
high!

Reward = 100+ 5*x (x
is the number of IoT
 devices charged)

Q-Learning

