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Background

Wireless Power and Information Transmission

* Powercast demonstrated its distance-charging technique in
New York City in the summer of 2017.

* Collaborator demonstrated a prototype WPIT system in
Guangzhou in 2018.




Smart Warehouse
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Path Planning
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Figure 1 Graphical abstraction of the problem



Multi Integer Non-Linear
Programming

: ay
%Ill{f/ll } Ey = (; + az)Tf(DTW) Energy Lost due to movement in Joules
v, A, m

Parameter Table

' Visit a point in the grid or not (Boolean variable)

X Link between two points in the grid or not (Boolean matrix)

a1, &2 Toning parameter: pioneer’s 3DX robot experiment result at MIT(constant)
a Velocity of UGV (constant)

D Distance between two point in the grid or not (Boolean matrix)

W Summation of X values (matrix)

M length & width of the grid (variable)

K Total number of IoT devices (variable)




s.t.

v1 = ovym = 1, (select starting and end points)
om € {0,1}, V2 < m < M —1, (selection is binary)
Y om>1, Vi=1,--- K, (charge all IoT users)

meC;

Wm]- € {0,1}, Vm,j, Wyum =0, Vm, (flow selection is binary)

Z Wy =1, Z Wi =0, (flow from starting point)
j=1 =1

i

M
0, Y Wjm =1, (flow to end point)

M
Z Wm’]- = Om, Z Wj,m = Um, Ym=2,---,M,
j=1 j=1

(flow passing selected points;no flow passing abandoned points)

o (Er o

—1
<Zvl 2—I—]( Z)m—’(')j),vzfm,jSM_lrm#jr

M-1

Om < Ay < ( Z U] — 1) Um, Vm > 2.

I=1
(guarantee flow connected)

Constraints
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MINLP : lower bound



Q-learning

[Agent} 2 3 n—t—1
Ry =ttty g+ v+ ... +y

state reward action

S, | R, A, q-(s,a) = max q,(s, a)
Rt+1 ( 7
S.. | Environment ]¢

\.

g«(s,a) =E[R, | +v max g«(s’,a’)]

S={(x,y)|x,y € [M]} (location of each point on the grid)
A = {up,down, left, right}
(10 + S*x) if(x,y,) =vs x = no. of loT devices charged

R(x;,y;) =5 10 if (x,, y,) in charging region of a particular loT for the first time
-1 otherwise.




(Q-learning: Learn function @ : X x A — R
Require:
Sates X = {1,...,n,}
Actions A ={1,...,n.}, A: X = A
Reward function R: X x A - R
Black-box (probabilistic) transition function 7: X x A — X
Learning rate a € |0, 1], typically a = 0.1
Discounting factor v € [0, 1]
procedure QLEARNING(X, A, R, T, a, )
Initialize @ : X x A — R arbitrarily
while () is not converged do
Start in state s € X
while s is not terminal do
Calculate 7 according to Q and exploration strategy (e.g. w(z) <

arg max, Q(x,a))

a < m(s)

r < R(s,a) > Receive the reward
'« T(s,a) > Receive the new state
Q(s',a) (1 —a)-Q(s,a) + a- (r+7v-maxy Q(s',a'))

S+ 8

return
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Grid size: 8x8 Q-learning



Real World Scenario

¢ Dyna-Q (direct reinforcement learning + model learning)

* Rewards can change
e Uses Tabular Q-planning & Tabular Q-learning

e Useful when not enough data

¢* Increase grid size from 8x8

e |s Q-learning still convenient ?



Deep Q-learning

¢* Q-learning + Deep neural network

 DQN approximates to optimal Q-function
q:(s,a) — g a) = loss

CI*(Sa Cl) — E[Rt+1 + }/ mE/lX Q*(S/a Cl,)]
a
e Accommodate large grid size

e Need more training episodes

* Features
o Experienced Replay e, = (s, a;, riyp1s8:41)
e Fixed Q-targets target_net updates every C steps



deep (Y-learning with experience replay and fixed Q-targets evaluate_net or build_net

Initialize replay memory D to capacity N / target_net
Initialize action-value function ) with random weights 6’/

Initialize target action-value function Q with weights § = 6
for k=1, M do
In1t1ahze sequence s; = {1} and preprocessed sequence ¢; = ¢(s1)
fort =1,7T do
With probability € select a random action a;
otherwise select a; = argmax, (Q(¢(s¢),a;6))
No Execute action a; in emulator and observe reward r; and image x;1
correlation  Get, St+1 = St, Q¢, Tyy1 and preprocess ¢p11 = P(Siy1)
Store transition (¢, ar, r¢, ¢ry1) in D
Sample random mini-batch of transitions (¢;,a;,r;, ¢;j4+1) from D

N episode ends(j + 1)
& r; +yargmax,(Q(¢(t+1),a’;0)) otherwise

Perform gradient descent step on (y; — Q(#(j), a;;0)* with respect to
the network parameter ¢
Every C step reset () = @)

N

N

Efficient convergence to optimal Q-function




Neural Network Architecture

\\\\'{/{//‘\ evaluate _net or build_net
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Grid size: 8x8 deep Q-learning
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Grid size: 40x40 deep Q-learning




Results

Grid size: 8x8
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Grid size: 8x8
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Grid size: 40x40
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Moving Energy of UGV

Q-Learning
Deep
Q-Learning

All Methods Comparison — MINLP
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Conclusion

[ Q- learning
i % Small operation area

@ Not enough training required

» More effective with Dyna-Q if reward changes f
"I‘ Deep Q- learning
o* Supports large operation area ;
of» Stable and more accurate# correlation and :

| . convergesto optimal Qfunction

aI world
Simulated environment

environment
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Future Work

Variable power given by UGV to loT devices
according to distance from loT device

Federated Q-Learning
Limited energy present in UGV
Safe Exploration

Add convolutional layers to detect location of loT
devices

Continuous charging model (multi-armed bandit )



Thank You!

Any question?



Q - Learning

Location of UGV
Action = {up, down, left, right}

® O maze /
Charging region of \-

first loT device

Location of each point is state
Reward = -1

(harvested power at
each loT)
if visited for the first Learning rate = 0.5
time: < Reward_decay = 0.5
Reward = 10 Epsilon = 0.9
else:
Reward = -1

¥

Location of goal
Reward = 10 + 5*x (x is the number of loT
devices charged)

Environment




Continuous Charging model

Low probability for Arm

nearby arms a

loT-Device

o

— ™ ] UCB algorithm to
auA

choose the arm.

If chosen get random
observation (How \ S
many users active?)
® Change in loc of ~ )

loT ~/

- -
®  Disturbances ®0e
|

Multi-armed Bandit with correlation

Figure 1 Graphical abstraction of the problem




loT Net = Tiny Size + Huge number

How to provide energy?



Q - Learning

Location of UGV
Action = {up, down, left, right}

® O maze /
Charging region of \-

first loT device

Location of each point is state
Reward = -1

(harvested power at
each loT)
if visited for the first =
time: <
Reward = 10
else:
Reward = -1

¥

Location of goal
Reward = 10 + 5*x (x is the number of loT
devices charged)

Environment




Q-Learning

map_100.pdf
 @® Q

Reward at goal is too
high!
Reward = 100+ 5*x (x
Is the number of loT
devices charged)




Q-Learning




